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a b s t r a c t 

This paper proposes LinkNet, a 2D-3D linked multi-modal network served for online semantic segmen- 

tation of RGB-D videos, which is essential for real-time applications such as robot navigation. Existing 

methods for RGB-D semantic segmentation usually work in the regular image domain, which allows effi- 

cient processing using convolutional neural networks (CNNs). However, RGB-D videos are captured from 

a 3D scene, and different frames can contain useful information of the same local region from different 

views. Working solely in the image domain fails to utilize such crucial information. Our novel approach 

is based on joint 2D and 3D analysis. The online process is realized simultaneously with 3D scene re- 

construction, from which we set up 2D-3D links between continuous RGB-D frames and 3D point cloud. 

We combine image color and view-insensitive geometric features generated from the 3D point cloud for 

multi-modal semantic feature learning. Our LinkNet further uses a recurrent neural network (RNN) mod- 

ule to dynamically maintain the hidden semantic states during 3D fusion, and refines the voxel-based 

labeling results. The experimental results on SceneNet [1] and ScanNet [2] demonstrate that the seman- 

tic segmentation results of our framework are stable and effective. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Online scene understanding of RGB-D videos, i.e., recognizing 

emantic objects when RGB-D frames are being received, is essen- 

ial for intelligent robot and autonomous driving. At present, most 

orks regard the online semantic understanding task as the se- 

antic segmentation of individual image frames. There have been 

any semantic segmentation methods designed for 2D images 

ased on deep convolutional neural networks (DCNNs) [3–6] . How- 

ver, recognition on single frame would be easily affected by en- 

ironment changes, such as distance, texture and lighting, result- 

ng in unstable semantic segmentation results during the move- 

ent. As shown in Fig. 1 , directly fusing semantic segmentation 

esults of RGB-D images into the 3D point cloud results in signifi- 

ant ambiguities and inconsistencies, leading to poor segmentation 

erformance. This is because the color input keep changing during 

he movement of camera, resulting in inconsistent global features 

cross frames. 

In recent years, depth has become a common additional in- 

ut for RGB images with the development of range sensors. This 
∗ Corresponding author. 
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dditional modality provides geometric details, which are bene- 

cial to supplement the color information [7] . Directly regarding 

he depth as an extra input channel for the deep neural network 

n addition to the RGB has been proved to be less effective [3,8] .

esides, various visual SLAM (Simultaneous Localization and Map- 

ing) works [9–11] have been proposed for dense 3D reconstruc- 

ion. Semantic segmentation directly for 3D scenes can satisfy 

patial consistency. However, most semantic segmentation frame- 

orks for point cloud [12–15] are designed for offline use taking 

 complete reconstructed 3D point cloud as input, and cannot be 

irectly adapted to online semantic segmentation. 

In this paper, we introduce LinkNet, a 2D-3D linked multi- 

odal neural network framework for effective online semantic seg- 

entation that tightly connects the fused 3D geometric informa- 

ion and RGB streams during online 3D reconstruction. The key 

bservation is that, as the projection of the 3D world, although 

he information sensed in the image space can change due to the 

onditions of lighting, views, etc., these multi-view images should 

lways be consistent with the same underlying 3D geometry. The 

ain two issues are how to extract an effective feature from the 

econstructing 3D scene and how to establish connections among 

onsecutive frames to facilitate a temporally consistent feature rep- 

esentation. 

https://doi.org/10.1016/j.cag.2021.04.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2021.04.013&domain=pdf
mailto:taijiang@mail.tsinghua.edu.cn
https://doi.org/10.1016/j.cag.2021.04.013
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Fig. 1. An example showing the instability of single-frame semantic segmenta- 

tion. (a): fused output of frame-based semantic segmentation results generated by 

DeepLabV3+ [16] with voting strategy, (b): ground truth semantic segmentation. Se- 

mantic labels are indicated by different colors. 
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According to the online 3D fusion, we can establish 2D-3D links 

etween 2D images and the fused 3D point cloud to exchange in- 

ormation between the two domains. The benefits of linking 2D 

nd 3D information are two-fold. On the one hand, it allows to 

ownload the geometric features on the 3D point cloud and map 

hem to the image domain, such that the multi-modal convolu- 

ional neural network (CNN) can be applied to improve the per- 

ormance of image semantic segmentation. On the other hand, the 

oint cloud reconstruction process will be accompanied by a large 

umber of voxel fusion, allowing image domain information cor- 

esponding to the same 3D location to be effectively aggregated, 

hich can provide features from different views to strengthen tem- 

oral consistency of the semantic segmentation. 

