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Abstract Professional dance is characterized by high
impulsiveness, elegance, and aesthetic beauty. In order to
reach the desired professionalism, it requires years of long
and exhausting practice, good physical condition, musicality,
but also, a good understanding of choreography. Capturing
dance motions and transferring them to digital avatars is
commonly used in the film and entertainment industries.
However, so far, access to high-quality dance data is very
limited, mainly due to the many practical difficulties in
capturing the movements of dancers, making it prohibitive
for large-scale data acquisition. In this paper, we present a
model that enhances the professionalism of amateur dance
movements, allowing movement quality to be improved in
both spatial and temporal domains. Our model consists of
a dance-to-music alignment stage responsible for learning
the optimal temporal alignment path between dance and
music, and a dance-enhancement stage that injects features
of professionalism in both spatial and temporal domains.
To learn a homogeneous distribution and credible mapping
between the heterogeneous professional and amateur datasets,
we generate amateur data from professional dances taken from
the AIST++ dataset. We demonstrate the effectiveness of our
method by comparing it with two baseline motion transfer
methods via thorough qualitative visual controls, quantitative
metrics, and a perceptual study. We also provide temporal
and spatial module analysis to examine the mechanisms and
necessity of key components of our framework.

Keywords Animation, Music-to-Motion Alignment, Dance
Motion Enhancement, Dance Motion Analysis

1 Introduction
Dance is a performing art form that consists of purposeful,
rhythmical, and well-patterned sequences of body movement;
it has aesthetic and often symbolic value [1]. Capturing dance
motions and transferring them to avatars not only facilitates

expressive film or animation production process, but also
contributes to the conservation of cultural heritage and dance
education. However, so far, access to high-quality dance data
has been limited. Most currently available motion capture
repositories typically contain basic human movements, while
only a limited number of dance-specific databases comprise
prime dance movements performed by professionals [2, 3].
This is because professional dance is characterized by dynamic
body language, high impulsiveness, elegance, smoothness,
fluidity, and aesthetic beauty that usually require the performer
to have long-term dance experience and skills, followed
by extensive practice sessions, excellent physical condition,
and acquaintance with years of dance studies. This poses a
practical challenge when capturing realistic and high-quality
dancemotions, which is restrictive for large-scale acquisitions,
or regular acquisition [4]. To perform a professional dance,
the performer should be familiar with the content and rhythm
of the choreography, and achieve the specific physical am-
plitude of the choreography with the appropriate energy and
balance [5]. On top of that, in order to achieve a satisfactory
dance quality during the motion capture process, dancers
have to repeat the performance many times to avoid mistakes.
In this paper, we present a technique that enhances

professionalism of dance moves, allowing the movement
quality to be improved in both the spatial and temporal
domains, meeting the following key constraints: (i) production
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Music

Ground-truth Professional Dance

Our Enhanced Amateur Dance

Input Amateur Dance

Fig. 1 Our approach enhances the professionalism of dances performed by non-professional dancers. Top: input amateur dance sequence.
Second row: our enhanced dance motion. Third row: corresponding ground-truth professional dance. Note that our results have similar
temporal and spatial features to the ground-truth dance sequence.

of flowing and smooth dance moves, (ii) expansion of the
anatomical and physical amplitude of human movements, to
meet the demanding restrictions of the choreography, and
(iii) good synchronization of movements to the rhythm of
the music. In this way, our method reduces the need to
hire professional dancers, facilitates the process of obtaining
high-quality dance movements even from amateurs, enriches
existing databases with professional data to enable better
training of deep networks, and finally aligns dance motion
data to a given audio file.
One obvious approach to deal with the challenge of

enhancing professionalism of dance movements is to leverage
a deep style-transfer framework [6–10], by considering
amateur dances as the source style and professional dances as
the reference style. However, while style transfer algorithms
provide a possible way to handle this problem, they do
not address exactly the same problem. Professionalism is
not a specific style, but closer to an evaluation metric.
Dances with different styles might be seen as professional.
Professional dance preparation, whatever the style, not only
has specific anatomical and physical demands, but also
requires artistic qualities, such as musicality, expression
and distinct communication skills. On top of that, existing
style-transfer methods face two technical challenges. Firstly,
they mainly focus on motions with well-defined styles, while
different styles ofmotions have explicit changes over thewhole
sequence. In contrast, dances often contain highly-dynamic
and heterogeneous movements, and the professional and
non-professional dances may share a large number of similar

