
Computational Visual Media
https://doi.org/10.1007/s41095-022-0293-5

Research Article

PMSSC: Parallelizable Multi-Subset Based Self-Expressive Model for Subspace
Clustering

Katsuya Hotta1, Takuya Akashi2, Shogo Tokai1, and Chao Zhang1(B)

© The Author(s)

Abstract Subspace clustering methods which embrace
a self-expressive model that represents each data point as
a linear combination of other data points in the dataset
provide powerful unsupervised learning techniques. However,
when dealing with large datasets, representation of each
data point by referring to all data points via a dictionary
suffers from high computational complexity. To alleviate
this issue, we introduce a parallelizable multi-subset based
self-expressive model (PMS) which represents each data
point by combining multiple subsets, with each consisting
of only a small proportion of the samples. The adoption of
PMS in subspace clustering (PMSSC) leads to computational
advantages because the optimization problems decomposed
over each subset are small, and can be solved efficiently in
parallel. Furthermore, PMSSC is able to combine multiple
self-expressive coefficient vectors obtained from subsets,
which contributes to an improvement in self-expressiveness.
Extensive experiments on synthetic and real-world datasets
show the efficiency and effectiveness of our approach in
comparison to other methods.

Keywords Subspace Clustering, Self-expressive model,
Big data, Subsetting

1 Introduction
In many real-world cases, approximating high-dimensional
data as a union of low-dimensional subspaces is a beneficial
technique for reducing computational complexity and the
effects of noise. The task of subspace clustering [1, 2],
which is the segmentation of a set of data points into
those lying on certain subspaces, has been studied in
1 University of Fukui, 910-8507, Japan. E-mail: k-hotta@u-
fukui.ac.jp, tokai@u-fukui.ac.jp, zhang@u-fukui.ac.jp (B).

2 Iwate University, Morioka, 020-8550, Japan. E-mail:
akashi@iwate-u.ac.jp.

Manuscript received: 2022-01-01; accepted: 2022-01-01

many practical applications such as face clustering [3],
image segmentation [4], motion segmentation [5], scene
segmentation [6], and homography detection [7]. Recently,
self-expressive models [8, 9] have been explored, which
embrace the self-expressive property of subspaces to compute
an affinity matrix. The self-expressive property states that
each data point from a union of subspaces can be represented
as a linear combination of other points. Specifically, given
a data matrix X ∈ RD×N in which each data point is a
column, the self-expressive model of data point xi ∈ RD can
be described as

xi = Xci, cii = 0, (1)

where ci ∈ RN is a coefficient vector, and the constraint
cii = 0 avoids the trivial solution of representing a point
as a linear combination of itself. The feasible solutions of
Eq. (1) are generally not unique because the number of data
points lying on a subspace is larger than its dimensionality.
However, at least one ci exists where cij is nonzero only if
data points xi,xj are in the same subspace, and such a state
is called subspace-preserving [10]. Previous works have tried
to compute subspace-preserving representations by imposing
a regularization term on the coefficients ci. In particular, one
algorithm for obtaining a sparse solution to Eq. (1), sparse
subspace clustering (SSC) [8, 9], can recover subspaces
under mild conditions by regularizing the coefficient matrix
C := [c1, . . . , cN] ∈ RN×N corresponding to the coefficient
vector of each data point xi. SSC not only achieves high
clustering accuracy for datasets with outliers and missing
entries, but also has the useful properties of giving theoretical
guarantees and providing modeling flexibility, which have
influenced many other approaches such as [11, 12]. However,
SSC suffers from high computational and memory costs when
dealing with a large-scale dataset because of the need to
determine the O(N2) coefficients of C. In light of these
problems, there has been much interest in recent years in

Vol. 9, No. x, month 2022, xx–xx

2 K. Hotta, T. Akashi, S. Tokai, C. Zhang

developing scalable subspace clustering algorithms that can
be applied to large-scale datasets, taking advantage of the ease
of analyzing computational complexity due to the simplicity
of the model.
Several works have attempted to address the problem of

computational cost for large-scale datasets using a sampling
strategy, motivated by the sparsity assumption that each
data point can be represented as a linear combination of
a few basis vectors. The self-expressive property with a
few sampled data points and classifying of the other data
points was proposed in [13]. While this strategy can produce
clustering results more efficiently for a large-scale dataset than
directly applying SSC to all data, it leads to poor clustering
performance when the sampled data is not representative
of the original dataset. Although a learning-based sampling
method has also been proposed for generating a coefficient
matrix that is representative of the original dataset [14], the
accuracy and computational complexity still depend largely
on the size of the subsets, as these methods attempt to solve
for a self-expressive model in a single subset. Also, no effort
has been made to explicitly improve the self-expressiveness
of the self-expressive coefficient vectors in these methods.
To further improve self-expressiveness without increasing

the computational burden, in this paper, we propose a
self-expressive model adopting multiple subsets, which is
computable in parallel. Specifically, our model obtains a
self-expressive coefficient matrix by combining multiple
subsets; each subset consists of only a small proportion of
the samples. This strategy not only enjoys the benefit of low
computational cost like other single subset-based methods,
but also is more effectively subspace-preserving because the
representation of the original data is a linear combination of
multiple self-expressive coefficient vectors.
Our contributions are highlighted as follows:
• a novel clustering approach that exploits a self-expressive
model based on multiple subsets,

• a concisely formulated model,
• each subset can be computed independently in parallel
without additional computational overhead,

• extensive experiments on both synthetic data and
real-world datasets showing that our proposed method
can achieve better results without increasing processing
time.

2 Related Work
2.1 Background

In the past few years, there has been a surge of spectral
clustering-based algorithms that segment a set of data points

by performing spectral clustering. Previous classical methods,
such as k-subspaces [15] and median k-flats [16], assume that
the dimensionalities of the underlying subspaces are given in
advance. This latent knowledge is generally hard to access in
many real-world applications. In addition, these methods are
usually non-convex and thus sensitive to initialization [17, 18].
Aiming to relax the limitations of the k-subspace algorithm,
the majority of modern subspace clustering methods explored
have turned to spectral clustering [19, 20], which segment
data using an affinity matrix that captures whether a certain
pair of data points lie on the same subspace. While many
early methods [12, 21–23] achieve better segmentation
than classical clustering algorithms even without the latent
knowledge, these methods produce erroneous segmentation
results for data points near the intersection of two subspaces
due to the dense sampling of points lying on the subspace [24].
We now introduce previous subspace clustering approaches
based on spectral clustering, then describe various techniques
of scalable subspace clustering methods for dealing with
large-scale datasets, which are closer to our proposed method.