More specifically, we convert the segmentation problem of 

ulti-frame images into a multi-voxel classification problem, 

here each voxel receives continuous observations (i.e., features) 

rom the live RGB-D streams. We thus exploit a recurrent neu- 

al network (RNN) to dynamically process such sequential infor- 

ation. We maintain the hidden semantic state of each voxel in 

he point cloud, and continue to download and upload with the 

upport of 2D-3D links. RNN has certain memory ability, and can 

ake the semantic segmentation results more stable and accurate. 

or 3D information input in LinkNet, we designed DHAC geometry 

escriptors, including distance from wall, height from ground, an- 

le between normal and gravity, and curvature. These definitions 

ll have semantic relevance or context relevance. The reason why 

e did not directly adopt the 3D coordinates as input is that the 

oordinate values are highly related to the starting position, and it 

s difficult to apply normalization in online system. 

It is worth mentioning that LinkNet refines the semantic seg- 

entation results through 3D reconstruction. At the same time, 

here are some works [17–19] that target at improving the quality 

f scene reconstruction with the help of semantics. These works 

an also output online semantic segmentation, but they essentially 

erform the semantic segmentation in the image domain, and do 

ot take 3D information into account. The main contributions of 

his paper are as follows: 

• We propose an online multi-modal semantic segmentation net- 

work, named LinkNet, for RGB-D streams, which combines the 

appearance information of the 2D image domain and the geo- 

metric descriptors extracted from the partially reconstructed 3D 

point cloud. 
• We design a lightweight geometric feature, called DHAC (dis- 

tance, height, angle and curvature), which is invariant to light- 

ing and views, and can be calculated in real-time. This feature 

is demonstrated to be effective in our online semantic segmen- 

tation, and can also be useful for other applications. 
• We establish a mechanism for pixel-level / voxel-level 2D-3D 

links that provides multi-view sequential features for voxels. 

We demonstrate its usefulness when feeding them to an RNN 
for stable and accurate online semantic segmentation. m

38 
. Related work 

.1. Image semantic segmentation 

Semantic segmentation of images based on deep neural net- 

orks has made significant achievements. The iconic end-to-end 

ork is the Fully Convolutional Network (FCN) proposed by Long 

t al. [3] . The design of FCN uses a well-known encoder-decoder 

rchitecture, which is also the basic architecture of most current 

mage segmentation networks. Noh et al. [20] optimized seman- 

ic segmentation by designing a deconvolutional neural network. 

liveira et al. [21] applied the fully convolutional neural network 

o the field of human body part detection and achieved significant 

esults. Following these, U-Net [22] , SegNet [23] , PSPNet [24] and 

he DeepLab series [4,6,16,25] have continuously enriched the de- 

ign of fully convolutional neural networks for image semantic seg- 

entation. 

Among them, ERFNet [26] , AdapNet++ [27] and 

eeplabV3+ [16] are the most advanced network frameworks. 

n addition to the image pyramid network mentioned above, HR- 

et [28] maintains high resolution representation during feature 

earning. The above methods only use the image color infor- 

ation that is easily affected by environment. Recently, Kundu 

t al. [29] proposed virtual MVFusion that has made progress in 

D image segmentation through smarter view selection and virtual 

endering of reconstructed point clouds. However, this method is 

nly suitable for offline environment and requires complete scene 

nformation. In this paper, we perform online multi-modal learning 

ith extra geometric features to break through the limitations of 

olor domain. 

.2. Multi-modal network with depth 

Depth input is more resistant to interference caused by envi- 

onment changes, which is an important feature in the study of se- 

antic segmentation. With the increasing popularity of range sen- 

ors, some multi-modal networks have been proposed to improve 

emantic segmentation. Early works such as Couprie et al.’s [8] and 

ong et al.’s [3] directly treated the depth value as a new infor- 

ation channel and aligned with the color information for syn- 

hronous training, but the improvements were limited. Most of 

he recent works [7,30–32] instead used multiple independent en- 

oders for RGB and depth input to learn multi-modal features. 

azirbas et al. [33] designed FuseNet and Jiang et al. [34] pro- 

osed RedNet to integrate the features of the depth encoder into 

he color encoder from bottom up to achieve multi-modal train- 

ng. Park et al. [35] designed RDFnet with top-down multi-level 

eature fusion through multi-scale and multi-modal feature blocks. 

iang and Fox [36] proposed DA-RNN that makes frame associa- 

ion through depth and KinectFusion [9] . The SSMA framework de- 

igned by Valada et al. [27] is an adaptive method based on self- 

upervision. In this paper, we propose a better geometric feature 

escriptor, i.e., DHAC, which is generated from the point cloud and 

nvariant to lighting and views. Moreover, our multi-modal fusion 

an take advantage of different modalities. 

