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Abstract Unsupervised image translation (UIT)

studies the mapping between two image domains.

Since such mappings are under-constrained, existing

research has pursued various desirable properties such

as distributional matching or two-way consistency. In

this paper, we re-examine UIT from a new perspective:

distributional semantics consistency, based on the

observation that data variations contain semantics,

e.g . shoes varying in colors. Further, the semantics

can be multi-dimensional, e.g . shoes also varying in

style, functionality, etc. Given two image domains,

matching these semantic dimensions during UIT will

produce mappings with explicable correspondences,

which has not been investigated previously. We

propose distributional semantics mapping (DSM), the

first UIT method which explicitly matches semantics

between two domains. We show that distributional

semantics has been rarely considered within and beyond

UIT, even though it is a common problem in deep

learning. We evaluate DSM on several benchmark

datasets, demonstrating its general ability to capture

distributional semantics. Extensive comparisons show

that DSM not only produces explicable mappings, but

also improves image quality in general.
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1 Introduction

Unsupervised image translation (UIT) has been

intensively studied in recent years. Many applications

have been inspired by its ability to create mappings

between two image domains. Since there can

be theoretically an infinite number of mappings

between two domains, UIT is by nature an under-

constrained problem. Naturally, different approaches

have been developed to ensure certain desirable

properties, such as shared latent spaces [26], two-way

consistency [40], pair-wise distance preservation [3], and

image semantics [34]. While existing researches tend

to focus on general distributional matching [1, 3], we

aim to investigate a rarely examined perspective: the

distributional semantics during UIT.

We define distributional semantics as the visually

understandable variations between samples (not within

a single sample). Shoes vary in color, style (e.g .

low/high collars), and functionality (e.g . sneakers/high

heels). Similarly, bags also vary in color, style

(e.g . with/without handles), and functionality (e.g .

purses/backpacks). During UIT, we argue that it is not

enough to simply translate images. It is desirable for

such distributional semantics to be maintained, e.g . red

high-collar high heels map to black purses with handles,

while white low-collar sneakers map to blue backpacks.

This is exactly the goal of this research.

To maintain distributional semantics during UIT,

two critical problems must be addressed. The first

question is what semantics should be maintained.

As we are considering unsupervised learning, no

labeling should be required, which means that the

data variations (the distributional semantics) should

be characterized without prior knowledge, yet be

interpretable by humans. Secondly, distributional

semantics are rarely considered in general in deep

learning, because data is usually transformed numerous

times in the model. To maintain such semantics, we
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need a mechanism to ensure that the data distribution

remains as undistorted as possible, especially in

the dimensions of the semantics of interest, during

transformations mapping between two domains.

In this paper, we propose a novel deep learning

method called distributional semantics mapping

(DSM). Given two image datasets A = {xi} and

B = {yj}, and a desire to characterize visual semantics

in an unsupervised manner, we find that the covariance

structure of the data naturally reflects important visual

semantics. We choose principal component analysis

(PCA) to characterize the covariance structure:

Härkönen et al . [10] have already demonstrated that

PCA applied in feature space can produce interpretable

controls for image synthesis. Our approach is agnostic

to specific network architectures and consists of three

key modules. The first is a semantics-preserving

transformation e where the variations of xs in a

direction (e.g . the first principal component of A)

must be consistent with the variations of latent vectors

zx = e(x) in its corresponding direction (e.g . the first

principal component of e(A)) in the latent space. We

use two such encoders eA and eB to project A and

B into a shared latent space. The second module

aligns the key dimensions of eA(A) and eB(B). The

last module is a decoder/generative network g which

decodes y by yrecon = g(eB(y)) and translates x by

ytrans = g(eA(x)).

As far as we know, this is the first approach for UIT

that preserves distributional semantics. We identify

the importance of preserving distributional semantics,

which has a wide range of implications for image

translation and beyond. We propose a new approach

that helps preserve distribution semantics during image

transformations.

