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Abstract Industrial X-ray CT scanners have enabled non-
destructive evaluation of industrial products, including even
inside of their bodies, due to the transmissive nature of X-rays.
In light of the effectiveness, this paper introduces a new ap-
proach to accelerate the inspection of many same mechanical
parts in a bin by X-ray CT scanning. The input to this problem
is a volumetric image (i.e., CT volume) of many parts, which
is obtained by a single CT scan. We need to segment the parts
in the volume to inspect each of them, but random postures
and dense contacts of the parts prohibit the part segmenta-
tion using a traditional template matching. To address this
problem, we convert both the scanned volumetric images of
the template and the binned parts to simpler graph structures
and solve a graph matching problem to segment the parts. We
perform the distance transform to convert the CT volume to a
distance field. Then, a graph is constructed based on the Morse
theory, where its nodes are located at extremum points of
the distance field. The experimental evaluation demonstrates
that our fully automatic approach can detect the parts even
for a heap of 50 parts in CT volumes. Moreover, the overall
computation can be done in approximately 30 minutes for a
large CT volume with about 2000× 2000× 1000 voxels.

Keywords X-ray computed tomography, Volume segmen-
tation, Graph matching, Nondestructive inspection

1 Introduction
X-ray computed tomography (CT) is an effective tool for
nondestructive inspection of industrial products, which often
consist of a considerable number of parts. The X-ray CT
scan can detect defects in manufactured parts, such as cracks,
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cavities, and inclusions, owing to its capability of imaging
even inside of objects in a nondestructive manner.

As X-ray CT devices have prevailed, the demand for inspect-
ing many mass-produced parts in their production process
has arisen. However, current off-the-shelf X-ray CT scanners
often take time and monetary costs for scanning a large num-
ber of products in a production line. In contrast, X-ray CT
scanners can visualize the objects entirely in their field of
view. A possible solution for the above problem is to scan
many parts together in a single CT scan. Indeed, the same
parts manufactured by injection molding are arranged in a
sorting tray and scanned by the X-ray CT. However, preparing
a tray and arranging the parts is still costly and cumbersome.

Scanning a heap of identical parts stored randomly in a
bin (see Fig. 1(a)) will be a more efficient solution. We refer
to this process as bin-scanning in this paper. As shown in
Fig. 1(b) and (c), the bin-scanning obtains an X-ray CT volume
that contains all the parts in the bin by a single CT scan.
Then, the part regions in the CT volume are segmented for
inspecting the parts individually. This procedure is a template
matching problem in the sense that the segmented regions
correspond to approximately identical objects. Traditional
template matching has used the chamfer distance [1] and zero-
mean normalized cross-correlation (ZNCC) [2] to measure
the similarity to a template. However, these approaches for
image-level template matching inherently suffer from the
huge search space of its posture, although a large number of
studies [3] have been conducted to speed up the exploration
of the template.

Matching two sets of sparse keypoints has been a potential
approach to fast template matching. Typically, a geometric
feature around each keypoint is computed in advance, and
these features are employed as a guide for template matching.
In the case that each keypoint is associated with a spatial
position, we can solve the matching problem using well-
studied rigid and non-rigid registration algorithms [4–6].
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(a) the heap of parts
in a bin

(b) volume rendering for
the X-ray CT volume

(c) a slice of volume and the zoom up for a part

Fig. 1 Our paper discusses bin-scanning, which refers to the
process of scanning X-ray CT images of randomly stored identical
parts in a bin, as shown in (a). The volumetric image of a CT volume
is shown in (b), and a slice is shown in (c).

Unfortunately, such approaches that only rely on the spacial
arrangement of points might cause unpredictable mismatching
when some features of the keypoints are similar. When a set of
keypoints also has a graph structure, the template matching can
be formulated as a subgraph matching problem. Early studies
have considered a problem in finding subgraph isomorphism
(i.e., the subgraph with exactly the same graph structure) [7, 8].
Since matching subgraphs with inexactly the same structures
is an NP-hard combinatorial optimization problem, other
approaches proposed later have solved approximated and
relaxed graph matching problems [9, 10]. Recently, the graph
and subgraph matching problem can be solved even using
deep learning, where several studies [11–13] have reported
the high potential of deep learning techniques for more robust
template matching. Unfortunately, the subgraph matching
has rarely ever been applied to the problems in 3D objects
because the graph structure will be intractably complicated,
e.g., when the graphs are constructed by connecting vertices
sampled on object surfaces.