.3. Deep learning on 3D point cloud 

3D point cloud learning is a research hotspot in recent years. 

s the pioneer of point cloud learning, PointNet [12] uses global 

eature aggregation to realize point-wise point cloud feature learn- 

ng. Then PointNet++ [37] uses spatial neighborhood information 

o enhance local features. DGCNN [38] uses the embedding fea- 

ure domain to construct a dynamic graph, and proposes EdgeConv 

o implement an order-independent convolution. There are also 

any work to define the convolution operation for point clouds. 



J.-X. Cai, T.-J. Mu, Y.-K. Lai et al. Computers & Graphics 98 (2021) 37–47 

P

d

p

P

l

t

M

c

o

c

s

T

f

c

P

t

a

o

q

t

2

H

r

p

e

v

t

p

i

s

m

a

o

i

F

t

e

r

e

t

a

s

f

a

i

t

m

3

3

l

p

o

t

c

p

o

r

t

l

Fig. 2. Pipeline of LinkNet. The red dashed box represents the multi-modal CNN, 

which takes 2D channels (RGB) and 3D channels (DHAC) as input and generates 

semantic features. The black dashed box represents an RNN module, which down- 

loads/uploads hidden states through 2D-3D links between 2D pixels of RGB-D im- 

ages and 3D voxels of the reconstructed point cloud. (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 3. Point cloud fusion of depth images using camera poses. The scale of the 

scene and the density of the point cloud will increase as the number of registered 

frames increases. 
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CNN [39] performs 3D convolution by constructing a local voxel 

omain. Cai et al. [40] used local depth mapping to project the 

oint cloud onto the tangent plane to perform 2D convolution. 

ointCNN [13] specifies the input order of point cloud subsets by 

earning the arrangement matrix and uses 1D convolution for fea- 

ure extraction. In addition, MCCNN [41] and PointConv [14] use 

onte Carlo estimation to simulate the convolution operation. Re- 

ently, the Transformer [42] , which is widely popular in the field 

f natural language learning, has begun to be extended to point 

loud learning, thanks to the input order independence of the 

elf-attention mechanism. PCT [43] is a classic migration work of 

ransformer. It directly applies the attention mechanism to global 

eature learning, and uses neighborhood embedding and Lapla- 

ian matrix-based offset-attention to optimize the performance. 

ointASNL [44] uses the attention mechanism to extract local fea- 

ures. PointGMM [45] proposes MLP splits and attentional splits to 

chieve shape completion. The above methods are all run in an 

ffline manner, and special segmentation and resampling are re- 

uired for large-scale 3D scenes. More comprehensive surveys on 

his topic can be found in [46,47] . 

.4. Online semantic segmentation 

RGB-D videos have similar regular structure as ordinary videos. 

owever, there is not much research on video-oriented deep neu- 

al networks for semantic segmentation, because multi-frame in- 

ut will cause a burden to the design of the network. Zhang 

t al. [48] stacked the video frame data, then divided it into super- 

oxels, and finally trained to process the video with a 3D convolu- 

ional neural network in units of voxels. Shelhamer et al. [49] pro- 

osed the Clockwork network. This work assumes that the changes 

n the pixel domain caused by time changes are drastic, while the 

emantic changes are slight. Luc et al. [50] proposed the SegmPred 

odel to predict the semantics of the upcoming frame through an 

dversarial network. These methods are based on the adaptation 

f improvement on 2D images, and no 3D geometric information 

s considered. 

Another common way is 3D semantic reconstruction. Semantic- 

usion designed by McCormac et al. [18] uses semantic informa- 

ion as an aid to achieve more accurate scene reconstruction. Rünz 

t al. [19] proposed MaskFusion, in which instance segmentation 

esults were used to track and reconstruct moving objects. Yang 

t al. [17] also used the semantic distribution of pixels to optimize 

he pose estimation. Zhang et al. [51] combined SSMA [27] on im- 

ges and PointConv [14] on point clouds to optimize the voxel-wise 

emantic labeling. These methods can output scene semantic in- 

ormation online, but the semantic segmentation results are gener- 

ted by related networks designed for the RGB image and the voxel 

n the reconstruction process. Their semantic segmentation results 

hus do not fully consider the 3D geometric and multi-view infor- 

ation. Our work aims to optimize semantic segmentation using 

D reconstruction. 