2.2 Subspace Clustering Using Spectral Clustering

Most subspace clustering approaches based on spectral
clustering consist of two phases: (i) computing an affinity
matrix based on the nonzero coefficients that appear in the
representation of each data point as a combination of other
points, and (ii) segmenting data points from the computed
affinity matrix by applying spectral clustering. The key to
the success of segmentation is the phase of computing the
affinity matrix. Therefore, many methods have been proposed
to compute the affinity matrix. For example, local subspace
affinity [24] and spectral curvature clustering (SCC) [25] find
neighborhoods based on the observation that a point and its
k-nearest neighbors often lie on the same subspace. However,
the computational complexity of finding multi-way similarity
in these methods grows exponentially with the number of
subspace dimensions, motivating the use of a sampling
strategy to lower the computational complexity [9]. Recently,
the self-expressive model, which employs the self-expressive
property in Eq. (1), has become the most popular one. In
particular, SSC takes advantage of sparsity [26] by adopting
ℓ1 norm regularization of the coefficient vector to achieve
high clustering performance. This idea has motivated many
methods, using the ℓ2 norm in least squares regression [27],
the nuclear norm in low rank representation (LRR) [28],
the ℓ1 plus ℓ2 norm in elastic net subspace clustering
(EnSC) [29], and the Frobenius norm in efficient dense
subspace clustering [30]. In practice, however, solving the

PMSSC: Parallelizable Multi-Subset Based Self-Expressive Model for Subspace Clustering 3

Data matrix

Subset data matrices

Sampling

Self-expressive model w.r.t. single subset

Self-expressive model w.r.t. multi-subset

Solve for

Solve for

Approximated data matrix

Fig. 1 Overview of our self-expressive model. Given a data matrixX in which each data point xi is a column, our approach represents a
self-expressive model over the entire data by combining multiple subsets generated by sampling (Algorithm 1). Specifically, our method
computes the self-expressive data point y(t)

i by solving for the self-expressive coefficient vector c∗(t)i for each point xi in T subsets
(Algorithm 2). Then, the self-expressive properties of the entire data are obtained by solving for b∗ using Y with each data point y(t)

i

computed from each subset as columns (Algorithm 3).

ℓp norm minimization problem for large-scale data may be
prohibitive. Also, the memory required becomes larger as the
amount of data increases.

2.3 Scalable Subspace Clustering

When constructing the affinity matrix, several methods
based on spectral clustering suffer from high computational
complexity. To reduce the computational complexity of
this phase, a sparse self-expressive model adopting a
greedy algorithm was proposed in [10, 31]. However, these
approaches lead to unsatisfactory clustering results if the
nonzero elements do not contain sufficient connections
within each optimized coefficient vector [32]. Other popular
approaches to alleviate the computational and memory
loads were inspired by a sampling strategy. In [13],
scalable sparse subspace clustering (SSSC) is computationally
efficient, using a subset generated by random sampling.
However, because the random sampling method relies on
a single subset, data points from the same subspace will
not be represented by the self-expressive model if they
are not appropriately sampled. Exemplar-based subspace
clustering [12, 33] is an efficient sampling technique that
iteratively selects the least well-represented point as a subset
to address the problem. Selective sampling-based scalable
sparse subspace clustering (S5C) [14], which generates

a subset by selective sampling, provides approximation
guarantees of the subspace-preserving property. In [34],
the subspace-preserving representations are found by
solving a consensus problem with multiple subsets to
improve the connectivity of the affinity matrix. In [35],
a divided-and-conquer framework using multiple subsets
obtained by separating the entire dataset is proposed.
While this approach can deal with large-scale data, final
segmentation results depend on the self-expressive properties
of the optimized self-expressive coefficient vectors of
each subset. Our method differs significantly from [35]
and [34] in that our proposed self-representation model
is designed to minimize the difference from the original
data points by combining the self-expressive property
of multiple subsets. Lastly, in this paper, we limit our
discussion to non-deep learning approaches, which are more
mathematically straightforward to explain and rely less on
parameter tuning.

3 Parallelizable Multi-Subset Based Sparse
Subspace Clustering

3.1 Problem and Approach

As a problem definition, our final goal is to find the
self-expressive coefficient vector ci, which satisfies the
subspace-preserving representation in Eq. (1). That is, the

4 K. Hotta, T. Akashi, S. Tokai, C. Zhang

self-expressive residual can be obtained by solving the
following optimization problem,

min
ci

∥xi −Xci∥22 such that ∥ci∥0 ⩽ s, cii = 0, (2)

where ∥ · ∥0 is the ℓ0 pseudo-norm that returns the number of
nonzero entries in the vector. This optimization problem has
been shown [36, 37] to recover provably subspace-preserving
solutions using the orthogonal matching pursuit (OMP)
algorithm [38]. s is a tuning parameter for the OMP algorithm,
which controls the sparsity of the solution by selecting up
to s entries in the coefficient vector ci. Although the OMP
algorithm is computationally efficient and is guaranteed to
give subspace-preserving solutions under mild conditions, it
is unable to produce a subspace-preserving solution with a
number of nonzero entries exceeding the dimensionality of
the subspace [10]. This leads to poor clustering performance
with too sparse affinity between data points, especially when
the density of data points lying on the subspace is low.
We propose a novel subspace clustering algorithm with

a parallelizable multi-subset based self-expressive model,
as illustrated in Fig. 1. Sec. 3.2 introduces our proposed
self-expressive model that extends the model in Eq. (2)
to multiple subsets via a sampling technique. Sec. 3.3 then
explains the solution of our self-expressive model by the OMP
algorithm. Finally, we summarize the proposed subspace
clustering algorithm in Algorithm 4.

3.2 Parallelizable Multi-Subset based Self-Expressive
Model

To deal with large-scale data, we first generate T index subsets
from the whole dataset by weighted random sampling [39] as
follows:

I(t) ⊂ [N] s.t. (I(t)) = ⌈δN⌉, t = 1, . . . , T, (3)

where I(t) is the index set of the t-th subset that is sampled
with probability proportional to the elements of the weight
vector w(t) ∈ RN , [N] is N indices {1, . . . , N}, 0 < δ ⩽ 1

is the sampling rate, and n(·) is the cardinality function that
is a measure of the number of elements. The t-th selected
element of w(t) is updated as w(t+1)

i = 0.1w
(t)
i . Then, in

each sampled t-th subset, the optimization problem in Eq. (2)
can be expressed as follows:

c
∗(t)
i =argmin

c
(t)
i

∥x(t)
i −X(t)c

(t)
i ∥

2
2

s.t. ∥c(t)i ∥0 ⩽ s, c
(t)
ii = 0,

(4)

where X(t) ∈ RD×N is the data matrix of the randomly
sampled t-th subset. c(t)i ∈ RN is the self-expressive
coefficient vector for each data point x

(t)
i in the t-th

subset. Note that to ensure the dimensionality of c(t)i is
N , the columns of each data matrix X(t) corresponding
to the non-sampled indices are replaced by zero-vectors:
x
(t)
i = 0, ∀i /∈ I(t). From each optimized coefficient
vector c∗(t)i , each data point x(t)

i can be represented by
a self-expressive model, given by:

y
(t)
i = X(t)c

∗(t)
i s.t. c

∗(t)
ii = 0, (5)

where y(t)
i is the data point computed by the self-expressive

model from the t-th subset. In practice, however, the data
point y(t)

i in Eq. (5) generally has an error term zi, i.e.,
y
(t)
i = xi + zi, because of the limitations of using X(t)

as a dictionary for reconstruction. To minimize zi, we first
represent xi as a linear combination of y