In this study, we solve the bin-scanning problem using a
subgraph matching algorithm because it would be more effi-
cient than simply matching CT sub-volumes using traditional

similarity measures. The problem here is that the inputs of
bin-scanning are not graphs but CT volumes of a template
part and a heap of parts. To focus more on the global structure
of the parts, we leverage the Morse theory [14], which is
a mathematical tool to analyze the topological property of
a manifold, to convert a CT volume into a graph structure.
In bin-scanning, we can assume that graphs obtained for a
template part and each of them included in the heap will be
isomorphic because the shape of the template part is almost
the same as those in the heap. Therefore, we can apply a
simple matching algorithm for subgraph isomorphism [8] to
match the graphs of template and heap.

Figure 2 illustrates the proposed method, which is roughly
separated into two stages. The input for our system is two
volumes of a template part and heaped parts. For brevity,
we refer to them as the template volume and target volume,
respectively. We convert each of the volumes into a graph,
which we refer to as a Morse skeleton graph (MSG) in this
paper. The MSG is constructed based on the Morse theory,
and the nodes of the graph are located on the skeleton of the
object. Then, a subgraph matching is performed to search
the template in the target volume, where both the segmen-
tation and localization of the template parts are achieved
simultaneously.

Our method allows the parts in a heap to take random
postures. Therefore, the sorting tray and manual parts ar-
rangement are no longer necessary. Furthermore, once we
finish scanning a target heap of parts, we can scan another
heap of parts while processing the CT volume obtained by
a prior scan. Compared to the standard scanning time, the
computation time needed by our system is sufficiently short.
Therefore, the bin-scanning with our system can significantly
accelerate the in-line parts inspection process.

1.1 Problem statement

We assume our template matching problem is defined on the
3D Euclidean space R3. We denote a position with bolded
letters (e.g., x ∈ R3), a rigid transformation R3 → R3 also
with bolded letters (e.g., T ∈ SO3), and a region (i.e., a 3D
subspace of R3) by a calface letters (e.g., P ⊂ R3).

The X-ray CT scan generates a volumetric image (i.e.,
CT volume) consisting of voxels with CT values which are
roughly proportional to the physical density of the parts.
When the parts are made of a single material, voxels of
the parts have approximately the same values as shown in
Fig. 1(c). Therefore, we can isolate the voxels of the parts
by binarizing both the template and target volumes. More
formally, we obtain a template part P0 and a target heap of
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Heap of Parts

Template Part

XCT Volume Morse Skeleton Graph Template Matching

XCT Volume Morse Skeleton Graph

Fig. 2 An overview of our graph-based template matching system for bin-scanning. Our system processes two input volumes of a template
part and its heap obtained by X-ray CT scans. The system identifies each part from the volume of heaped parts and calculates its posture as a
rigid transformation matrix. To this end, each volume (i.e., those of a template part and its heap) is converted to a graph. We refer to the
graph as a Morse Skeleton graph. Using a graph matching technique, we match the graph for a template with subgraphs in the entire graph
for heaped parts. Note that the graph structures in this figure are for illustration only.

N parts H =
⋃N

i=1 Pi by the X-ray CT scan, whereas the
number of parts N is unknown. The posture of each part Pi

(i.e., its position and orientation) is represented by a rigid
transformation Ti, where

Pi = TiP0 := {Ti(x) : x ∈ P0}. (1)

The goal of our problem is to find T1, . . . ,TN with given
P0 and H that involves the heap of the parts {Pi}Ni=1. More
precisely, Pi are closed subsets of R3, and a pair of parts
do not intersect (i.e., ∀i, j : IntPi ∩ IntPj = ϕ, where
IntP denotes the interior of P) because each part is the solid
objects. In contrast, the edges and corners of two parts may
be shared (i.e., ∃i, j : ∂Pi ∩ ∂Pj ̸= ϕ, where ∂P denotes the
boundary of P).

Our method converts both template volume P0 and target
volume H to lightweight graph structures to accelerate the
comparison of two volumes (see Fig. 2). The conversion is
based on the Morse theory and persistent homology, which
allow us for flexible control of the number of nodes of a graph.
Then, we match the graph structures between the template
and target using an efficient subgraph matching algorithm [8].
In this way, the whole template matching process can be
finished in approximately 30 minutes, even for a large CT
volume (e.g., the one with 2000× 2000× 1000 voxels).

2 Related Work
The template matching for bin-scanning needs to solve two
different problems simultaneously, i.e., segmentation to detect

each part in a heap and localization to determine the positions
and postures of the parts. This section introduces the related
work on these topics, including recent studies based on
deep learning. Since the Morse theory is leveraged in our
template matching, we also introduce its applications to
several geometric modeling tasks.