. Method 

Fig. 2 shows the pipeline of our 2D-3D LinkNet. LinkNet takes 

ive RGB-D video frames and camera poses as input, and outputs 

ixel-wise semantic predictions and semantic segmentation results 

f 3D point clouds online. First, we use point cloud fusion to es- 

ablish the 2D-3D links between the 2D image and the 3D point 

loud. Secondly, the geometric features generated from the 3D 

oint cloud are downloaded to each frame, which are then used to 

utput the semantic features via multi-modal learning. Finally, we 

efine the semantic features and achieve stable semantic segmen- 

ation predictions through a RNN module with the help of 2D-3D 

inks. 
39 
.1. Mapping between the RGB-D image and point cloud 

Before going deeper into the point cloud fusion, we briefly in- 

roduce the transformation between the image coordinates and 

amera coordinates. Given an aligned RGB-D image with the color 

hannels C and depth channel D defined in domain I ⊂ R 

2 . Sup- 

ose the camera intrinsic matrix is K ∈ R 

3 ×3 , we can transform 

 pixel i : I(i ) = (u i , v i ) in the image space into a 3D point p i =
x i , y i , z i ) ∈ R 

3 in the camera space using homogeneous coordinates

s follows: 

p T i = f K (i ) · (u i , v i , 1) 
T 
, 

f K (i ) = D(i ) · K 

−1 . (1) 

ig. 3 (a-b) show an example of converting an RGB-D image into a 

D point cloud. 

.2. Point cloud fusion 

By processing multi-frame data {I t } , where t is the frame 

time) index, we can obtain the voxel set {V t } corresponding to 

ach RGB-D frame. However, the coordinate system of each frame 

s independent to each other. Here we need to use point cloud 

egistration to estimate the relative pose between frames and fuse 

oxels from different views. 
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Fig. 4. Example of 2D-3D Links. The colors of dotted arrows represent different 

categories of objects. 

Fig. 5. Examples of DHAC images. (a) (b) are the raw color and depth images. (c) 

DHAC images (distance, height, angle and curvature are mapped to RGBA channels). 
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Assuming that the global camera pose of the frame data at time 

is T t ∈ SE 

3 , the converted point cloud data is V t . The specific re-

ationship is as follows: 

 

t = { V i = (x i , y i , z i , t, f i , s i , l i ) , i ∈ I t } , 
(x i , y i , z i , 1) T = T 

t · (p i , 1) T , (2) 

here V i represents the stored information for the voxel corre- 

ponding to the pixel i , (x i , y i , z i ) is the position of the voxel in the

lobal space, t is the latest timestamp of the voxel, p i is the 3D 

osition in the camera space corresponding to pixel i , f i is a ge-

metric feature descriptors that will be introduced in Section 3.3 , 

nd s i refers to the hidden semantic state stored on the point cloud 

o memorize the point cloud semantic label l i at the voxel. There is 

o need to store colors in voxels, because each frame has its own 

olor information, which will change due to different camera views 

r lighting conditions. Besides, the voxel already contains more re- 

iable semantic information in s i . It is worth noting that the camera 

ose can be solved by various SLAM or 3D reconstruction methods 

as a byproduct of these algorithms), which is not the main focus 

f this paper. In most cases, we directly use the pose information 

rovided by the 3D benchmark. 

Assuming that the registered point cloud set before t is S t−1 , 

he current frame point cloud is V t . We need to design fusion rules

 

t = f use (S t−1 , V t ) to produce the fused point cloud. Specifically,

oxels V a and V b are to be fused into a single voxel V c if the fol-

owing conditions are satisfied: 

V a ∈ S t−1 

V b ∈ V t 

rid(x a , y a , z a ) = Grid(x b , y b , z b ) 

Grid(x, y, z) = (� x 
ε
� , � y 

ε
� , � z 

ε
� ) (3) 

here ε is the size of the voxel unit, and it is set to ε = 2 cm in

his work. We update the fused voxel V c as follows: 

 c = f use (V a , V b ) = (x b , y b , z b , t c , f c , s a , l a ) 

t c , f c ) = 

{
(t a , f a ) , (t b − t a ) < 1 sec. 
(t b , f b ) , otherwise 

(4) 

s above, during the voxel fusion process, we limit the update fre- 

uency of feature generation to improve efficiency (i.e., only recal- 

ulating geometric features when the time elapsed is over 1 sec- 

nd). Fig. 3 shows an example of the point cloud fusion. Obviously, 

he more frames we fuse, the more reliable and accurate geometric 

hape information and richer context are to be obtained. 

Through point cloud fusion, we can obtain a series of 2D-3D 

inks. These links specify a unique corresponding 3D voxel for each 

ixel. As shown in Fig. 4 , we can establish the association among 

ixels of multi-views through the point cloud, and provide sequen- 

ial data input for semantic prediction of voxels. 

.3. DHAC geometric descriptor 

Color information is easily affected by the environment, such as 

ighting, weather or view-point, which induces instability for se- 

antic segmentation. Besides, existing work [7] shows that encod- 

ng depth information through HHA features can improve perfor- 

ance. We thus propose DHAC, a 3D geometric descriptor satisfy- 

ng spatial consistency. As an upgraded version of HHA, DHAC is 

ore capable of describing scenes. Given a point p i = (x i , y i , z i ) in

 point cloud P , its DHAC descriptor f i is calculated as: 

f i = (d i , h i , a i , c i ) 

 i = min {‖ p i − p j ‖ , p j ∈ BB (P) } 

40 
 i = z i · � g 

 i = ‖ arccos ( � n i · � g ) ‖ (5) 

here d i refers to the distance between p i and walls, computed as 

he shortest distance between p i and the bounding box (BB) of the 

D point cloud, h i is the height along the direction of gravity � g , 

 i is the angle between the normal � n i and gravity � g , and c i is the

urvature. 