(t)
i , as follows:

xi ≈
T∑

t=1

b
(i)
t (X(t)c

∗(t)
i)

≈
T∑

t=1

b
(i)
t y

(t)
i ,

(6)

where b(i) ∈ RT is the weight coefficient vector to represent
xi, and b

(i)
t ∈ R is the t-th entry of b(i). The coefficient vector

b(i) of the linear combination in Eq. (6) can be obtained by
solving the following optimization problem,

b∗(i) = argmin
b(i)

∥xi −
T∑

t=1

b
(i)
t y

(t)
i ∥

2
2. (7)

For simplicity, we introduce a data matrix Y =

[y
(1)
i , . . . ,y

(T)
i] ∈ RD×T with each data point y(t)

i from
Eq. (5) as columns, and rewrite Eq. (7) as

b∗(i) = argmin
b(i)

∥xi − Y b(i)∥22. (8)

This is the formulation of the optimization problem for
subspace clustering in Eq. (2), and can be further described
as:

xi ≈ Y b∗(i). (9)

Unlike in Eq. (1), here Y is the data matrix computed from
each subset to represent xi. Thus, no constraint is required
to avoid the trivial solution of representing a point as a
linear combination of itself. To explicitly express Eq. (2), the
self-expressive coefficient vector c∗i corresponding to X is
obtained by

c∗i =

T∑
t=1

b
∗(i)
t c

∗(t)
i . (10)

It is worth noting that each c∗(t) can be determined
independently from each subset, so can be computed in
parallel for speed.

PMSSC: Parallelizable Multi-Subset Based Self-Expressive Model for Subspace Clustering 5

Algorithm 1 Optimization for the parallelizable
multi-subset based self-expressive model (PMS)
Input: Data matrix X ∈ RD×N , number of subsets T ,
sampling rate δ, maximum number of repetitions s, error
term ϵ

1: Generate T index subsets {I(t)}Tt=1 via Eq. (3);
2: Generate T subset data matrices {X(t)}Tt=1 based on
{I(t)}Tt=1;

3: for i = 1, . . . , N do
4: for t = 1, . . . , T do
5: Given X(t) and x(t)

i , solve for c
∗(t)
i via

Algorithm 2;
6: Given c∗(t)i , compute y(t)

i for all data points via Eq.
(5);

7: end for
8: Set Y = [y

(1)
i , . . . ,y

(T)
i] ∈ RD×T ;

9: Given Y and xi, solve for b∗(i) via Algorithm 3;
10: Given c∗(t)i and b∗(i), compute c∗i via Eq. (10);
11: end for
12: Set C∗ = [c∗1, . . . , c

∗
N] ∈ RN×N ;

Output: Coefficient matrix C∗

3.3 Optimization with Orthogonal Matching Pursuit

In this section, we show that the parameters of the proposed
PMS model can be determined by dividing the optimization
problem into two small optimization problems as summarized
inAlgorithm 1. Overall, Eq. (10) can be determined by solving
the minimization problems in Eqs. (4) and (8). We introduce
both of the minimization procedures below. Specifically,
initially, T subset data matrices {X(t)}Tt=1 are generated
based on the sampling set I(t) in Eq. (3).
To efficiently solve for c∗(t)i in Eq. (4), we introduce

Algorithm 2 based on the OMP algorithm. The support set
and the residual are initialized to S = ∅ and r = x

(t)
i ,

respectively. S denotes the index set, which is updated on
each iteration by adding one index j∗. j∗ is computed using

j∗ = argmax
j∈I(t)\S

x
(t)⊤
j r. (11)

Then, using the updated S, the self-expressive coefficient
vector c∗(t)i is found by solving the following problem:

c
∗(t)
i =

{
argmin

c
(t)
i
∥x(t)

i −X(t)c
(t)
i ∥22, if i ∈ I(t),

0, otherwise,

such that supp(c
(t)
i) ⊆ S, (12)

where supp(c(t)i) is the support function that returns the
subgroup of the domain containing the elements not mapped

Algorithm 2 OMP algorithm for finding c∗(t)i

Input: Data matrix X(t) ∈ RD×N , reference data point
x
(t)
i , maximum repetition count s, error term ϵ

1: Initialize k = 0, residual r = x
(t)
i , support set S = ∅;

2: while k < s and ∥r∥2 > ϵ do
3: Find j∗ via Eq. (11);
4: S ← S ∪ {j∗};
5: Estimate c∗(t)i via Eq. (12);
6: Update the residual r via Eq. (13);
7: k = k + 1;
8: end while

Output: Self-expressive coefficient vector c∗(t)i

Algorithm 3 OMP algorithm for finding b∗(i)

Input: Data matrix Y ∈ RD×T , reference data point xi,
error term ϵ

1: Initialize k = 0, residual r = xi, support set S = ∅;
2: while k < T and ∥r∥2 > ϵ do
3: Find j∗ via Eq. (14);
4: Update S ← S ∪ {j∗};
5: Estimate b∗(i) via Eq. (15);
6: Update the residual r via Eq. (16);
7: k = k + 1;
8: end while

Output: Weight coefficient vector b∗(i)

to zero. r is updated using:

r ← x
(t)
i −X(t)c

∗(t)
i . (13)

This process is repeated until the number of iterations k
reaches its limit s or r is smaller than the error ϵ.
To find b∗(i), Eq. (8) can also be solved via the OMP

algorithm, as shown in Algorithm 3. The input data matrix
Y ∈ RD×T is generated by Eq. (5) from c

∗(t)
i . Note that

the size of Y depends on the number of subsets T and is
much smaller than the number of data points. The maximum
number of repetitions is T , and S is updated by finding the
index j∗ satisying

j∗ = argmax
j∈[T]\S

y
(j)⊤
i r. (14)

In addition, the weight coefficient vector b∗(i) and update of
r are determined by solving

b∗(i) = argmin
b(i)

∥xi−Y b(i)∥22, s.t. supp(bi) ⊆ S. (15)

r ← xi − Y b
∗(i)
t . (16)

For clarity, we summarize the entire framework of our

6 K. Hotta, T. Akashi, S. Tokai, C. Zhang

Algorithm 4 Parallelizable multi-subset based sparse
subspace clustering (PMSSC)
Input: Data matrix X = [x1, . . . ,xN] ∈ RD×N ,
parameters T , δ, s, ϵ

1: Compute coefficient matrix C∗ via Algorithm 1;
2: Define affinity matrixW = |C∗|+ |C∗T |;
3: Apply spectral clustering;

Output: Clustering results of X

proposed subspace clustering approach inAlgorithm4, calling
it the parallelizable multi-subset based sparse subspace clus-
tering (PMSSC)method. GivenX and parameters T , δ, s, and
ϵ, the optimal solution C∗ can be found using Algorithm 1.
We thus define the affinity matrix asA = |C∗|+ |C∗T | using
the computed C∗; the final clustering results can be obtained
by applying spectral clustering to A via normalized cut [19].