2.1 Image and volume segmentation

The most straightforward approach for segmenting specific
regions in a grayscale image is binarization, which often
relies on conventional thresholding [15–17] and combined
with mathematical morphology, such as erosion, to detach
the image domain into small connected regions [18]. Pixel
clustering, such as the mean shift method [19], has been
employed for segmentation as well [20, 21], although its high
computational cost hinders its application to large volume
data. The active contour models, such as Snakes [22] and Level
Sets [23], are another popular choice for 3D CT volumes [24,
25], which optimize the contour of an object using edges
extracted from the gray voxel values. However, it is difficult to
obtain the contours of objects touching one another using the
active contours. Graph cuts [26–28] can find a globally optimal
segmentation result, thus avoiding the fragmentation of object
regions due to noise. Unfortunately, its high computational
cost makes processing large 3D volumes impractical. The
watershed method [21, 29, 30] is also a common approach
for segmentation, often used with the distance transform
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when applied to binary images. The main drawback is over-
segmentation, which causes failure in the subsequent template
matching process.

In contrast to these approaches above, our method is based
on the distance transform and employs a similar approach to
the watershed method, while it has two noticeable differences.
First, we control the persistence of the watershed, based
on the Morse theory, to prevent over-segmentation. Second,
our method applies the subgraph matching to a graph built
upon the results of the watershed method containing over-
segmented regions.

2.2 Template matching based on geometric features

Template matching is often based on image and geometric
features, simultaneously solving the segmentation and lo-
calization problems. Based on the vicinity of features, we
can define the correspondences of elements, such as pixels,
voxels, and 3D points, and match a template to other data. For
volumetric images, feature vectors, e.g., the 3D scale-invariant
feature transform (SIFT) [31], are computed by extending the
feature for 2D image [32]. However, when applied to large 3D
CT volumes, these approaches can suffer from high compu-
tational costs in exploring the correspondences of too many
feature points, even accelerated by random sample consensus
(RANSAC). In contrast, several recent approaches [33–35]
have achieved efficient template matching of 3D sparse point
clouds, which are obtained by hand-held optical scanners and
LiDARs, based on Point Pair Features (PPF) [36] and normal
vectors of the points. These approaches could be applied to
our target (i.e., CT volume of the identical parts in a bin) by
isosurface extraction [37] and point sampling on the surface.
However, the mean recall of the state-of-the-art method [35]
is still insufficient for industrial part inspection, where the
detection requires almost 100 % accuracy.

2.3 Segmentation using deep neural networks

Needless to emphasize here, deep learning is one of the
most standard approaches for image and volume segmen-
tation, while various network architectures, such as fully-
convolutional network [38], U-Net [39, 40], feature pyramidal
network [41] have been proposed. However, due to rapid im-
provement in image resolution of X-ray CT devices, some
models have already been equipped with 8K detectors. Thus,
the large memory consumption of 3D convolutional neural
networks (CNNs) hinders the straightforward application of
the above networks to large CT volumes. The application
of deep learning techniques is common in medical-purpose
X-ray CT that aims to reduce dose, namely, the patients’

X-ray exposure. A previous method reduced the computa-
tional complexity by applying 2D CNNs to images obtained
by slicing the target volume along three axes [42], while
some others concentrate the computational resource only on a
specific part of the volume [43, 44], and use a region-specific
priors [45, 46]. For industrial X-ray CT, a recent study [47]
applied the flood filling network [48] to segment a large X-
ray CT volume with 100003 voxels. Unfortunately, all these
approaches aim to extract the regions belonging to a specific
object category (e.g., lung) for a medical purpose and not
to identify the regions for different substances of the same
object. Furthermore, preparing a large training dataset for
our purpose (i.e., segmenting heaped parts in a bin) will be
extremely cumbersome.

2.4 Morse theory for geometric modeling

Morse theory is a powerful tool for topology analysis, allowing
for extracting important geometric features. Forman [49]
introduced the discretized version of the Morse theorem and its
related algorithms, and Edelsbrunner et al. [50] followed him
to show its application on linear 2-manifolds (e.g., a triangular
mesh). As well as the geometry processing on triangular
meshes [51], the Morse theory has also been applied to image
processing [52, 53], visualization of cosmic objects [54],
molecular analysis [55], and mesh quadrangulation [56, 57].
For further applications, we refer the readers to comprehensive
surveys [58, 59].

A segmentation method similar to that shown in this paper
has been introduced by Nagai et al. [60]. Their method has
introduced semantic segmentation based on the Morse theory
and processed 3D X-ray CT volumes of industrial assemblies.
However, segmentation of heaped parts in an X-ray CT volume
is still a challenging problem because their method requires
careful human intervention to achieve a good segmentation
result, even for an assembly of a few parts.