poses but with a limited number of local changes: see Figure 1.
Therefore, it is difficult to learn mappings between unpaired
professional and non-professional dances, as state-of-the-art
motion style transfer methods do [8, 9]. Secondly, they
mainly focus on music-free motions, with no explicit and
deterministic control over the correlations between motion
content and other external factors, such as musical rhythm.
Even though existing methods may cause timing changes in
motion based on the style differences hidden in the data, such
changes are uniformly distributed over the temporal domain.
In this work, we propose a two-stage dance enhancement

model that adds professionalism to existing dance motions,
and release a new dataset with paired professional and amateur
dances that enables the training on themodel. We define dance
professionalism term, and describe how it can be evaluated
through various attributes, e.g. flow, amplitude and rhythm
of a dance. In particular, we improve the quality of dance
motions in both spatial and temporal domains, focusing on
the following three professional properties: (i) the production
of fluent and smooth movements; (ii) the physical ampli-
tude of intense movements that is restricted by the poor
physical condition of the amateur dancer; and (iii) the tem-
poral alignment of the dance movements to a given musical
rhythm. Firstly, our model estimates temporal correlations
between dance motions and musical rhythm, followed by
a temporal alignment and spatial motion enhancement
process, under the guidance of the proposed professionalism
metrics. The dance-to-music alignment stage consists of a
network that learns the affinity matrix between dance and
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music with attention mechanisms, and a classic dynamic
time-warping module to infer an optimal temporal alignment
path matrix. Secondly, the dance-enhancement-stage enables
adjustment of the dance motion in both temporal and spatial
domains, under the guidance of the optimal alignment path, a
reconstruction loss, and a consistency loss. The reconstruction
loss constraints the network to preserve the original motion
content of the amateur dance, while adjusting it to be similar
to the corresponding professional dance. The consistency
loss preserves the temporal continuity of the enhanced dance
motion and decreases temporal noise.
One of the most critical challenges we faced in this

project was the lack of data for training our network.
Professional and corresponding amateur dances may differ in
various combinations of the above professionalism properties.
Since the professionalism of a dance is independent of
its choreography or style, the dances in a professional or
amateur dance dataset may contain highly dynamic and
heterogeneous movements. This makes it difficult to learn
a homogeneous distribution for the professional or amateur
dataset using existing methods, let alone a credible mapping
between the two heterogeneous datasets. In addition, the
mappings between professional dances and amateur ones are
not deterministic. Therefore, before designing our network,
we first introduce a key-pose based data augmentation scheme
to generate amateur data from professional dances, taken
from the AIST++ dataset [3]. The data augmentation scheme
modifies the movements in all three professionalism metrics,
and the constructed dataset contains many-to-one paired
amateur and professional dances.
We demonstrate the effectiveness of our method by

comparing it to two state-of-the-art motion transfer
methods [6, 8] via thorough qualitative visual controls,
quantitative metrics, and a perceptual study. Apart from using
our synthesized amateur data, we additionally captured several
dance sequences performed by amateur dancers, to further
examine the generalizability of our method. User responses
indicate that our method enhances amateur motion so that
it cannot be easily distinguished from actual professional
dance. In addition, we provide temporal and spatial module
analysis via an ablation study to evaluate the mechanisms and
necessity of key components of our framework.
The main scientific contributions of the paper are:
• The concept of enhancing professionalism in dance
movements: we give a first definition of what dance
professionalism is, and how a professional dance can be
distinguished from an amateur one.

• A novel two-stage deep learning framework that extracts

meaningful features from motion inputs, in terms of the
newly defined professionalism criteria, to improve the
quality of dance motions. It integrates a reconstruction
loss, to preserve the original content of the dance, and a
consistency loss, to maintain the temporal coherency of
the reconstructed motion.