4 Experiments and Results
We have evaluated our approach using both synthetic data
and real-world benchmark datasets.

4.1 Baselines and Evaluation Metrics.

We compare our approach to the following eight methods:
SCC [25], LRR [28], thresholding-based subspace clustering
(TSC) [40], low rank subspace clustering (LRSC) [41],
SSSC [13], EnSC [29], SSC-OMP [10], and S5C [14]. Tests
for all comparative methods used provided source code, and
each parameter was carefully tuned to give the best clustering
accuracy. For spectral clustering, except for SCC, S5C, and
SSSC, we applied normalized cut [19] to the affinity matrix
A = |C| + |CT |. (SCC and S5C have their own spectral
clustering phase, while SSSC obtains clustering results from
the data split into two parts). Unlike SSC-OMP, our method,
which involves independent calculation for each subset, can
be implemented in parallel with multi-core processing. All
algorithms ran on an AMD Ryzen 7 3700x processor with 32
GB RAM. Following [10], as quantitative evaluation metrics,
we evaluated each algorithm using clustering accuracy (acc:
a%), subspace-preserving representation error (sre: e%),
connectivity (conn: c), and runtime (t seconds). Clustering
accuracy represents the percentage of correctly labeled data
points:

a = max
π

100

N

∑
ij

Qest
π(i)jQ

true
ij , (17)

where π is a permutation of the L cluster groups. Qest and
Qtrue are the estimated labeling result and ground-truth,
respectively, scoring one in the (i, j)th entry if a data

point j belongs to the i-th cluster and zero otherwise. The
subspace-preserving representation error indicates the average
fraction of affinities formed from other subspaces in each cj ,

e =
100

N

∑
j

(
1−

∑
i

(ωij |cij |)/∥cj∥1

)
, (18)

where ωij ∈ {0, 1} is the true affinity, and ∥ · ∥1 returns the
ℓ1 norm. The connectivity shows the average connection of
the affinity matrix with L cluster groups as follows:

c =
1

L

L∑
i=1

λ
(i)
2 , (19)

where λ2 is the second smallest eigenvalue of the normalized
Laplacian for each of the L subgraph, and λ(i)

2 indicates the
algebraic connectivity for each cluster. If c = 0, then at least
one subgraph is not connected [42].

4.2 Experiments on Synthetic Data

4.2.1 Setup

We first report experimental results on data synthesised
by randomly generating five linear subspaces of R6 as
ground-truth in an ambient space of R9. Each subspace
contains n randomly sampled data points. To confirm the
statistical results, we conducted the experiments by varying n
from 100 to 4,000, so the total numberN of data points varies
from 500 to 20,000. We set the parameters s = 6, δ = 0.3,
and T = 16. The percentage of in-sample in SSSC is set
to 10% of the total number of data points. All experimental
results recorded on synthetic data were averaged over 50
trials.

4.2.2 Results

The curve for each metric is shown as a function of n
in Fig. 2. We can observe from Fig. 2(a) that PMSSC
outperforms SSC-OMP in terms of clustering accuracy. The
difference is especially large when the density of data points
on the underlying subspace is lower. This could be partly
due to the fact that PMSSC succeeds in generating better
connectivity than SSC-OMP (see Fig. 2(c)), and achieves
lower subspace-preserving representation error (see Fig. 2(b)).
On the other hand, as Fig. 2(d) shows, PMSSC is much faster
with parallel implementation, which is advisable for solving
problems involving large-scale data. In addition, compared
to SSSC which adopts a similar sampling approach to our
method, PMSSC outperforms both in clustering accuracy and
runtime (using a parallel implementation).

PMSSC: Parallelizable Multi-Subset Based Self-Expressive Model for Subspace Clustering 7

0 0.5 1 1.5 2

Number of data points #10
4

30

40

50

60

70

80

90

100

C
lu

st
e
ri
n
g

ac
c
u
ra

c
y

(%
)

SSSC
SSC-OMP
PMSSC

(a)

0 0.5 1 1.5 2

Number of data points #10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

S
u
bs

pa
c
e
-
pr

e
se

rv
in

g
re

pr
e
se

n
ta

ti
o
n
 e

rr
o
r

(%
)

SSC-OMP
PMSSC

(b)

0 0.5 1 1.5 2

Number of data points #10
4

0

0.05

0.1

0.15

0.2

0.25

C
o
n
n
e
c
ti
vi

ty

SSC-OMP
PMSSC

(c)

0 0.5 1 1.5 2

Number of data points #10
4

0

5

10

15

20

25

30

35

40

45

R
u
n
ti
m

e
 (
se

c
)

SSSC
SSC-OMP
PMSSC (w/o multi-core implementation)
PMSSC (w/ multi-core implementation)

(d)

Fig. 2 Comparison of PMSSC, SSC-OMP, and SSSC on synthetic data in terms of (a) clustering accuracy, (b) subspace-preserving
representation error, (c) connectivity, and (d) runtime. For SSSC, only clustering accuracy and runtime are shown as SSSC does not generate
the self-expressive coefficient matrix and affinity matrix.

Table 1 Parameters (s, δ, and T) used in PMSSC for benchmark datasets.
Datasets Ex. Yale B ORL GTSRB BBCSport MNIST4000 MNIST10000 MNIST EMNIST CIFAR-10

s 5 5 3 3 10 10 10 10 3
δ 0.6 0.6 0.2 0.4 0.3 0.2 0.1 0.2 0.2
T 6 11 8 15 7 10 19 12 18

4.3 Experiments on Benchmark Datasets for Real-
world Applications

4.3.1 Setup
We conducted experiments on five benchmark datasets:
Extended Yale B [43] and ORL [44] for face clustering,
BBCSport [45] for text document clustering, German Traffic
Sign Recognition Benchmark (GTSRB) [46] for street sign
clustering, Modified National Institute of Standards and
Technology database (MNIST) [47] and Extended MNIST
(EMNIST) [48] for handwritten character clustering, and
Canadian Institute For Advanced Research (CIFAR-10) [49]
for object clustering. Parameter settings used for our method
in these experiments are shown in Table 1. Since the sparsity
s in PMSSC and SSC-OMP is related to the intrinsic

dimensionality of the subspace, it ismanually determined to be
close to the dimensionality of the subspaces. For sampling rate
δ, we picked a smaller δ for a larger dataset. For the number
of subsets T , we adopted a value that takes into account
the trade-off between runtime and clustering accuracy. All
experimental results recorded on all benchmark datasets are
averaged over 10 trials. Details of each benchmark dataset
and the corresponding clustering results are now given.

4.3.2 Extended Yale B
Extended Yale B contains 2,432 facial images in 38
classes; see Fig. 3(a). In this experiment, following [9],
we concatenated the pixels of each image resized to 48× 42,
and used the 2016-dimensional vector as input data.
The results onExtendedYaleB are shown inTable 2. In each

8 K. Hotta, T. Akashi, S. Tokai, C. Zhang

(a) (b)

(c) (d)

(e) (f)

Fig. 3 Visual examples for datasets: (a) Extended Yale B, (b) ORL, (c) GTSRB, (d) MNIST, (e) EMNIST-Letters, and (f) CIFAR-10.

PMSSC: Parallelizable Multi-Subset Based Self-Expressive Model for Subspace Clustering 9

Table 2 Comparative results on Extended Yale B; ‘-’ indicates the
metric cannot be computed.