2 Related work

2.1 Generative adversarial networks

Generative adversarial networks (GANs) [9] have

achieved great success for a fast-growing number of

computer vision tasks, including image generation [2,

16], image colorization [15], image inpainting [13], and

image super-resolution [22]. Conditional GANs [32]

can be used to perform image-to-image translation [5,

18, 37, 40]. Recently, some interactive systems have

been proposed using GANs for real-time portrait image

editing [4, 23]. Our work also utilizes GANs conditioned

on an input image, but it does not rely on any specific

GAN model. To validate its generality, we employ two

widely used GAN models: LSGAN [30] and NSGAN [9].

2.2 Image-to-image translation

To perform image-to-image translation, early

methods such as pix2pix [15, 36] often required the

networks to be trained with paired training data.

Recently, a variety of approaches [18, 37] has been

proposed to learn the image translation from unpaired

data. For example, CycleGAN [40] leverages cycle

consistency to constrain the mapping. Lu et al . [28, 29]

show that optimal transport costs can improve the

generative network. UNIT [26] assumes that two

image domains can share the same latent space. By

decomposing the image into the style (domain-specific)

code and content (domain-invariant) code, MUNIT [12]

and DRIT [24] can synthesize diverse outputs from

an input image. Mejjati et al . [31] and Kim et

al . [17] improve translation results using an attention

mechanism. Choi et al . [6] propose StarGAN which

can perform image translation for multiple domains

using a single GAN. More recently, DRIT++ [25]

extends DRIT to support multiple domains, while

StarGAN v2 [7] extends StarGAN to generate diverse

images across multiple domains. FUNIT [27] can work

on previously unseen target classes given only a few

example images. To enable unsupervised one-sided

mapping, Benaim and Wolf [3] present DistanceGAN

that maintains the distances between images, and

Fu et al . [8] employ other geometric constraints

(e.g . orientation). Our method differs from existing

methods in that it explicitly preserves and matches the

distributional semantics in domains during UIT, which

generates explicable mappings between images.

3 Methodology

3.1 Approach

Given two image datasets A = {xi} and B = {yj},
we aim to compute a mapping M : A→ B, so that the

distributional semantics of A are aligned with those of

B; we use principal components (PCs) to describe the

semantics. First, we project A using an encoder eA to

zA = {zxi} where zxi = eA(xi) is a latent vector. We

keep the distributional semantics of A and zA aligned

during the encoding process. A similar projection is

applied to B using an encoder eB to get zB = {zyi}. We

denote the PCs of the two latent distributions as VA ∈
RP×P and VB ∈ RP×P where P is the dimensionality

of the latent vectors. Next we ensure the top k PCs

of zA are aligned with those of zB. Finally, we use a

generative network g to reconstruct B using yrecon =

g(eB(y)) and translate A by ytrans = g(eA(x)). The

model is shown in Fig. 1. Below, we give the details of
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Fig. 1 DSM framework. Two image domains are aligned along

their data-space PCs via a shared latent space before translation.

the components.

3.2 Semantics-preserving Transformation

The images need to go through a sequence of

transformations during translation, which in deep

learning are usually some encoding processes such

as convolutions. However, the shape of the latent

distribution seems to be rarely considered in terms

of its semantic consistency with the data distribution

itself. Existing efforts such as imposing a prior

distribution [20] or geometric constraints [3] are mostly

aimed at encouraging the latent distribution to behave

well, rather than to match the data distribution. As a

result, current encoders may not be able to preserve the

distributional semantics, as we confirm in experiments.

We, therefore, introduce a new general autoencoding

scheme to preserve the distributional semantics:

zx = e(x), xrecon = d(zx)

subject to Ux = V zx, U, V have K rows. (1)

where x is a data sample, and e and d are encoding

and decoding schemes. U and V are the first K

PCs of A and zx. The autoencoder can be trained

by e.g . minimizing
∑
||x − x′||22. Eq. (1) states the

key difference between our autoencoder and existing

autoencoders: it requires the projections of x on the

data-space PCs U to be equal to the projections of zx
onto the latent-space PCs V . Note that a standard

dimensionality reduction using PCA is a special case

of Eq. (1), when V = U and e(A) = VA. Eq. (1)

is more general because it does not dictate what V

is, nor does it require the latent space to have fewer

dimensions than the data space. Eq. (1) only requires

the covariance structure to persist when encoding along

the first K PCs in both the data and latent space. One

key question is why we do not just set V = U . This

is because we need the flexibility of encoding data into

an arbitrary V during UIT while keeping the general

shape of the data distribution, as explained later.