3 Graph construction from a volumetric image
Our method based on subgraph matching starts with con-
verting an input 3D CT volume into a graph structure using
the Morse theory. Before we elaborate on our approach, this
section introduces several background theories and how the
graph structure is obtained with the volume. As an overview,
we show the workflow in Fig. 3.

3.1 Distance transform and its properties

We can assume a 3D part is represented by a connected region
P ⊂ R3. The distance transform is a process to define a scalar
field based on a metric in R3. For a part P (i.e., a connected
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Fig. 3 Generation of Morse complex and Morse skeleton graph
(MSG) for a simple screw shape. (a) We assume the input part P is
a connected region in the Euclidean space and perform the distance
transform to obtain a distance field, illustrated with isocurves in
this figure. The saddles and local maxima of the distance field are
indicated by plus “+” and triangle “△” symbols. (b) Each cell of a
Morse complex corresponds to a stable manifold centered by a local
maximum, which is connected with another cell across a saddle. The
MSG is a graph structure defined by the cells. (c) The complex, as
well as the MSG, can be simplified based on persistence homology
by consecutively removing a saddle and merging cells.

region), we can write the distance transform D : R3 → R by
introducing a simple Euclidean norm ∥ · ∥ as its metric.

D(x;P) =

 min
y∈∂P

∥x− y∥ for x ∈ P,

0 for x /∈ P.

At a pointx ∈ P , its value simply takes a minimum distance to
the boundary ∂P and is zero for all x /∈ P . Figure 3(a) shows
a simple example of the distance transform. The distance
transform for a region defined on a discrete 3D volume can be
calculated by solving an eikonal equation ∇D(x) = 1/f(x),
which is efficiently solved by the fast marching method [61]
with the computational complexity ordered by O(N logN).

A nice property of the distance transform is its invari-
ance under rigid transformation. Let T(x) = Rx + t and
T−1(x) = R−1x−R−1t be a rigid transformation inR3 and
its inverse, where R ∈ R3×3 is a rotation matrix, and t ∈ R3

is a translation vector. Using the notation TP in Eq. (1) for a
rigidly transformed region, we can write the invariance of the

distance transform as in the following equation:

D(x;P) = D(T(x);TP). (2)

Assume here that a number of parts P1,P2, . . . ,PN with the
same shape are in the target volume, and P0 be the part in the
template volume. Then, we can write each part Pi = TiP0

using a rigid transformation Ti. Considering the invariance
of the distance transform in Eq. (2), we obtain

D(x;Pi) = D(x;TiP0) = D(T−1
i (x);P0).

Furthermore, a distance transform of the heaped parts
H =

⋃N
i=1 Pi is derived from the property of distance trans-

formation taking zero outside of the region.

D(x;H) =

N∑
i=1

D(x;Pi) =

N∑
i=1

D(x;TiP0).

This property is important for template matching because it
means the distance transform of the template part is equivalent
when a part with the same shape is in a heap.

3.2 Basic Morse theory

The Morse theory was originally devised for smooth function
on manifolds [14], and in computer graphics, this theory
is often used to determine a topological structure on 2-
manifold [57, 62]. In contrast to these studies, we extract
a graph (i.e., the topological structure) on 3-manifold M,
which corresponds to H or Pi equipped with the simple
Euclidean metric. Here, we assume that the 3-manifold M is
parameterized by three coordinates (u0, u1, u2).

Let f : M → R be a real-valued function on the manifold.
Then a point is critical when its derivative with a coordinate
[∂f/∂ui] approaches zero, otherwise it is regular. Further-
more, a critical point is Morse when the Hessian matrix
[∂2f/∂ui∂uj ] at the critical point is non-singular, otherwise
it is degenerate. If and only if critical points on the manifold
are Morse, we refer the function f to a Morse function. Then,
we can define an integral line of the Morse function f , which
is a maximal path on M whose gradient direction agrees
with the gradient of f . Ascending (or stable) manifold and
descending (or unstable) manifold are defined as clusters of
integral lines having common origin and destination, respec-
tively. The Morse complex is a partition ofM into descending
manifolds. In contrast, the Morse-Smale complex is a partition
of M where each cell is composed of a set of integral lines
with the same origin and destination. In our problem, a cell
of the Morse complex computed for the distance transform
corresponds to a graph node. Specifically, Each node lies on
a local maximum of the distance field, while two adjacent
nodes lie on opposite sides of a saddle.
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3.3 Simplification on Morse complex

An important property of the Morse complex is that the
number of cells can be reduced by an operation called pair
cancellation [58, 63]. The pair cancellation is based on the
importance of a pair of critical points, which is often defined
by the difference in the values of Morse function values at two
critical points. The importance is also known as a persistence,
and the persistence p of two critical points u and v is formally
defined as p = |f(u)− f(v)| where f is a Morse function.