Method Extended Yale B
acc (a%) sre (e%) conn (c) t (sec.)

SCC 9.54 - - 293.01
LRR 37.58 97.44 0.8175 219.91
TSC 52.40 - 0.0014 10.46
LRSC 56.71 91.64 0.4360 4.37
SSSC 49.77 - - 18.22
EnSC 55.76 18.90 0.0395 4.57
SSC-OMP 73.82 20.07 0.0364 1.27
S5C 62.99 58.74 0.2238 952.26
PMSSC 80.24 22.35 0.0858 2.66

Table 3 Comparative results on ORL.

Method ORL
acc (a%) sre (e%) conn (c) t (sec.)

SCC 16.40 - - 89.45
LRR 32.98 97.70 0.8394 3.57
TSC 68.03 - 0.0992 0.72
LRSC 43.12 93.72 0.5248 0.24
SSSC 65.12 - - 1.78
EnSC 70.03 32.46 0.1825 0.65
SSC-OMP 60.12 34.14 0.0770 0.12
S5C 69.48 63.26 0.3868 54.28
PMSSC 74.45 40.97 0.1708 0.51

column, the best result is shown in bold, and the second-best
result is underlined. They confirm that PMSSC yields the best
clustering accuracy, and improves the clustering accuracy
over SSC-OMP by 6.42%. Although the subspace-preserving
error and runtime are slightly lower than SSC-OMP, the
connectivity is greatly improved compared to SSC-OMP,
leading to a better clustering accuracy. LRR, LRSC, and S5C
have good connectivity, but poor subspace-preserving errors
result in low clustering accuracy.

4.3.3 ORL

ORL contains 400 facial images in 40 classes, as shown in
Fig. 3(b). In this experiment, following [50], we concatenate
the pixels of each image resized to 32 × 32, and use a
1024-dimensional vector as input data. Compared to Extended
Yale B, ORL is a more difficult problem setting for subspace
clustering because the density of data lying near the same
subspace (10 vs. 64) is lower due to the small number of images
of each subject, and the subspaces have more non-linearity
due to changes in facial expressions and details.
The results for ORL are listed in Table 3. We can again

observe that PMSSC achieves the best clustering accuracy, and
improves the connectivity compared to SSC-OMP. However,
since PMSSC does not incorporate nonlinear constraints, the
subspace-preserving error does not improve along with the
improvement of the connectivity.

Table 4 Comparative results on GTSRB.

Method GTSRB
acc (a%) sre (e%) conn (c) t (sec.)

SCC 59.68 - - 84.26
LRR 27.87 86.64 0.4255 725.18
TSC 56.36 - 0.0016 242.62
LRSC 83.97 80.14 0.6056 12.89
SSSC 88.03 - - 16.86
EnSC 85.92 0.59 0.0065 10.77
SSC-OMP 81.28 5.38 0.0211 3.72
S5C 61.60 80.99 0.5941 422.35
PMSSC 91.57 7.69 0.0434 3.40

4.3.4 GTSRB
GTSRB contains over 50,000 street sign images in 43 classes;
see Fig. 3(c). Following [33], we preprocess the dataset
represented by a 1568-dimensional HOG feature to get an
imbalanced dataset of the 500-dimensional vectors with
12,390 samples in 14 classes.
The results on GTSRB are reported in Table 4. Again

PMSSC yields the best clustering accuracy and runtime,
and improves the clustering accuracy roughly by 10%

compared to SSC-OMP. In particular, PMSSC has both good
subspace-preserving error and connectivity. While EnSC and
SSSC also achieve competitive clustering accuracy, their
computational costs are much higher.
4.3.5 BBCSport
BBCSport contains 737 documents in five classes. The data
provided by the database has been preprocessed by stemming,
stop-word removal, and low term frequency filtering. In this
experiment, we reduced the dimensionality of feature vectors
to 500 by PCA.
The results on BBCSport are summarized in Table 5. We

can observe that PMSSC yields the second best clustering
accuracy and subspace-preserving error. LRSC yields the best
clustering accuracy due to good connectivity. For small-scale
datasets such as BBCSport and ORL, the speed of PMSSC is
slightly lower than for SSC-OMP because the advantage of
reducing data size by sampling multiple subsets is diminished.

4.3.6 MNIST and EMNIST-Letters
MNIST contains 70,000 images of handwritten digits
(0–9), while EMNIST-Letters contains 145,600 images of
handwritten characters in 26 classes, as shown in Fig. 3(d,e).
In our experiments, following [34], we generate MNIST4000
andMNIST10000, which are produced by randomly sampling
400 and 1,000 images per class of digit, respectively. Each
image is represented as a 3472-dimensional feature vector
by using the scattering convolution network [51], and its
dimensionality reduced to 500 by PCA.

10 K. Hotta, T. Akashi, S. Tokai, C. Zhang

Table 5 Comparative results on BBCSport.

Method BBCSport
acc (a%) sre (e%) conn (c) t (sec.)

SCC 23.12 - - 3.60
LRR 71.37 76.26 0.7744 7.59
TSC 73.95 - 0.0053 0.36
LRSC 89.53 66.38 0.5997 0.18
SSSC 50.24 - - 0.26
EnSC 59.48 11.43 0.0243 0.61
SSC-OMP 69.85 15.96 0.0393 0.10
S5C 55.90 65.78 0.5434 17.99
PMSSC 81.71 14.36 0.0509 0.47

The results on MNIST and EMNIST-Letters are
summarized in Tables 6–8.We can observe that PMSSCyields
the best clustering accuracy on MNIST4000, MNIST10000,
and EMNIST-Letters. In particular, PMSSC is remarkably
faster than the comparative methods on MNIST70000 and
EMNIST-Letters. In the case of MNIST70000, EnSC yields
the best clustering accuracy and subspace-preserving error
but its computational cost is high. Similarly, S5C can achieve
good connectivity, but is very slow.

4.3.7 CIFAR-10

CIFAR-10 includes 60,000 general objects in 10 classes,
as illustrated in Fig. 3(f). Following [52], we employ the
feature representations extracted by MCR2 [53], which learns
a union of low-dimensional subspaces representation via
self-supervised learning. Each feature is represented by a
128-dimensional feature vector, further normalized to have
unit ℓ2 norm.
The comparative results on CIFAR-10 are summarized

in Table 9. It can be observed that our method outperforms
others in terms of the runtime, while the clustering accuracy
is competitive. However, as with SSC-OMP, we see that
the connectivity is lower than for S5C, which uses ℓ1 norm
regularization.

4.3.8 Summary

Overall, our proposed method becomes significantly faster
as the amount of input data increases. In addition, it
achieves good clustering accuracy and connectivity, and
provides subspace-preserving errors comparable to those of
the comparative algorithms.

4.4 Analysis
4.4.1 Multi-subset Based Self-Expressive Model

Since our approach aims to minimize the self-expressive
residual by the weight coefficient vector b∗ solved in
Algorithm 3, we show the mean self-expressive residual
of data points represented by the coefficient vectors in Fig. 4.

kz(1)k2 kz(2)k2 kz(3)k2 kz(4)k2 kz(5)k2 kz(6)k2 kz(7)k2 kz(8)k2 kz(9)k2 kz(10)k2 kzk2

Error term

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
ea

n
re

si
du

al

#10!4

Fig. 4 Comparative results in terms of the mean residuals over
data points represented by the self-expressive models with different
subsets. Blue bars represent each single t-th subset, while the red
bar is computed using multiple subsets.