Eq. (1) is general but difficult to optimize because it

needs to be computed over the whole dataset, with high

memory requirements, and V is unknown. Therefore,

we propose a local scheme which keeps the global

alignment by enforcing local alignments on samples:

LlocalAlign =
1

N

N−2∑
i=0

(Langle + Lnorm)

Langle =
∣∣cos(xi, xi+1)− cos(zxi , zxi+1)

∣∣ (2)

Lnorm =
||xi||2
||xi+1||2

− ||zxi ||2
||zxi+1 ||2

where cos() is the cosine distance and N is the batch

size. Langle and Lnorm are computed on vectorized

data samples and corresponding latent vectors. The

goal of LlocalAlign is that, given any two data samples,

their length ratio and angle should remain the same

after projection into the latent space. Langle aims to

keep the overall shape of the distribution when the

data is projected into the latent space, while Lnorm

allows scaling but prefers uniform scaling. LlocalAlign

has the effect of preserving the covariance structure

of the data during transformation. While we only

apply local alignment constraints between a certain

number of pairs in each batch, we randomly sample

various batches in each training epoch, constraining

further distinct pairs in the process. Furthermore, the

locality of this approach, only considering two samples

a time, essentially ensures that the covariance structure

is invariant under homogeneous transformations of the

basis in the latent space, which allows the autoencoder

to choose the optimal V that aids reconstruction while

preserving the covariance structure.

3.3 Semantics-based Manifold Alignment

Given zA and zB, we have two latent distributions

with their respective covariance structures

characterized by their latent space PCs VA ∈ RP×P
and VB ∈ RP×P . To ensure that the UIT maintains

the distributional semantics, we need to align zA and

zB, e.g . by aligning the direction in which zA shows

the biggest variation with that of zB by aligning their

first PCs. Further, to maintain visual semantics in

multiple dimensions, we should align the top K PCs in

VA and VB . Several alternative methods are possible,

such as aligning VA and VB directly, or fixing one and

aligning the other to it. Since both VA and VB are

unknown, directly aligning VA and VB corresponds to

minimizing

LlatentA + LlatentB + Lalign,
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where

LlatentA =
1

NA

NA−1∑
i=0

||zxi − VAV TA zxi ||22

LlatentB =
1

NB

NB−1∑
j=0

||zyj − VBV TB zyj ||22 (3)

Lalign =
1

K

K−1∑
k=0

||V kA − V kB ||22

NA and NB are the numbers of images in A and B. V kA
and V kB are the kth PCs of VA and VB . Experimentally,

we have found that allowing both VA and VB to change

causes the optimization to settle into local minima, so

we fix VA and align VB with it. This also means that

eA can be pre-trained and we can compute VA from zA
using PCA.

Aligning VB to VA still presents challenges because

directly learning VB requires to simultaneously

transform all zys which is again equivalent to operating

on the whole of B. This is a similar difficulty to the

one in Sec. 3.2. Again, we operate only on a batch of N

samples to ensure the global alignment of VA and VB :

LmaniAlign = (4)

1

N

N−1∑
j=0

||zyj − VA[0:K−1]V
T
A[0:K−1]zyj ||

2
2 + ke−α||zyj ||

2
2

where zyj ∈ zB and VA[0:K−1] ∈ RP×K contains the

first K PCs of interest of zA. LmaniAlign requires zy
to be reconstructable after projecting them into the

basis of zA, which essentially encourages the covariance

structure of zB to be similar to that of zA, and the

two bases to be aligned. The term k exp(−α||zyi ||22)

prevents zyi from shrinking, leading to a trivial solution

of Eq. (4). Since the covariance structures of A and B

are kept in zA and zB via Eq. (2), LmaniAlign completes

the semantics-based alignment of two domains.

3.4 Simultaneous Decoding and Translation

After semantics-based manifold alignment, we

transform zA and zB into the space of B to finish

the UIT. Since zA and zB are aligned, we combine

the reconstruction and translation tasks using a single

network g which serves both as a decoder and a

translator: the general shapes of the two latent

distributions are similar after alignment. When the

decoder has been trained with the reconstruction

loss on zB, it has already to some extent learnt to

translate zA. We reconstruct B using yrecon = g(zy).