• A novel model designed to synchronize 3D dance
motions with reference audio in the face of non-uniform
and irregular misalignment.

• Thorough evaluation, and an ablation study to examine
the efficiency and necessity of our methods.

2 Related Work
2.1 Dance Evaluation

Dance is an expressive form of performing art that consists
of aesthetic movements of the body in a rhythmic way,
usually to music, for the purpose of expressing an idea
or emotion, releasing energy, or simply taking delight in
the movement itself [5]. To professionally perform dance,
performers regularly attend long routine training, and have
extensive experience in dance studies, choreography, and
musicality, along with excellent physical condition, which
enables them to perform complex movements with extreme
physical amplitude demands in some instances [11, 12].
Only a few works in the dance research community have
identified qualitative indicators of professional dances. For
example, Neave et al. [13] and Torrents et al. [14] have
reported qualitative experiments showing that kinematic
parameters related to the amplitude of movement are highly
associated with perceived dance beauty and aesthetics,
while Park [15] investigated the correlation between dance
professionalism and motion smoothness (using jerk-based
quantitative measures). However, no explicit quantitative
metrics have been proposed so far to completely evaluate
dance professionalism.
In computer graphics, several interactive dance systems

have been proposed to enhance dance learning and
teaching [16–18]. Basically, these methods export dance
movement features to enable comparisons between dances
performed by professional dancers (teachers) and amateurs
(students). For example, Chan et al. [19] implemented a
self-learning dance system by visually comparing motion
accuracy through Euclidean distance between professional
and amateur motions. Aristidou et al. [20] leveraged the
well-known Laban movement analysis (LMA) theories [21]
to introduce quantitative feature components that measure
quality characteristics relating two dance motions. Although
these movement measurements can be used to understand
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motion qualities and to compare similarities between dance
motions, no metrics have been developed so far that explicitly
measure the professionalism of dance motions.

2.2 Motion Style Transfer

One obvious way to add professionalism to existing motion
sequences is to use methods based on the concept of
motion style transfer. These methods aim to transform
the style of a reference motion to a source motion, while
simultaneously preserving the original source motion content.
Several approaches [22, 23] have been proposed in the
literature to infer styles of motions using hand-crafted
features. For example, TenenbaumandFreeman [22] explicitly
separate style and content using asymmetric bilinear models.
Aristidou et al. [23] built statistical correlations between LMA
features and emotions, and used such correlations to support
interactive emotion-based motion transfer. However, those
methods explicitly construct common mappings between
hand-crafted features and motions, which are hard to
generalize to heterogeneous or large-scale datasets.

Machine Learning Based Techniques. To avoid the
disadvantages of selecting hand-crafted features, researchers
started to extract style information from large-scale paired
data using machine learning techniques [24–26]. Brand and
Hertzmann [24] introduced a style hidden Markov model
(HMM) and minimized information entropies to separate
structure, style and accidental properties. Following their
work, Hsu et al. [25] built dense correspondences between
different motions with an iterative motion warping algorithm,
and then proposed a linear time-invariant model to translate
motion styles, while Xia et al. [26] proposed to learn
local regression models. However, machine learning-based
methods require explicit or implicit motion registration
between the input and output motions, and are therefore
limited to styles and content that exist in the training dataset;
as a result, they do not generalize well to new styles of motion.

Deep Learning Based Techniques. In recent years, deep
learning techniques have been widely adopted to transfer
motion styles [6–10, 27–29], enabling more efficient and
effective results for complex and even unpaired motions.
For instance, Holden et al. [6] leveraged convolutional
autoencoders [30] to learn hidden motion representations
with paired input and output motions. The same authors
in [7] further improved this model with an additional
feed-forward neural network, and transformed motion style
in the hidden motion space under the constraint of a

Gram matrix [31]. Later, Aberman et al. [8] proposed a
neural network to disentangle latent style and content codes,
where the latent style code is used to modify the decoded
motion content through an AdaIN [32] operator. By using a
multi-style discriminator, this method can handle unpaired
motions. Following their work, Wen et al. [10] recently
proposed an unpaired and unsupervised motion style transfer
method using a generative flow model. Despite their great
progress, existing deep-learning-based methods mainly focus
on locomotions with a limited number of motion structures,
and have no explicit control over musical correlations. Unlike
locomotions, dance performed by professional dancers may
contain heterogeneous motions with various choreographies
(e.g. different motion poses and ordering of poses) and are
well-synchronized to temporal rhythmic patterns. Our method
deals with these challenges by simultaneously learning the
intrinsic motion attributes and the motion-rhythm correlations
that commonly appear in professional dance.