This experiment was performed on synthetic data, and we
fixed T = 10 and δ = 0.3. Each blue bar indicates the mean
self-expressive residual of the data points represented by Eq.
(5), computed as

∥z(t)∥2 =
1

⌈δN⌉

N∑
i=1

∥x(t)
i −X(t)c

∗(t)
i ∥2. (20)

The red bar indicates the mean self-expressive residual of the
data points represented by Eq. (9), computed as:

∥z∥2 =
1

N

N∑
i=1

∥(xi −Xc∗i)∥2. (21)

We can clearly observe that the mean self-expressive residual
of PMS has lower error than every single subset. To highlight
the benefit of b∗, we made a comparison to a variant of our
approach, named PMSSC(avg), which replaced b∗ by a simple
average operation: in PMSSC(avg), Eq. (10) is replaced by

c∗i =
1

T

T∑
t=1

c
∗(t)
i . (22)

We performed experiments on synthetic data using the same
setup as for Fig. 2 and present the results in Fig. 5. As can
be seen, incorporating b∗ improves clustering performance;
in particular, the subspace-preserving representation error
is significantly reduced. These experiments indicate that
the weight coefficient vector b∗ contributes to improving
self-expressiveness.

4.4.2 Selection of Parameters
We performed multiple experiments on the GTSRB dataset
with various choices of hyperparameters (T, δ) to evaluate
the sensitivity of our approach to parameter choice. Changes
in clustering accuracy, subspace-preserving representation

PMSSC: Parallelizable Multi-Subset Based Self-Expressive Model for Subspace Clustering 11

Table 6 Comparative results on MNIST4000 and MNIST10000.

Method MNIST4000 MNIST10000
acc (a%) sre (e%) conn (c) t (sec.) acc (a%) sre (e%) conn (c) t (sec.)

SCC 67.45 - - 5.93 70.43 - - 11.67
LRR 78.49 90.21 0.8979 43.03 77.53 90.60 0.8818 396.45
TSC 79.57 - 0.0009 11.76 80.62 - 0.0005 132.08
LRSC 81.23 75.67 0.5984 1.61 80.86 77.30 0.5983 7.58
SSSC 70.73 - - 3.11 84.32 - - 13.20
EnSC 89.08 21.14 0.1174 12.71 88.24 17.34 0.0975 35.63
SSC-OMP 91.49 34.69 0.1329 1.61 91.40 32.23 0.1169 6.44
S5C 81.52 66.28 0.4476 277.93 79.30 66.23 0.4466 683.65
PMSSC 92.85 38.27 0.1944 1.42 93.57 36.43 0.1817 4.55

Table 7 Comparative results on MNIST; ‘M’ indicates that 32 GB
memory was exhausted.

Method MNIST70000
acc (a%) sre (e%) conn (c) t (sec.)

SCC 69.08 - - 388.00
LRR M - - -
TSC M - - -
LRSC M - - -
SSSC 81.57 - - 303.28
EnSC 93.79 11.26 0.0596 408.62
SSC-OMP 82.83 28.57 0.0830 248.50
S5C 72.99 66.87 0.4437 4953.28
PMSSC 84.45 32.63 0.1148 65.08

Table 8 Comparative results on EMNIST-Letters; ‘M’ indicates
that 32 GB memory was exhausted.

Method EMNIST-Letters
acc (a%) sre (e%) conn (c) t (sec.)

SCC M - - -
LRR M - - -
TSC M - - -
LRSC M - - -
SSSC 60.62 - - 1538.46
EnSC 64.15 26.20 0.0086 1575.46
SSC-OMP 58.71 43.93 0.0000 1214.31
S5C 60.01 83.37 0.3517 15698.90
PMSSC 66.52 46.76 0.0019 638.03

error, connectivity, and runtime when varying each parameter
are illustrated in Fig. 6. We can confirm that high clustering
accuracy and low subspace-preserving representation error
are maintained in most cases, except when both T and
δ are extremely small. This implies that the affinity
matrix constructed by PMSSC provides subspace-preserving
representations at most data points. We can also see that the
connectivity improves as the number of subsets T increases,
because the affinity matrix contains at most sTN nonzero
entries in OMP optimization. Considering runtime, a practical
choice of parameters is to increase T for small values of δ,
and decrease T for large values of δ. In addition, time taken
can be kept low by picking a small value of δ for large-scale
datasets.

Table 9 Comparative results on CIFAR-10 where ’M’ means that
the memory limitation of 32G is exceeded.

Method CIFAR-10
acc (a%) sre (e%) conn (c) t (sec.)

SCC 37.10 - - 196.40
LRR M - - -
TSC M - - -
LRSC M - - -
SSSC 63.80 - - 74.36
EnSC 61.79 22.60 0.0000 178.22
SSC-OMP 40.86 24.92 0.0000 63.58
S5C 64.52 46.35 0.2314 2338.55
PMSSC 63.52 26.41 0.0000 29.60

0 0.5 1 1.5 2

Number of data points #10 4

75

80

85

90

95

100

C
lu

st
er

in
g

ac
cu

ra
cy

 (
%

)

PMSSC(avg)
PMSSC

(a)

0 0.5 1 1.5 2

Number of data points #10 4

0

0.1

0.2

0.3

0.4

0.5

S
ub

sp
ac

e-
pr

es
er

vi
ng

 r
ep

re
se

nt
at

io
n

er
ro

r
 (

%
) PMSSC(avg)

PMSSC

(b)

Fig. 5 Benefit of using b∗ in PMSSC in terms of (a) clustering
accuracy and (b) subspace-preserving representation error, for syn-
thetic data. Red: using b∗. Green: using simple averaging.

4.4.3 Sampling Technique

Our approach adopts weighted random sampling to generate
the subset data matrixX(t). To analyze the effect of sampling
methods on our approach, we compared weighted random
sampling to random sampling with uniform weights. The
experimental settings used for synthetic data follow those in
Fig. 2. Fig. 7 shows the clustering accuracy and connectivity
as functions of n. Obviously, weighted random sampling
outperforms random sampling in terms of both clustering
accuracy and connectivity. In particular, as the density of data
points increases, the connectivity of the method with random
sampling becomes zero, because imbalanced sampling leads
to a disconnected subgraph in an affinity graph.

12 K. Hotta, T. Akashi, S. Tokai, C. Zhang

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sampling rate /

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

N
u
m

be
r

o
f

su
bs

e
ts

 T

0

10

20

30

40

50

60

70

80

90

100

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sampling rate /

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

N
u
m

be
r

o
f

su
bs

e
ts

 T

0

10

20

30

40

50

60

70

80

90

100

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sampling rate /

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

N
u
m

be
r

o
f
su

bs
e
ts

 T

0

0.01

0.02

0.03

0.04

0.05

0.06

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sampling rate /

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

N
u
m

be
r

o
f
su

bs
e
ts

 T

5

10

15

20

25

30

35

40

(d)

Fig. 6 Effects of varying parameters δ and T (GTSRB dataset): (a)
clustering accuracy, (b) subspace-preserving representation error,
(c) connectivity, and (d) runtime.