Normal �
 n i and curvature c i can be estimated by the Principal 

omponent Analysis (PCA) algorithm. Note that PCA normal esti- 

ation requires neighborhoods of a certain size that can be re- 

rieved by a KD-tree. However, the KD-tree data structure is hard 

o build online, and its K-Nearest Neighbor (KNN) search algorithm 

s also time-consuming. Instead of maintaining a global KD-tree, 

e dynamically maintain the KNN for each voxel during the 3D 

econstruction process, which is initialized and updated according 

o the 2D neighbors of the corresponding pixel. Specifically, we 

hoose the 5 × 5 neighbors around each pixel as the candidates for 

oxel KNN. In this work, all the K value of KNN is set to 16. 

Strictly speaking, in the start-up phase, d i and h i will gradu- 

lly change with the update of the scene, so they do not hold the 

iew invariance completely. Nevertheless, they still have very good 

onsistency. In the multi-modal learning process, we map f i back 

nto the 2D image domain to generate the DHAC images. As shown 

n Fig. 5 , the DHAC descriptors can characterize the geometric fea- 
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Fig. 6. The architecture of LinkNet. The input RGB-D streams together with the proposed DHAC feature are fed into the RGB Encoder and DHAC Encoder, followed by a multi- 

modal decoder to generate the multi-modal feature. Before being sent to a Score layer for a temporally consistent semantic prediction, this multi-modal feature is refined 

by an RNN module with the help of the “voxel state” of the 3D point cloud that can be downloaded and uploaded via 2D-3D links (blue dotted arrows). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ures well and are almost consistent among different viewpoints. 

ll these descriptors are highly semantic related or context related. 

herefore, DHAC can effectively improve network performance. 

.4. LinkNet 

The detailed architecture design of our LinkNet is shown in 

ig. 6 . Our LinkNet consists of two main modules: a multi-modal 

etwork and an RNN module. 

The multi-modal network is intended to generate the multi- 

odal feature for the input color and depth data, which is devel- 

ped from FuseNet [33] . Although any suitable multi-mode net- 

ork can be used as the backbone of LinkNet, we adopt the 

useNet here by considering the trade-off between the perfor- 

ance and the efficiency. We extend the input channel of its depth 

ncoder to support multi-modal learning of RGB and DHAC images 

ia ‘RGB Encoder’ and ‘DHAC Encoder’, respectively. The 5-layer 

onvolution design of the encoders is referenced from VGG16 [52] . 

ach output of ‘DHAC Encoder layer’ will be added to the output 

f the corresponding layer of ‘RGB Encoder’ to achieve multi-modal 

eature fusion (as illustrated by the red dotted arrow in Fig. 6 ). The

nal multi-modal feature F m is decoded through a 5-layer ‘Multi- 

odal Decoder’. For more detailed network framework, please re- 

er to [33] . 

Another core module of LinkNet is a 2D-3D linked RNN module. 

his module is designed to learn a temporally consistent feature 

epresentation for stable semantic prediction through the 2D-3D 

ink between 2D images and the underlying 3D geometry. Specifi- 

ally, for each pixel i of frame I t , we first find its linked voxel V j 
sing the method introduced in Section 3.2 . We then feed the out- 
41 
ut feature of that pixel, F m 

t 
i 
, from the previous multi-modal fea- 

ure network and the voxel state s t−1 
j 

(including the hidden state 

nd cell state), which is stored in the corresponding 3D voxel, into 

n RNN. The RNN generates the output feature o t 
i 

for pixel i and 

pdates the voxel state as follows: 

o t i , s 
t 
j ) = RN N (F m 

t 
i , s 

t−1 
j 

) . (6) 

f there is no pixels in frame t linked to voxel V x , then s t x will be

qual to s t−1 
x . Our RNN module is formed by two stacked standard 

ong Short-Term Memory(LSTM) modules [53] with the dimension 

f their hidden state and cell state set to 64. Their initial value 

s set to 0 and updated over time through valid 2D-3D links. The 

utput feature from the RNN is further fed into a Score layer to 

redict the semantic label l t 
i 

online: 

abels = { l t i } = argmax { Score ({ o t i } ) } (7)

his Score layer is composed of two convolution layers sandwich- 

ng a dropout layer. The kernel sizes of convolution layers are set 

s [3 × 3] and the probability of dropout is 0 . 2 . Please note that

he convolution layer here is not equivalent to the fully connected 

ayer, because its kernel size is not [1 × 1] . 