In a 3D space, saddles of a function can be classified
into 1-saddle and 2-saddle, depending on how ascending
and descending directions distribute around the saddle. The
cancellation on a 3D Morse-Smale complex can only be
defined for a pair of local minimum and 1-saddle and that of
local maximum and 2-saddle, eliminating both the critical
points in the pair and revising the topology (or a gradient field)
to redefine the graph structure. Informally, on a 3D Morse
complex (not Morse-Smale), the cancellation between a local
minimum and a 1-saddle corresponds to the elimination of
edge, while that between a 2-saddle and a local maximum
corresponds to the elimination of a face [63]. In this way,
we can control the complexity of the Morse complex by
increasing and decreasing the minimum persistence allowed.
We simplify the graph structure defined by the Morse cells
and their adjacencies, as shown in Fig. 3(c).

4 Part Segmentation by Graph Matching
To reduce the computational complexity of the template
matching problem between target and template volumes, we
solve the problem using a computationally simpler subgraph
matching algorithm. We represent each of the template and
target volumes as a graph with a few nodes and edges using the
pair cancellation described above. Once the graph structures
are obtained, we search subgraphs of each individual part in
the target heap using a graph matching algorithm.

4.1 Morse skeleton graph

To define a graph structure on an input CT volume, we first
extract an object region Ω and its boundary isosurface ∂Ω

using the marching cubes method [37]. We assume that Ω is
a close 3-manifold with a boundary. Second, we compute the
distance transform D(x; Ω) from the boundary ∂Ω by the fast
marching method [61]. Strictly, the distance field on a discrete
grid (e.g., pixels in an image and voxels in a volume) is not
Morse because it is not C2-continuous at its local maximum.
On the other hand, when we assume this distance field is
a discrete height map, we can determine critical points by

checking whether neighboring voxels have a smaller or larger
function value than the voxel of interest.

In our problem, the critical points appear only on either local
maximum or 2-saddle due to the non-decreasing property
of the distance transform. To partition Ω into descending
manifolds, we trace an integral line starting from every voxel
x ∈ Ω until it reaches a local maximum, obtaining a Morse
complex for Ω as shown in Fig. 3(b). We denote each cell
of the complex as C(qi) ⊂ M where q1, . . . ,qM are M

local maximum points of D(x; Ω). In contrast, 2-saddles
exist between two cells. We determine the 2-saddles by
searching a voxel over the boundary region of two cells (i.e.,
∂C(qi) ∩ ∂C(qj)) that satisfies

sij = argmax
s∈∂C(qi)∩∂C(qj)

D(s; Ω).

The MSG is defined by the nodes corresponding to the Morse
cells and the edges corresponding to the 2-saddles between
two cells (see Fig. 3(c), left). As these critical points are
located on a medial axis (i.e., a skeleton of Ω), we refer to the
graph structure as a Morse skeleton graph.

However, the Morse complex computed for an X-ray CT
volume can include a huge number of cells because the CT
volume involves noise in practice. Therefore, the MSG cor-
responding to the complex also has a considerable number
of nodes. To reduce the computational complexity in sub-
sequent subgraph matching, we simplify the MSG using a
pair cancellation described previously. As we discussed in
Section 3.3, the cancellation of a pair of 2-saddle and local
maximum corresponds to the elimination of a face (i.e., a
cell or a portion of voxels in our case). Then, we cancel a
series of saddle points in ascending order of the persistence
until the minimum persistence of saddles reaches a predefined
threshold τ . For the Morse complex computed for a distance
field, we employ the persistence defined as follows:

p(sij) = min{D(qi; Ω), D(qj ; Ω)} −D(sij ; Ω).

Considering the basic property of persistence, elimination of
a saddle point and the merge of two local maxima to a single
one does not affect the persistence values of other saddles in
theory. After a local maximum is removed, the persistence
values of the saddles next to the removed local maximum may
be updated. The pair cancellation, which is performed for
the 2-saddles in the order of decreasing persistence, can be
implemented using a priority queue. We hereinafter denote
the MSG for an object Ω as GΩ = G(VΩ, EΩ) where VΩ and
EΩ are nodes and edges of the graph.