Meanwhile, we treat g as a generator in a generative

adversarial network using ytrans = g(zx) and use a

discriminator network h(ytrans, y) = [0, 1] to further

improve the translation.

Overall, given a pre-trained eA and zA, and hence

also VA, we minimize the following objective function:

L = ω1
1

NB

NB−1∑
i=1

||yi − yrecon||22 + ω2Lg + ω3Ld +

ω4L
B
localAlign +

(
1−

4∑
i=1

ωi

)
LmaniAlign (5)

where Lg and Ld are the GAN loss that depends on the

chosen GAN model. NB is the total number of images

in B and the ωi are weights. In LBlocalAlign, we apply

Eq. (2) to both the y-to-zy, and zx-to-ytrans mappings.

Further details are in the appendix.

4 Implementation Details

We pre-train an autoencoder for dataset A with

LlocalAlign to get eA and calculate VA from zA using

PCA. For eB and g, we adopt the network architectures

from UNIT. In all experiments, we set ω1 = 0.033, ω2 =

ω3 = 0.333 and other weights according to the

experiment. See the appendix for details. eA is trained

for 100 epochs and the remainder are trained for 300

epochs on all datasets, using Adam [19] with a batch

size of 16, a learning rate of 0.0001, and exponential

decay rates (β1;β2) = (0.5; 0.999). All experiments

were conducted using 2 NVIDIA GTX 1080 Ti GPUs,

and PyTorch. Training took 6–18 hours.

5 Experiments

5.1 Data

We employed several benchmark datasets to validate

our method, including SummerWinter [40], CatDog [24]

and ShoeHandbag [38, 39]. We also built a very

challenging dataset, MMISTHandbag, using hand-

drawn digits from MNIST [21] and handbags randomly

sampled from [39]; it has two distinctive distributions

and distributional semantics. All comparative results

in this section were computed using LSGAN. See the

appendix for details and further results.

5.2 Evaluation Metrics

In addition to visual evaluation, we employ the

Frechet inception distance (FID) [11] as a quantitative

measure. However, there is no good metric to measure

the faithfulness of the preservation of distributional

semantics. We, therefore, propose a new evaluation

metric called the ordering-tolerance curve (OTC).

Given images x ∈ A and their translations ytrans ∈ B,

we define the OTC as:

c =
1

NA
card({x|d(x, ytrans)/NA ≤ β, x ∈ A}), (6)
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Fig. 2 Top: original data. Mid: latent samples of DSM.

Bottom: latent samples of a standard autoencoder. Left to

right: images ranked 4th, 19th, 24th, 37th, 44th, 52nd, 94th

and 97th on the first PCs of the data (top) and latent space

(center, bottom).

where β ∈ [0, 1], card(·) is the cardinality of a set,

d(x, ytrans) = |rank(ytrans) − rank(x)|, rank(x) is the

rank of x in A along a chosen PC among all data

samples in A and NA is the total number of data

samples in A, and rank(ytrans) is the rank of ytrans along

a chosen PC in B. d(x, ytrans) is equal to zero if the

rank of x is retained during translation, and non-zero

otherwise (the larger the worse). c is the percentage of

correctly ordered x values whose normalized rank errors

are within β, the ordering error tolerance.

5.3 Semantics-preserving Transformation

A key contribution of our work is a straightforward

but extremely effective transformation scheme that

preserves distributional semantics. To show the

necessity of such transformations in UIT, we trained an

autoencoder on cat images in CatDog then computed

the 1st PCs of A and zA. The autoencoder is based

on the encoder and decoder of UNIT. Please see the

appendix for further details. We then ranked all images

along the two PCs: see Fig. 2.

In the original data, the variation on the 1st PC

is mainly a color transition from light to dark (see

Fig. 2(top)). However, without semantics-preserving

transformations, the shape of the latent distribution is

changed, and unable to preserve the visual semantics

(Fig. 2(bottom)). In contrast, DSM preserves the

distributional semantics (Fig. 2(center)). We also show

the OTCs in Fig. 3(left): DSM can contain the rank

error to under 3% while a standard autoencoder fails

systematically. Although we only show the results from

a specific autoencoder, our preliminary experiments

showed this to be a common problem of autoencoders.