4.4.4 Computational Complexity

Algorithms 2 and 3 for affinity matrix construction consume
most of the processing time. InAlgorithm2, the computational
complexity for finding the self-expressive coefficient vector
c
∗(t)
i requires time O(Ds⌈δN⌉). In Algorithm 3, the
computational complexity for finding the weight coefficient
vector b∗(i) requires O(DT 2). Because these two algorithms
are performed on N data points, the computational
complexity of PMS requires at least timeO(N(TDs⌈δN⌉+
DT 2)). However, processing T subsets (the part taking
O(TDs⌈δN⌉)) can be performed in parallel, which reduces
the computation time compared to methods that directly deal
with the whole dataset. Fig. 2(d) supports this analysis.

5 Conclusions
We have proposed a parallelizable multi-subset based
self-expressive model for subspace clustering. A
representation of the input data is formulated by combining
the solutions of small optimization problems with respect
to multiple subsets generated by data sampling. We have
shown that this strategy can significantly improve speed
with a multi-core approach that can be easily implemented,

0 0.5 1 1.5 2

Number of data points #10
4

84

86

88

90

92

94

96

98

100

C
lu

st
e
ri
n
g

ac
c
u
ra

c
y

(%
)

Random sampling
Weighted random sampling

(a)

0 0.5 1 1.5 2

Number of data points #10
4

0

0.05

0.1

0.15

0.2

0.25

C
o
n
n
e
c
ti
vi

ty

Random sampling
Weighted random sampling

(b)

Fig. 7 Effect of sampling method in our approach, for synthetic
data: (a) clustering accuracy and (b) connectivity. Blue: weighted
random sampling. Black: uniform random smapling.

especially for large-scale data. Moreover, it has been verified
that combiningmultiple subsets can reduce the self-expressive
residuals of data compared to a single subset. Extensive
experiments on synthetic data and real-world datasets have
demonstrated the efficiency and effectiveness of our approach.
As a limitation, our method is still unable to handle nonlinear
subspaces due to the problem setting. In future, we would like
to design a self-expressive model that can handle nonlinear
subspaces, with the help of modeling capabilities from neural
network architectures.

Acknowledgements
This work was supported by JSPS KAKENHI Grant Number
JP20K19568.

Declaration of competing interest
The authors have no competing interests to declare that are
relevant to the content of this article.

References
[1] Vidal R. Subspace clustering. IEEE Signal Processing Maga-

zine, 2011, 28(2): 52–68.
[2] Hotta K, Xie H, Zhang C. Affine subspace clustering with

nearest subspace neighbor. In International Workshop on Ad-
vanced Imaging Technology (IWAIT) 2021, volume 11766,
2021, 117661C.

[3] Zhang C. Energy Minimization over m-Branched Enumeration
for Generalized Linear Subspace Clustering. IEICE Transac-
tions on Information and Systems, 2019, 102(12): 2485–2492.

[4] Yang AY, Wright J, Ma Y, Sastry SS. Unsupervised segmenta-
tion of natural images via lossy data compression. Computer
Vision and Image Understanding, 2008, 110(2): 212–225.

[5] Vidal R, Tron R, Hartley R. Multiframe motion segmentation
with missing data using PowerFactorization and GPCA. Inter-
national Journal of Computer Vision, 2008, 79(1): 85–105.

[6] Tierney S, Gao J, Guo Y. Subspace clustering for sequential
data. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2014, 1019–1026.

PMSSC: Parallelizable Multi-Subset Based Self-Expressive Model for Subspace Clustering 13

[7] Zhang C, Lu X, Hotta K, Yang X. G2MF-WA: Geometric
multi-model fitting with weakly annotated data.Computational
Visual Media, 2020, 6: 135–145.

[8] Elhamifar E, Vidal R. Sparse subspace clustering. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, volume 6, 2009, 2790–2797.

[9] Elhamifar E, Vidal R. Sparse subspace clustering: Algorithm,
theory, and applications. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 2013, 35(11): 2765–2781.

[10] You C, Robinson D, Vidal R. Scalable sparse subspace clus-
tering by orthogonal matching pursuit. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
2016, 3918–3927.

[11] Guo Y, Tierney S, Gao J. Efficient sparse subspace clustering
by nearest neighbour filtering. Signal Processing, 2021, 185:
108082.

[12] You C, Li C, Robinson D, Vidal R. Self-Representation Based
Unsupervised Exemplar Selection in a Union of Subspaces.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2020.

[13] Peng X, Zhang L, Yi Z. Scalable sparse subspace clustering.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2013, 430–437.

[14] Matsushima S, Brbic M. Selective sampling-based scalable
sparse subspace clustering. Advances in Neural Information
Processing Systems, 2019, 32: 12416–12425.

[15] Tseng P. Nearest q-flat to m points. Journal of Optimization
Theory and Applications, 2000, 105(1): 249–252.

[16] Zhang T, Szlam A, Lerman G. Median k-flats for hybrid linear
modeling with many outliers. In Conference on Computer
Vision Workshops, 2009, 234–241.

[17] Lipor J, Hong D, Tan YS, Balzano L. Subspace clustering
using ensembles of k-subspaces. Information and Inference: A
Journal of the IMA, 2021, 10(1): 73–107.

[18] Lane C, Haeffele B, Vidal R. Adaptive online k-subspaces
with cooperative re-initialization. In Proceedings of the IEEE
International Conference on Computer Vision Workshops,
2019, 678–688.

[19] Shi J, Malik J. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2000, 22(8): 888–905.

[20] Von Luxburg U. A tutorial on spectral clustering. Statistics
and Computing, 2007, 17(4): 395–416.

[21] Lu C, Feng J, Lin Z, Mei T, Yan S. Subspace Clustering by
Block Diagonal Representation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2018, 41(2): 487–501.

[22] Dong W, Wu XJ, Kittler J, Yin HF. Sparse subspace clus-
tering via nonconvex approximation. Pattern Analysis and
Applications, 2019, 22(1): 165–176.

[23] Hotta K, Xie H, Zhang C. Candidate Subspace Screening for
Linear Subspace Clustering with Energy Minimization. In
Irish Machine Vision and Image Processing Conference, 2020,
125–128.

[24] Yan J, Pollefeys M. A general framework for motion segmen-
tation: Independent, articulated, rigid, non-rigid, degenerate
and non-degenerate. In European Conference on Computer
Vision, 2006, 94–106.

[25] Chen G, Lerman G. Spectral curvature clustering (SCC).
International Journal of Computer Vision, 2009, 81(3): 317–
330.

[26] Donoho DL. For most large underdetermined systems of linear
equations the minimal ℓ1-norm solution is also the sparsest
solution. Communications on Pure and Applied Mathematics:
A Journal Issued by the Courant Institute of Mathematical
Sciences, 2006, 59(6): 797–829.