. Experiments and results 

Implementation Details. We trained the backbone network 

composed of the RGB encoder, DHAC encoder and the Multi- 

odal decoder), and the RNN module (i.e, the two stacked LSTMs 

nd the Score layer), separately. Cross-entropy loss function is 

dopted during the training of both backbone network and the 



J.-X. Cai, T.-J. Mu, Y.-K. Lai et al. Computers & Graphics 98 (2021) 37–47 

R

m  

d

s

s  

o

d

a

b

S  

t

i

f

m

4

8

(

o

f

c

f

i

t

m

4

d

t

o

R

m

T

i

s  

m

w

m

s

A

o

m

c

o

a

m

t

e

m

t

o

c

d

m

w

i

p

a

L

n

F

m

4

s

t

c

2

w

e  

N

f

r

F

m

p

I  

t

s

a

t

S

l

b

o

b

fi

t

4

p

c

f

t

s

i

w  

c

s

a

i

4

m

s

r

t

a

a

n

h

1 http://kaldir.vc.in.tum.de/scannet _ benchmark/semantic _ label _ 2d 
NN. The initial learning rates of the backbone network and RNN 

odule training are set to 2 e − 3 and 5 e − 5 , respectively. They will

ecrease by 10% for every 50 0,0 0 0 iterations. The training batch 

ize of the backbone network is set to 12, and of course, the batch 

ize of RNN module is 1. For all input data, we resize it to a res-

lution of 320 × 240 pixels. This is because it is the resolution of 

epth maps for most range sensors, and a low resolution input can 

lso speed up the inference. The number of epochs for training will 

e introduced later. 

We evaluate LinkNet through both a synthetic dataset, i.e., 

ceneNet RGB-D [1] , and a real scan dataset, i.e, ScanNet v2 [2] . Al-

hough our work can predict voxel-wise semantic labels, the qual- 

ty of 3D reconstructed point cloud will be affected by the selected 

usion algorithm. Therefore, we mainly evaluate the semantic seg- 

entation of 2D images. 

.1. Timings 

All experiments are performed on a computer with an Intel i7- 

700K CPU, 64GB RAM and an Nvidia GeForce GTX 1080 Ti GPU 

11GB on-board memory). 

In the case of a single GPU, the average runtime per frame 

f our work is about 56ms (i.e., 18FPS), of which the LinkNet in- 

erence time is about 45ms per frame and the DHAC descriptor 

omputation (including 2D-3D link generation) is about 11ms per 

rame. The system efficiency can be further increased to 23FPS us- 

ng multi-GPU with streaming optimization. This efficiency is at 

he same level as most online 3D reconstruction algorithms and 

eets the requirements of online applications. 

.2. Results on the sceneNet RGB-D dataset 

SceneNet RGB-D [1] is a synthetic dataset containing 16,865 in- 

oor scans, and each scan contains 300 annotated RGB-D frames 

hat are selected every 25 frames. The layout, texture and lighting 

f the objects in this dataset are all randomly generated. SceneNet 

GB-D contains 258 instance labels that are divided into 14 se- 

antic categories according to the NYU Depth V2 [54] standard. 

he experiment follows standard training/validation split reported 

n [1] . The number of training epoch for the backbone network is 

et to 20 with about 1 × 10 8 iterations and the one for the RNN

odule is set to 1 with about 5 × 10 6 iterations. 

To demonstrate the advantages of our linked multi-modal net- 

ork, we conduct extensive ablation studies: without the RNN 

odule, and using single or combined modalities as inputs. Fig. 7 

hows examples of single-modal semantic segmentation results. 

mong these modalities, HHA is a feature coding method based 

n depth and gravity estimation proposed by Gupta et al. [7] . This 

odality is more friendly to semantic segmentation than depth. It 

an be seen that the DHAC feature, benefiting from its good ge- 

metric properties, can resist the interference of lighting, texture 

nd view-point, making it a suitable presentation for semantic seg- 

entation in challenging conditions. It contains richer information 

han other modalities, leading to better performance. Fig. 8 shows 

xamples of multi-modal experiments. It can be found that multi- 

odal input can be complementary to each other in the seman- 

ic segmentation. Especially in a dark lighting condition, modalities 

ther than color are essential for prediction, and the DHAC feature 

learly shows the best effect. 

Table 1 lists the class-wise semantic segmentation results of 

ifferent modal combinations. The results are evaluated with OA , 

Acc and mIoU metrics. OA is the overall accuracy, mAcc is class- 

ise averaged recall, and mIoU is class-wise averaged IoU , which 

s defined as the ratio of the intersection and union between the 

rediction and ground-truth. Although the occurrences of books 

re too low to be reliably classified, in most other categories, our 
42 
inkNet achieves a comprehensive improvement, which has a sig- 

ificant improvement of 12% in mIoU compared to the base model 

useNet. This shows that both the DHAC feature and our RNN 

odule contribute to the improvement of semantic segmentation. 