5.4 Architectural Studies

Two main adjustable components of DSM are the

GAN architecture and the number of PCs, K. We first

evaluated DSM on the first K PCs on all datasets; we

present the FID scores in Tab. 1. While we expected

Tab. 1 FID scores on four datasets with the firstK PCs aligned.

When K = 0, DSM is trained without alignment loss.

Dataset K = 0 K = 1 K = 2 K = 3

CatDog 64.5 58.0 96.2 84.5

SummerWinter 100.9 90.4 107.6 99.5

ShoeHandbag 123.6 129.7 155.5 128.9

MNISTHandbag 172.7 180.6 149.3 171.8

that a larger K would result in a harder optimization

problem and hence lower quality, the results show that

it depends on the dataset. After considering the data,

this is understandable because different datasets have

different variance distributions over the PCs: some have

large variance on the 1st PC while others have variances

spread over the first K PCs, which affects the behavior

of Eq. (4). Although control can be added, e.g . by

adding weights to different PCs, we choose not to do so

and let DSM adapt to the data. We only tested DSM up

to K = 3: while DSM can work for K ≥ 3, it is typically

hard for humans to visually understand the semantics

in PCs where K ≥ 3. We also compared two GAN

architectures LSGAN and NSGAN on ShoeHandbags

and show the OTCs in Fig. 3(center). Both keep

the rank error to within around 20%, showing that

alignment constraints can improve translation ability

visibly for differing GAN architectures. Further results

can be found in the appendix.

5.5 Image Quality in Translation

Although normally the first K PCs bear visually

understandable semantics, the specific value of K

depends on the dataset. The first PC is almost

always visually interpretable across a dataset, and

some datasets have meaningful variations on other PCs.

We show the images from the four datasets ranked

along their respective meaningful PCs in Fig. 4. For

CatDog, SummerWinter and ShoeHandbags, the first

PC (PC0) shows color variations from light to dark,

for MNIST, shape varies from slim to round, while for

ShoeHandbags, the second PC (PC1) shows shoe collar

height variation for shoes, and handle length variation

for handbags.

In Fig. 5, we show our results for mappings of cat-to-

dog, summer-to-winter, shoes-to-handbags, and digits-

to-handbags. PC0s of CatDog and SummerWinter are

color variations (light to dark). The major difference

is that the color variations in CatDog are clearly

separated into foreground (faces) and background while

there is no such separation in SummerWinter. In both

cases, DSM successfully translates the images with high

5
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Fig. 3 OTCs in various experiments. Left: OTC along PC0 with/without semantics-preserving transformation on CatDog. Center:

LSGAN vs NSGAN along PC0 on ShoeHandbags. Right: OTC along PC0 for four datasets.

Fig. 4 Images ranked according to PCs. Top to bottom:

CatDog (PC0), SummerWinter (PC0), ShoeHandbags (PC0),

MNIST (PC0), and ShoeHandbags (PC1).

quality while simultaneously matching the semantics.

In cat-to-dog, DSM transforms the faces and maintains

the separation of the foreground and background,

while in summer-to-winter, the changes are more

heterogeneous depending on the scenes; DSM lays

snow on different landscapes. In shoes-to-handbags,

unlike CatDog and SummerWinter, the color variation

is restricted to the object itself, and DSM faithfully

keeps the semantics. Finally, to push DSM further,

we tested a digit-to-handbag translation. These two

datasets have distinctive distributions. The results

show that long slim digits are translated to handbags

in light colors while fat round digits are translated to

handbags in dark colors, which are consistent with their

Fig. 5 Mapping results. Top to bottom: CatDog,

SummerWinter, ShoeHandbag and MNISTHandbag, ordered

along PC0. In each pair of rows, the upper row shows the input

images and the lower row shows the translated images.

respective PC0s in Fig. 4. We also show the OTCs in

Fig. 3(right).