[27] Lu CY, Min H, Zhao ZQ, Zhu L, Huang DS, Yan S. Robust and
efficient subspace segmentation via least squares regression.
In European Conference on Computer Vision, 2012, 347–360.

[28] LiuG, LinZ,YuY, et al.. Robust subspace segmentation by low-
rank representation. In Proceedings of the 27th International
Conference on International Conference on Machine Learning,
2010, 663–670.

[29] You C, Li CG, Robinson DP, Vidal R. Oracle based active
set algorithm for scalable elastic net subspace clustering. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, 3928–3937.

[30] Ji P, Salzmann M, Li H. Efficient dense subspace clustering. In
IEEE Winter Conference on Applications of Computer Vision,
2014, 461–468.

[31] Dyer EL, Sankaranarayanan AC, Baraniuk RG. Greedy feature
selection for subspace clustering. The Journal of Machine
Learning Research, 2013, 14(1): 2487–2517.

[32] Nasihatkon B, Hartley R. Graph connectivity in sparse sub-
space clustering. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2011, 2137–2144.

[33] You C, Li C, Robinson DP, Vidal R. Scalable exemplar-based
subspace clustering on class-imbalanced data. In Proceedings
of the European Conference on Computer Vision, 2018, 67–83.

[34] Chen Y, Li CG, You C. Stochastic sparse subspace clustering.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2020, 4155–4164.

[35] You C, Donnat C, Robinson DP, Vidal R. A divide-and-
conquer framework for large-scale subspace clustering. In
Proceedings of 50th Asilomar Conference on Signals, Systems
and Computers, 2016, 1014–1018.

[36] Davenport MA, Wakin MB. Analysis of orthogonal matching
pursuit using the restricted isometry property. IEEE Transac-
tions on Information Theory, 2010, 56(9): 4395–4401.

[37] Tropp JA. Greed is good: Algorithmic results for sparse ap-
proximation. IEEE Transactions on Information Theory, 2004,
50(10): 2231–2242.

[38] Pati YC, Rezaiifar R, Krishnaprasad PS. Orthogonal matching
pursuit: Recursive function approximation with applications to
wavelet decomposition. InProceedings of Asilomar Conference
on Signals, Systems and Computers, 1993, 40–44.

[39] Wong CK, Easton MC. An efficient method for weighted

14 K. Hotta, T. Akashi, S. Tokai, C. Zhang

sampling without replacement. SIAM Journal on Computing,
1980, 9(1): 111–113.

[40] Heckel R, Bölcskei H. Subspace clustering via thresholding
and spectral clustering. In IEEE International Conference on
Acoustics, Speech and Signal Processing, 2013, 3263–3267.

[41] Vidal R, Favaro P. Low rank subspace clustering (LRSC).
Pattern Recognition Letters, 2014, 43: 47–61.

[42] Chung FR, Graham FC. Spectral graph theory, 1997.
[43] Lee KC, Ho J, Kriegman DJ. Acquiring linear subspaces for

face recognition under variable lighting. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2005, 27(5):
684–698.

[44] Samaria FS, Harter AC. Parameterisation of a stochastic model
for human face identification. In Proceedings of the IEEE
Workshop on Applications of Computer Vision, 1994, 138–
142.

[45] Greene D, Cunningham P. Practical Solutions to the Problem
of Diagonal Dominance in Kernel Document Clustering. In
Proc. 23rd International Conference on Machine learning,
2006, 377–384.

[46] Stallkamp J, SchlipsingM, Salmen J, Igel C.Man vs. computer:
Benchmarking machine learning algorithms for traffic sign
recognition. Neural Networks, 2012, 32: 323–332.

[47] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based
learning applied to document recognition. Proceedings of the
IEEE, 1998, 86(11): 2278–2324.

[48] Cohen G, Afshar S, Tapson J, Van Schaik A. EMNIST: Ex-
tending MNIST to handwritten letters. In International Joint
Conference on Neural Networks, 2017, 2921–2926.

[49] Krizhevsky A. Learning multiple layers of features from tiny
images. Technical report, University of Toronto, 2009.

[50] Cai D, He X, Hu Y, Han J, Huang T. Learning a spatially
smooth subspace for face recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
2007, 1–7.

[51] Bruna J, Mallat S. Invariant scattering convolution networks.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2013, 35(8): 1872–1886.

[52] Zhang S, You C, Vidal R, Li CG. Learning a self-expressive
network for subspace clustering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2021, 12393–12403.

[53] Yu Y, Chan KHR, You C, Song C, Ma Y. Learning diverse
and discriminative representations via the principle of max-
imal coding rate reduction. Advances in Neural Information
Processing Systems, 2020, 33: 9422–9434.

Author biographies

Katsuya Hotta received a B.E. degree in
2017 and is now pursuing a Ph.D. degree
at the University of Fukui, Japan. His re-
search interests lie in unsupervised learning
(e.g. subspace clustering), computer vision
(e.g. anomaly detection), and other aspects of
machine learning.
Takuya Akashi received a Ph.D. in System
Design Engineering from the University of
Tokushima in 2006. Since April 2009, he has
been at the Department of Electrical Engi-
neering, Electronics and Computer Science,
Iwate University. In 2015, he was a visiting
associate at California Institute of Technol-

ogy. He is currently an associate professor at Iwate University. His
research interests include evolutionary algorithms, image processing
and human sensing. He is a member of the IEEE, RISP, IEICE, and
IEEJ.

Shogo Tokai received B.S., M.S., and Ph.D.
degrees from Nagoya University, in 1991,
1993, and 1996 respectively. He is currently a
professor in the Department of Engineering,
University of Fukui. His current research in-
cludes computer graphics, computer vision,
and multiple-view video processing. He is a

member of ITE, IPSJ, and IEICE.
Chao Zhang received his Ph.D. degree from
Iwate University in 2017. He is now a senior
lecturer in the Department of Engineering,
University of Fukui. His research interests
include computer vision, computer graphics,
and evolutionary computing, mainly focused
on applying optimization methods to solve

visual computing problems.

	1 Introduction
	2 Related Work
	2.1 Background
	2.2 Subspace Clustering Using Spectral Clustering
	2.3 Scalable Subspace Clustering

	3 Parallelizable Multi-Subset Based Sparse Subspace Clustering
	3.1 Problem and Approach
	3.2 Parallelizable Multi-Subset based Self-Expressive Model
	3.3 Optimization with Orthogonal Matching Pursuit

	4 Experiments and Results
	4.1 Baselines and Evaluation Metrics.
	4.2 Experiments on Synthetic Data
	4.2.1 Setup
	4.2.2 Results

	4.3 Experiments on Benchmark Datasets for Real-world Applications
	4.3.1 Setup
	4.3.2 Extended Yale B
	4.3.3 ORL
	4.3.4 GTSRB
	4.3.5 BBCSport
	4.3.6 MNIST and EMNIST-Letters
	4.3.7 CIFAR-10
	4.3.8 Summary

	4.4 Analysis
	4.4.1 Multi-subset Based Self-Expressive Model
	4.4.2 Selection of Parameters
	4.4.3 Sampling Technique
	4.4.4 Computational Complexity

	5 Conclusions