A simplification of the 3D MSG of a teapot example is
shown in Fig. 4. To synthesize the data of heaped parts,
we used standard rigid body simulation to determine their
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(a–0) template, 22 cells (a–1) template, 10 cells

(a–2) template, 5 cells (a–3) template, 3 cells

(b–0) heap, 395 cells (b–1) heap, 30 cells

Fig. 4 Simplification of the Morse skeleton graph. The initial
number of 22 cells for the template volume in (a–0) is decreased
gradually to 3 by increasing the threshold τ , as shown in (a–1),
(a–2), and (a–3). Equivalently, the initial number of 395 cells shown
in (b–0) for the volume of heaped parts is decreased to 30 cells in
(b–1) by increasing τ .

postures. Then, CT simulation obtained the volumes for a
single template part and heaped parts. The size of the volume
for both the data was 800× 800× 600 voxels. Figure 4(a–0)
shows the initial MSG of the template volume, including 22
cells. While the persistence threshold τ is increased, MSG is
simplified to consist of fewer cells, as shown in Figs. 4(a–1),
4(a–2), and 4(a–3). The simplification of the MSG is also
performed for the volume of heaped parts, decreasing 395 cells
in the original MSG to only 30 cells, as shown in Figs. 5(b–0)
and 5(b–1). During the simplification, the threshold τ should
not be too large to obtain a few cells because at least three cells
are required to obtain a rigid transformation matrix between
the template and a part in the heap. In contrast, it should not be
too small because the small τ obtains many cells. The MSG
construction without the simplification is sensitive to noise
signal in the original volume, and insufficient simplification
makes the MSGs different for the template and heaped parts
even if they represent the same parts with different postures.
We will discuss later how to determine the threshold τ in

Section 5.

4.2 Part separation and localization via subgraph
matching

In a graph for a set of heaped parts GH, the graph for each part
(i.e., GP1

, . . . ,GPN
) may be connected to one another, and

some edges connect cells belonging to the graphs of different
parts (see Fig. 2). Therefore, we employ subgraph matching
to detach the graphs of individual parts. In bin-scanning, we
can assume that the graph for a template part has the same
structure as that of each part included in the heap. Therefore,
our method employs a simple algorithm to match subgraph
isomorphism [7, 8].

Specifically, our subgraph matching is based on the VF2
algorithm [8] that combines a simple backtracking algorithm
by depth-first search [7] with search pruning using node and
edge attributes. Using the terminology in subgraph matching,
the MSG for the template volume GP0 corresponds to a query
graph, and that for the target volume GH corresponds to a data
graph. In the VF2 algorithm, we sequentially match nodes
of the query graph to those of the data graph in an order
defined by the adjacency of nodes. Since each node of the
MSG is associated with a Morse cell, which can be embedded
into a 3D space, we employ three criteria for robust node
matching. Assume a case where we try to match M th node
of the query graph to another one in the data graph after the
nodes qi

0 ∈ VP0
and qi ∈ VP for i = 1, . . . ,m − 1 have

already been matched. Then, we first check the size of cells
C(qm

0 ) and C(qm) are sufficiently similar in size, where C(q)
is the cell associated with q. With a predefined threshold τV ,
this criterion is judged by

dr(|C(qm
0 )| , |C(qm)|) < τV ,

where dr(x, y) is a relative difference defined as dr(x, y) =
|x − y|/min(x, y), and |C| is the size of cell C (i.e., the
number of voxels). Second, we check both qm

0 and qm are at
the same distance from the surface position nearest to each
of them. This criterion is defined using the distance field and
another threshold τD.

dr(D(q;H), D(q0;P0)) < τD.

Third, we compare the positions, i.e., q1
0, . . . ,q

m
0 , includ-

ing the new one, can geometrically matches in shape with
q1, . . . ,qm. To this end, we compare the distances from a
new node qm

0 to other nodes q1
0, . . . ,q

m−1
0 with those from

qm to q1, . . . ,qm−1. The criterion is formally written as

dr
(∥∥qi

0 − qm
0

∥∥ ,∥∥qi − qm
∥∥) < τR, i = 1, . . . ,m− 1.

By always checking the distance from a new one to the
other nodes that have already matched, we can properly



8 Y. Yamauchi, T. Yatagawa, Y. Ohtake, H. Suzuki

(a) comparison in
heaped parts

(b) zoom up for
the worst alignment

Fig. 5 Results of rigid transformations by subgraph matching. (a)
The teapots transformed by our method (colored by yellow) are
overlaid with the ground truth (colored by gray). (b) The position of
the largest misalignment.

check the distances of all the pairs of nodes in a graph are
sufficiently close to those of the other graph. For the same
purpose, we might alternatively use a similar criterion to
check the geometric equivalence of two graphs by aligning the
graphs. However, it will be time-consuming because a typical
solution to obtain a rigid transformation to align two sets of
points needs the singular value decomposition (SVD) [64]. In
contrast, the third criterion above is significantly faster than
performing the SVD every time when a new pair of nodes is
matched.