5.6 Comparisons

We compare our model to UNIT, CycleGAN,

DistanceGAN and DRIT++ on the CatDog and

ShoeHandbag datasets, by using the public code shared

by the authors of these methods. We first give

FID scores for all methods in Tab. 2 and OTCs in

Fig. 6. By aligning two data manifolds based on their

semantics, DSM is able to improve the translation

quality for both datasets. The OTCs show clearly

that DSM can keep the semantics on PC0 better

6
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Fig. 6 OTC scores for various methods. Left: CatDog. Center: Shoe-to-Handbags on PC0 of Handbags. Right: Shoe-to-Handbags

on PC1 of Handbags.

Input

Ours

UNIT

DRIT++

Cycle
GAN

Distance
GAN

Fig. 7 Left, center: ordering along PC0 of Dogs, Handbags. Right: ordering along PC1 of Handbags.

Tab. 2 FID scores on CatDog and ShoeHandbag datasets for

various methods.

Method CatDog ShoeHandbag

Ours 58.00 128.93

CycleGAN 95.12 135.55

DistanceGAN 63.60 185.28

DRIT++ 61.95 185.01

UNIT 64.62 140.88

than the other methods by containing the rank error

to within around 30% and 18% (see Fig. 6). The

second best methods contain it to roughly only 50%

and 40%. On PC1 of ShoeHandbag (see Fig. 6(right),

CycleGAN is close to DSM. However, we argue that its

behavior is inconsistent: see Fig. 6(left, mid) where the

variance is large and contains large amounts of semantic

information.

Visual comparisons can be found in Fig. 7.

Overall, DSM generates images of higher visual

quality. Additionally, other methods are incapable of

preserving or matching the distributional semantics. In

Fig. 7(left), the major variation of the input images

from left-to-right is a color variation, light-to-dark.

While DSM obviously keeps the same variations during

UIT, it is hard to find similar effects in other methods.

Similar observations can also be made in Fig. 7(centre).

To further explore semantics in other PCs, we show

Fig. 7(right). While the input varies from slippers

to sneakers, our results generates handbags varying

from those without handles to those with handles. In

contrast, other methods struggle to generate consistent

semantic variation. Further results can be found in

appendix.

6 Discussions and Conclusion

While PCA is a straightforward way of characterizing

distributional semantics, our method can incorporate

alternative techniques such as kernel PCA,

multidimensional scaling, and others that can define

the covariance structure by ‘flattening’ the data

manifold before performing DSM.

We have only evaluated DSM up to K = 3 because

the semantics start to lack visual meaning for K >

3. However, we argue that DSM is effective and

useful for two reasons. Firstly, for almost all datasets,

the first PC bears the majority of the variance, and

the distributional semantics captured by the variance

are always visually interpretable. Secondly, aligning

the PCs of the two distributions during translation

increases image quality.

In summary, we have proposed DSM, the first UIT

method which preserves and matches the distributional

7
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semantics of two image domains. It is straightforward

and effective, as demonstrated on multiple datasets,

and capable of improving translation quality compared

to the state-of-the-art. DSM is also general in its

capacity to incorporate any GAN and autoencoder

model. In future, we will incorporate human-labelling

in a semi-supervised setting of DSM where humans

can arbitrarily decide the semantics by ranking images.

This will enable DSM to encode arbitrary semantics

and open it up to many other applications.
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Appendix

A Implementation Details

A.1 Loss functions

Eq. (5) contains a local alignment loss LBlocalAlign,

which applies Eq. (2) to both y-to-zy, and zx-to-

ytrans. Applying Eq. (2) to y-to-zy is straightforward,

and ensures semantics-preserving transformation

between B and zB, just as does the encoder of

A. Here we explain why applying Eq. (2) to zx-to-

ytrans is essential. As Sec. 3.4 explains, we align

zA and zB, and use a single network g to serve

as both the decoder for zB and the generator for

zA. This mechanism provides an implicit constraint

on the translated images {ytrans} from zA so that

it has a similar distribution to the reconstructed

images {yrecon} from zB. However, as there is an

additional GAN loss which modifies the distribution

of the translated images, the alignment of {ytrans}
and {yrecon} may be affected, compromising the

distributional semantics matching. Thus, we apply

Eq. (2) to zx-to-{ytrans} to explicitly preserve the

semantics:

ω4L
B
localAlign = ωe

4L
e
localAlign + ωg

4L
g
localAlign (7)

where Le
localAlign and Lg

localAlign are the loss terms

for y-to-zy and zx-to-ytrans. All experiments set

ω1 = 0.033, ω2 = ω3 = 0.333, ωg
4 = 0.167 in Eq. (5)

of the paper. We set ωe
4 = 0.066 in ShoeHandbag

align 3PCs experiments and ωe
4 = 0.05 in all other

experiments. We set k = 15, α = 10−6 for the

regularization term in Eq. (4).