.3. Comparisons on the ScanNet v2 dataset 

The ScanNet v2 dataset [2] contains 1513 scans of real indoor 

cenes with various object categories. The 2D semantic segmen- 

ation training/test set (ScanNet25k) provided by the benchmark 

ontains 19,466 images for training, 5436 images for validation and 

135 images for testing. The training epoch of the backbone net- 

ork is set to 200 with about 4 × 10 6 iterations. And the training 

poch of the RNN module is set to 10 with about 2 × 10 5 iterations.

Table 2 shows the semantic segmentation results on the Scan- 

et v2 test set. All the results of selected 21 classes are drawn 

rom the ScanNet leaderboard 

1 . We make comparisons with the 

epresentative works including Enet [55] , PSPNet [56] , MSeg [57] , 

useNet [33] , AdapNet++ [27] and SSMA [27] . Obviously, multi- 

odal methods have clear advantages, among which our LinkNet 

erforms quite well. Compared with FuseNet, LinkNet improves 

oU by 3 . 1% . The improvement of LinkNet on ScanNet v2 is rela-

ively limited. This is mainly because the ScanNet v2 test set just 

elects 1 frame every 100 frames. This reduces the number of 

vailable 2D-3D links, making it difficult to take full advantage of 

he RNN module of our LinkNet. At present, LinkNet outperforms 

SMA [27] in about half of the categories, but the mIoU is slightly 

ower than that of SSMA, mainly because of the gap in the back- 

one network (i.e., FuseNet vs. SSMA, especially for the category 

f book-shelf ). Although we can further improve the performance 

y choosing SSMA as the backbone network of LinkNet, it is dif- 

cult to meet the requirement of online 3D reconstruction, since 

he running time of each frame of SSMA is about 100 ms . 

.4. Stability analysis 

To quantitatively evaluate how our LinkNet improves the tem- 

oral consistency of semantic segmentation for online streams, we 

ompute the average semantic change ratio of pixels projected 

rom the underlying 3D voxels among all consecutive frames on 

he SceneNet RGB-D validation set. We regard this metric as the 

tability of the online semantic segmentation: the lower the ratio 

s, the more stable the semantic segmentation is. 

We compare our LinkNet with FuseNet [33] as well as FuseNet 

ith DHAC feature. As shown in Table 3 , 8 . 73% of pixel labels are

hanged with FuseNet, while our LinkNet achieves more consistent 

emantic segmentation result with only 3 . 89% of label changes. In 

ddition, DHAC also contributes to stable segmentation due to its 

nsensitivity to the change of views. 

.5. Limitation 

Our method also has some limitations. First, the feature refine- 

ent of LinkNet is preformed at the pixel level or voxel level, in- 

tead of the instance level. This may corrupt the semantic labeling 

esults of the same instance, resulting in discontinuity in seman- 

ic segmentation. A progressive clustering [58] on voxels can be 

pplied to alleviate this problem. Second, the RNN module would 

ccumulate errors when a voxel is frequently linked to pixels with 

oise feature representation. A view selection strategy [29] would 

elp to improve the quality of input frames. 

http://kaldir.vc.in.tum.de/scannet_benchmark/semantic_label_2d
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Fig. 7. Examples of semantic segmentation on SceneNet RGB-D dataset with single modalities including RGB, Depth, HHA and DHAC. For each modality, the first row shows 

the input, the second row presents the semantic segmentation results, and the third row shows the error maps, where blue represents the correct predictions and red 

represents the wrong ones. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 8. Examples of semantic segmentation on SceneNet RGB-D dataset with multi-modal inputs. The first block containing four rows shows different modalities, and 

remaining blocks are multi-modal comparisons, where within each block the first row is the result shows semantic segmentation results, and the second row gives the error 

maps (blue represents the correct predictions and red represents the wrong ones). (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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Table 1 

Detailed comparison of various input modalities on the SceneNet RGB-D dataset [1] . 