After all nodes in GP0 are matched to the nodes in GH

with a correct topological order, we remove the matched
part from GH to avoid duplicated matching. This matching
procedure runs until no more subgraph remains in GH that
can be matched to GP0

.
After subgraph matching is completed, we can calculate

a rigid transformation Ti of the part Pi in a bin using the
positions of the nodes of matched subgraphs. The rigid
transformation is obtained as a solution for minimizing the
sum of squared distances between the matched graph nodes
corresponding to the local maximum points of the distance
transform. We can efficiently solve this minimization problem
using the SVD [64].

Let us validate the subgraph matching followed by comput-
ing rigid transformation matrices. For the previous example
with ten teapots, we calculate the rigid transformation ma-
trices and rearrange the template teapot using the computed
matrices. The rearranged heap of teapots (colored by yellow)
and the input heap of teapots (colored by gray) are compared
in Fig. 5(a). As shown in the figure, the postures of the teapots
look almost equivalent to those in the original heap, and the
amount of misalignment looks small even with the worse one
in Fig. 5(b). Since the postures of teapots are calculated by

rigid body simulation, the rigid transformation matrices for
the input heap are known. After comparing the transformation
matrices with those computed by our method, the average
misalignment is as small as 3.48 voxels in translation and
1.83° in rotation.

5 Experiments
In order to evaluate the proposed algorithm, we conducted
evaluation experiments on the three sets of binned parts shown
to the left of Fig. 6, which consist of (a) 50 plastic screws, (b)
10 plastic cases, and (c) 500 plastic connectors, respectively.
We implemented our system using C++ and tested on a
computer equipped with Intel Core i9-9980XE CPU (3.0 GHz,
18 cores) and 128 GB of RAM. The computation times for
these examples on this computer are shown at the bottom
of their photos. As shown, overall computations have been
finished within approximately 30 minutes, even for a large
volume with 2000× 2000× 1000 pixels.

5.1 System parameters

Before elaborating on the results, let us discuss how the
parameters used in our method affect them. For the three
parameters used in subgraph matching, we experimentally
set τV = 0.5, τD = 0.5, and τR = 1.0 and used the same
values in all the experiments below because these values
do not sensitively affect the results. In contrast, τ (i.e., a
threshold to determine the minimum persistence of an MSG
graph) somewhat affects the results. Figure 7 shows a chart
illustrating the relationship between the number of cells in a
graph of the template part and the minimum persistence τ ,
which is computed for the second example in Fig. 6(b). In
this chart, the MSG simplification proceeds from right to left,
where the minimum persistence monotonically increases from
right to left while the number of cells decreases. Interestingly,
the change in minimum persistence has a large gap between
0.2 and 0.6, where the number of cells decreases from 7 to 6.
Such a large gap appears when the cells are merged overly to
have uneven shapes. Therefore, we set the threshold τ = 0.4

in the middle of the gap.
Table 1 shows how many positive matches (i.e., including

both true and false positives) and true positive matches are
detected with different τ . The numbers in this table are
computed for the example in Fig. 6(b) of the plastic case,
and the number of parts in a CT volume is ten. Although the
choice of τ can affect the detection of parts, τ = 0.4 in the
middle of the large gap performs to correctly detect all the
parts.
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(a) plastic screws
(time: 16.32 min)

template volume template graph
(5 cells)

heaped parts graph
(250 cells)

detection ratio=50/50heaped parts volume
(961×934×510 voxels)

(b) plastic cases
(time: 23.15 min)

template volume template graph
(7 cells)

heaped parts graph
(70 cells)

detection ratio=10/10heaped parts volume
(792×874×635 voxels)

(c) plastic connectors
(time: 31.62 min)

template volume template graph
(13 cells)

heaped parts graph
(8370 cells)

detection ratio=201/500heaped parts volume
(1939×1946×925 voxels)

Fig. 6 Experimental results for three different parts, i.e., (a) plastic screws, (b) plastic cases, and (c) plastic connectors. The computation
time to process each of them is shown at the bottom of its photo. In the right of this figure, template volume and its corresponding MSG is
shown at the top, and heaped parts volume, its corresponding MSG, and detected parts are shown at the bottom. Different cells are colorized
in different colors in the images of MSGs, and different parts are colorized with different colors in the images of detected parts.
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Fig. 7 A line chart of the minimum persistence with respect to the
number of cells in the template of an example (b) of plastic cases.
The MSG simplification proceeds from right to left, monotonically
increasing the minimum persistence while the number of cells
decreases. The minimum persistence τ is set to the value in the
middle of a large gap, which will be 0.4 in this figure.