A.2 Network Architecture

Our image translation network architecture is

based on the one from UNIT [26]. For the encoder,

to ensure the latent vector size is smaller than

the input image size in the case of resolution

256 × 256, we halve the kernel numbers in the

second and third convolutional layers and add one

further convolutional layer (see Tab. 3 for details).

Furthermore, instead of using instance normalization

(IN) [35], we utilize batch normalization (BN) [14]

in the encoder and generator. For the discriminator

9
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Tab. 3 Network architecture for the distributional semantics mapping experiments

Layer Encoder Generator Discriminator

1 CONV(N64,K3,S1),RELU CONV(N512,K3,S1),RELU CONV(N64,K4,S2),LeakyReLU

2 CONV(N64,K3,S2),RELU RESBLK(N512,K3,S1) CONV(N128,K4,S2),LeakyReLU

3 CONV(N128,K3,S2),RELU RESBLK(N512,K3,S1) CONV(N256,K4,S2),LeakyReLU

4 CONV(N128,K3,S2),RELU RESBLK(N512,K3,S1) CONV(N512,K4,S2),LeakyReLU

5 RESBLK(N128,K3,S1) RESBLK(N512,K3,S1) CONV(N512,K1,S1),LeakyReLU

6 RESBLK(N128,K3,S1) UP+CONV(N256,K3,S1),RELU

7 RESBLK(N128,K3,S1) UP+CONV(N128,K3,S1),RELU

8 RESBLK(N128,K3,S1) UP+CONV(N64,K3,S1),RELU

9 CONV(N3,K7,S1),TanH

Tab. 4 Network architecture for the autoencoder

Layer Encoder Decoder

1 CONV(N64,K3,S1),RELU RESBLK(N128,K3,S1)

2 CONV(N64,K3,S2),RELU RESBLK(N128,K3,S1)

3 CONV(N128,K3,S2),RELU RESBLK(N128,K3,S1)

4 CONV(N128,K3,K2),RELU RESBLK(N128,K3,S1)

5 RESBLK(N128,K3,S1) UP+CONV(N128,K3,S1),RELU

6 RESBLK(N128,K3,S1) UP+CONV(N128,K3,S1),RELU

7 RESBLK(N128,K3,S1) UP+CONV(N64,K3,S1),RELU

8 RESBLK(N128,K3,S1) CONV(N3,K7,S1),TanH

network, we employ spectral normalization [33], and

multi-scale discriminators at 3 scales. The network

architecture is given in Tab. 3. We use the following

abbreviation for ease of presentation: N: number

of kernels number, K: kernel size, S: stride. UP

indicates a 2 nearest-neighbor upsampling layer and

RESBLK, a residual basic block. The detailed

network architecture of the pre-trained autoencoder

for A is given in Tab. 4.

B Further Experimental Results

B.1 Data Details

For all datasets, images were resized to 256× 256.

In CatDog, 871 cat (birman) and 1364 dog (husky,

samoyed) images were randomly divided into 771

(cat) and 1264 (dog) for training and the remainder

used for testing. SummerWinter comprises 1540

summer photos and 1200 winter photos, which

were randomly divided into 1231 (summer) and 962

(winter) for training and the remainder used for

testing. For ShoeHandbag, we randomly sampled

images from edges2shoes and edges2handbags, using

3726 (shoe) and 3822 (handbag) for training,

and 101 (shoe) and 178 (handbag) for testing.

For MNISTHandbag, 1600 MNIST images and

Fig. 8 Top: Shoe dataset. Bottom: Handbag dataset. From

left to right: the images ordered along the corresponding PC

1600 handbag images were randomly selected from

MNIST and edges2handbags, with 1500 of each

for training and 100 for testing. We show images

from the ShoeHandbag dataset along the first 3

PCs in Fig. 8. This dataset is very challenging, as

the distributions of MNIST and handbags are very

different. The top five variances ratios along PCs in
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Fig. 9 LSGAN/NSGAN

MNIST are [0.095, 0.071, 0.066, 0.052, 0.047], while

in handbags these ratios are [0.274, 0.115, 0.065,

0.054, 0.026].