Methods Beds Books Ceiling Chair Floor Furniture Objects Picture 

RGB 22.0 - 77.8 29.6 77.2 36.0 35.8 69.4 

Depth 53.7 - 72.8 40.2 67.9 24.4 54.6 24.6 

HHA 47.1 - 67.8 35.2 66.6 14.3 55.9 17.5 

DHAC 56.9 - 75.0 46.9 70.9 33.8 60.6 26.8 

RGB + Depth (FuseNet) 46.2 - 79.3 53.7 75.1 36.9 54.5 51.0 

RGB + Depth (SSMA) 19.3 - 74.5 21.5 69.3 17.1 35.5 29.4 

RGB + HHA (FuseNet) 47.4 - 82.9 38.1 78.5 41.4 47.6 49.5 

RGB + DHAC (FuseNet) 53.9 - 83.1 49.1 84.8 52.1 55.9 55.5 

RGB + Depth ( LinkNet ) 51.3 - 83.3 50.6 82.2 38.0 56.2 51.2 

RGB + DHAC ( LinkNet ) 60.9 - 83.4 63.2 83.2 59.2 68.0 66.8 

Methods Sofa Table TV Wall Window OA mAcc mIoU 

RGB 08.5 30.2 14.1 78.2 30.8 77.8 60.2 39.2 

Depth 06.6 44.7 09.9 69.9 23.1 76.4 56.3 37.9 

HHA 18.4 47.0 15.9 64.7 21.6 72.6 56.7 36.3 

DHAC 21.0 57.0 25.6 70.2 24.6 78.0 65.3 43.8 

RGB + Depth (FuseNet) 22.6 45.6 28.3 80.5 25.7 82.1 63.4 46.1 

RGB + Depth (SSMA) 01.2 30.3 02.1 73.6 13.1 75.6 41.5 29.8 

RGB + HHA (FuseNet) 18.0 54.3 41.9 81.4 31.9 82.5 66.3 47.1 

RGB + DHAC (FuseNet) 18.8 58.0 49.1 82.1 29.1 84.4 69.8 51.7 

RGB + Depth ( LinkNet ) 12.8 49.0 35.4 83.2 29.9 84.2 64.2 47.9 

RGB + DHAC ( LinkNet ) 29.7 66.5 61.5 83.3 31.7 86.6 73.3 58.3 

Table 2 

Comparisons of LinkNet with bechmarking results on the ScanNet v2 test set. 

Methods Mode mIoU Bathtub Bed Book Shelf Cabinet Chair Counter Curtain Desk Door 

Enet single 37.6 26.4 45.2 45.2 36.5 18.1 14.3 45.6 40.9 34.6 

PSPNet single 47.5 49.0 58.1 28.9 50.7 06.7 37.9 61.0 41.7 43.5 

MSeg single 48.5 50.5 70.9 09.2 42.7 24.1 41.1 65.4 38.5 45.7 

AdapNet + + single 50.3 61.3 72.2 41.8 35.8 33.7 37.0 47.9 44.3 36.8 

FuseNet multi 53.5 57.0 68.1 18.2 51.2 29.0 43.1 65.9 50.4 49.5 

SSMA multi 57.7 69.5 71.6 43.9 56.3 31.4 44.4 71.9 55.1 50.3 

LinkNet multi 56.6 65.6 73.4 18.0 54.4 29.4 51.5 67.7 51.4 53.2 

Methods Floor Other Furniture Picture Refrigerator Shower Curtain Sink Sofa Table Toilet Wall Window 

Enet 76.9 16.4 21.8 35.9 12.3 40.3 38.1 31.3 57.1 68.5 47.2 

PSPNet 82.2 27.8 26.7 50.3 22.8 61.6 53.3 37.5 82.0 72.9 56.0 

MSeg 86.1 05.3 27.9 50.3 48.1 64.5 62.6 36.5 74.8 72.5 52.9 

AdapNet + + 90.7 20.7 21.3 46.4 52.5 61.8 65.7 45.0 78.8 72.1 40.8 

FuseNet 90.3 30.8 42.8 52.3 36.5 67.6 62.1 47.0 76.2 77.9 54.1 

SSMA 88.7 34.6 34.8 60.3 35.3 70.9 60.0 45.7 90.1 78.6 59.9 

LinkNet 91.6 33.0 47.2 56.3 32.0 71.3 62.8 47.6 84.4 80.4 59.8 

Table 3 

Stability comparison on SceneNet RGB-D validation set. 

Method Stability 

RGB + Depth (FuseNet) 8 . 73% 

RGB + DHAC 7 . 12% 

LinkNet 3 . 89% 
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. Conclusion 

In this paper, we propose LinkNet to perform stable and ef- 

ective online semantic segmentation of RGB-D video. On the one 

and, LinkNet incorporates the geometric features extracted from 

he fused 3D geometry into multi-modal learning in the image do- 

ain to improve feature robustness by taking advantage of the 2D- 

D links offered by 3D reconstruction. On the other hand, LinkNet 

pplies an RNN on the sequential features observed by each voxel 

o maintain the stability of semantic segmentation. Experiments on 

oth synthetic and real scanned datasets demonstrate the effec- 

iveness of our method. 

In the future, we would like to consider more complex 3D fea- 

ures that are more suitable for semantic segmentation, such as 

oxel-based deep learning features. In addition, the backbone net- 

ork can also be upgraded for 2D-3D multi-modal application. 
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