Table 1 Change in the detection ratio when using different thresh-
olding parameter τ to control the number of cells. The numbers
shown in this table are computed with the example (b) plastic cases
in Fig. 6, which consists of 10 cases in total.

τ #cells of
template

#detected
matches

#correct
matches

0.6735 4 4/10 2/10
0.671 5 3/10 0/10
0.65 6 1/10 1/10
0.4 7 10/10 10/10
0.1 8 8/10 5/10
0.05 9 7/10 2/10
0.0415 10 7/10 0/10

5.2 Performance evaluation

Figure 6 shows the experimental results for three example
parts. In each figure, the top row shows a template part and
its corresponding MSG, and the bottom row shows a heap
of parts, its corresponding MSG, and detected parts by our
system. The nodes of an MSG are colorized differently in the
figures of the MSGs, while the detected parts are colorized
differently in the figures of detected parts.

As shown in Fig. 6(a) and 6(b), our system detects all 50
screws and 10 cases correctly despite the rotational symmetry
of the parts. Although the shapes of MSG cells in Fig. 6(b)
might be rather irregular, the shapes do not significantly affect
our subgraph matching that considers only the locations of
critical points and the size of the cell.

Furthermore, our system can obtain a rigid transformation
matrix for each part. We applied the inverse transformation
to each detected screw in Fig. 6(a) and aligned the screws in
evenly spaced cuboids. This figure shows that the detection of
screws is successful. Specifically, the cells belonging to the
same parts are merged as we intended during the simplification

of the MSG, and the shapes of detected parts are equivalent
to that of the template part. Furthermore, the orientations of
the screws are equivalent despite their thin and long shape
with a small head.

On the other hand, we also find that the positions of
the screws are somewhat misaligned. This is due to the
misalignment of positions of local maxima detected with
a discrete distance field. The isosurface extracted from an
X-ray CT volume can deviate due to various artifacts [65],
and the deviation can displace the positions of local maxima.
Although the slight misalignments can be overcome by an
additional alignment process (e.g., by using ICP), the standard
deviations of the gravity centers of screws are only 4 % of its
length without such postprocessing.

For a more challenging example in Fig. 6(c), we could
detect only 201 of 500 connectors, which contradicts the last
results for screws and cases shown above. The reason for the
low detection ratio is small cavities, as shown in Fig. 9(a),
generated by a fragile manufacturing process of injection
molding. Such cavities cause inconsistency of distance fields
between the template part and each part in the heap, thus
obtaining different extremum points for each of them. This is
a limitation of our system currently, and the cavities in the
volume data must be removed in advance.

The results in Fig. 6(c) also suggest another limitation of
our system. In this data, each connector has small flat sides,
and two connectors can contact each other with the flat sides.
Such face contact violates our assumption that two parts are
contacted with either a point or an edge.

6 Conclusion
This paper introduced an efficient template matching method
for bin-scanning, where identical parts stored in a bin and
those scanned by X-ray CT are segmented in a fully automatic
manner. Our method converts an input CT volume into a
graph, which we referred to as the MSG, and leveraged
the well-studied subgraph matching algorithm to accelerate
the template matching. After the template is matched to the
subgraphs in the volume of heaped parts, we can also calculate
the rigid transformation from the template to each part. The
experimental results showed that our system worked well for
a heap of parts with various shapes, such as teapot, screw,
and case.

In contrast, the detection ratio can be somewhat lower
when a part involves random cavities included during a
manufacturing process, and two parts are contacted with
their faces. As with many previous methods for template
matching [66] and point set registration [4, 67], symmetric
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Fig. 8 Individual screws in the example in Fig. 6(a) segmented by our system. The screws are shown by placing them in evenly arranged
cuboids by inversely applying the rigid transformation matrices also calculated by our system. Although the positions are slightly misaligned
due to the positional displacements of local maximum points on the distance fields, the identification of the parts is succeeded with
well-estimated postures of the parts.

(a) small cavity (b) surface contact

Fig. 9 Limitations of the current graph-based template matching.
When (a) small cavities are included in a part, and (b) two parts
contact with a face, the distance field of the part will be inconsistent
with that of the template. The inconsistency propagates to the graph
structure; thus, our system cannot match the parts appropriately in
these cases.

shapes of the parts may hinder obtaining a unique rigid
transformation. For future work, we would like to alleviate
these problems by developing a graph construction insensible
to small cavities and a more sophisticated graph matching
algorithm applicable to the parts with symmetric shapes and
face contacts.
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