B.2 Our OTCs

Fig. 10 shows OTCs for our method on

the CatDog, MNISTHandbag and SummerWinter

datasets, with up to 3 PCs aligned. We can see

that our method always keeps semantics best for

PC0, and the rank errors become larger on PC1 and

PC2. This is mainly because the variance ratio along

PC0 is always much larger than along other PCs.

For example, in the Handbag dataset, the ratios of

variances along the first 3 PCs are about 4:2:1. As

a result, the network prefers to perform alignment

along PC0 in preference to minimize the total loss.

We also note that semantics preservation varies

largely across different datasets. In the challenging

MNISTHandbag dataset which has two distinctive

distributions, our method preserves semantics well

along PC0, while in the SummerWinter dataset, our

method is capable of preserving semantics on the

first 3 PCs. Although control could be used e.g. via

weights to enforce the alignment of multiple PCs, we

choose not to do so and make DSM adapt to data,

as the distribution of variances on different PCs is

an intrinsic property of the data itself which should

be respected during translation.

We evaluate semantics preservation only for the

first 3 PCs for two main reasons. Firstly, in most

image datasets, compared to the variances on the

first 3 PCs, the variances on the remaining PCs are

very small. For example, in the Summer dataset,

even the sum of variances on the 4th to 20th PCs

is smaller that the variance of PC0. Enforcing

alignment along directions with very small variations

adds complexity to the optimization while decreasing

Tab. 5 FID scores on ShoeHandbag with the first K PCs aligned

K = 1 K = 2 K = 3

LSGAN 129.7 155.6 128.9

NSGAN 172.8 187.0 154.9

the explicability of the mapping. Secondly, by

investigating various popular datasets (e.g. Shoes,

Handbags, Cars, Animals, Faces, Art works), we

discovered that while people can easily perceive

semantics on the first PC in all datasets, they can

only do so on the second PC in the Shoe, Handbags,

and MNIST datasets. People cannot perceive any

semantics on the 4th and subsequent PCs. Hence we

focus on the first 3 PCs.

B.3 Comparison of LSGAN and NSGAN

Fig. 9 and Tab. 5 compare using LSGAN and

NSGAN for image translation on the ShoeHandbag

dataset when aligning the first 1–3 PCs. The OTCs

show that the two GAN models result in very similar

semantics preservation in all cases, demonstrating

that our method does not rely on a specific GAN

model and can preserve semantics using different

GAN models. We also note that the FIDs of NSGAN

are higher than that for LSGAN. This is mainly

because the image generation capability of NSGAN

is weaker than that of LSGAN. Employing other

GAN models such as StyleGAN [16] can improve the

FID scores.

B.4 Alignment of PCs

Eq. (4) in the paper requires the first K PCs of

two domains to be aligned. However, it does not

specify the order of alignment. In other words, it

does not specify if PC1 of the first domain should

be aligned with PC1 of the second domain, etc. We

have two choices. The first is to enforce order, PC0-
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Fig. 10 Above: Aligning PC0 and PC1. Below: Aligning PC0-2. Left to Right: CatDog, MNISTHandbag and SummerWinter.

to-PC0, PC1-to-PC1, and so on. However, we find

this to be sub-optimal in the sense that Eq. (4) is

affected by distribution of variances across PCs. For

a dataset with a majority of variance on PC0, the

alignment forces due to Eq. (4) have little effect

on PC1 and subsequent PCs. We argue that they

should be small because the dataset’s variance on

PC1 and higher PCs is less explicable. Hence, the

force provided by Eq. (4) 4 should naturally follow

variance distribution. We therefore do not enforce

order of alignment of PCs for two datasets. As a

result, while PC0 is always mapped to PC0 in all

experiments, sometimes PC1 of one dataset can be

mapped to PC2 of another. We argue that such a

mapping is still valid because it is explicable and

reflects the distributional semantics.
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