2.3 Music-driven motion synthesis

Many scholars have worked on methods for music-driven
dance synthesis. Typical solutions leverage a graph-based
framework [33–36]. In pioneering work, Kim et al. [34]
constructed a movement transition graph based on extracted
motion beats and synthesized new motions under kinematic
and rhythmic constraints. More recently, the use of machine
learning to synthesize music-driven dance motions has
witnessed impressive progress [4, 37–41]. For instance,
Lee et al. [38] proposed a decomposition-to-composition
framework to generate 2D movements conditioned on a given
piece of music, under the guidance of learned correlations
between musical beat and dance units. Chen et al. [4]
proposed a choreomusical embedding module to learn
stylistic and rhythmic music-dance correspondences, and
incorporated the embedding distances into the traditional
graph-based dance synthesis framework. More recently,
Aristidou et al. [41] introduced a music-driven neural
framework that generates rich and diverse dance motions that
respect the overall choreographic structure of a dance genre.
However, music-driven dance synthesis learning methods
heavily rely on high-quality dance motion data synchronized
to given audio for adequate training. Since access to dance
data made by professionals is not always possible, our method
can be used to enrich databases using data from amateurs
that have been artificially enhanced to look more visually
appealing; our work simultaneously learns music-to-dance
correspondences and leverages them to learn dance-to-dance
correlations.
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2.4 Audio Alignment

To enhance non-professional dances, an essential goal is
to align dance motions to reference audio. Motion-audio
synchronization aims to temporally align human motion
dynamics to audio rhythms, which is fundamental to synthesis
of rhythmic human motions. Traditional motion-audio
synchronization methods leverage hand-crafted 2D motion
and rhythmic features, determine their correspondences,
and warp motions under the guidance of motion-rhythm
matches [35, 42–44]. Over the years, more attention has
been devoted to the video-audio timing alignment problem.
A common basic idea is to find optimal video-to-audio
correspondences and use them to guide warping between
visual and audio features, either using hand-crafted
features [45, 46] or deep multi-modal features [47, 48].
Among such methods, Wang et al. [49] introduced two
attention modules before the feature extraction stage to
highlight important spatial and temporal regions. In contrast,
instead of emphasizing specific features, we introduce an
integrated attention module to map correspondences between
spatial and temporal motion features, and audio rhythms,
without hand-crafted elements or post-processing. Our model
is the first to synchronize 3D dance motions with reference
audio under irregular and non-uniform misalignment.

3 Data Augmentation
An important challenge that needs to be addressed in this work
is the lack of training data. The limited existing dance motion
datasets [2, 3, 39] typically contain high-quality professional
dances, but lack corresponding non-professional ones. As
a result, it is difficult to build correlations between paired
professional and non-professional movements. Capturing
realistic non-professional dances requires amateur dancers to
learn the original professional choreography, which can be
challenging and requires practice, and it may be difficult to
cover the large variability of the movements of professional
dancers. Instead, we propose a data augmentation scheme that
artificially synthesizes random non-professional dances, by
altering professional ones taken from the AIST++ dataset [3],
both in the spatial and temporal domains.

3.1 The Definition of Dance Professionalism

Before we present our data augmentation schema, it is
important to define first the criteria that distinguish a
professional dance movement from an amateur one. In that
matter, we consulted expert choreographers, experienced
dancers, and dance teachers, who pointed out the following
key criteria:

• Sense of rhythm Professional dancers can perfectly
follow the beat of the music, while amateur dancers often
lose synchronization and have difficulty in following the
rhythm of the music.

• Physical amplitude Professional dancers have excellent
physical condition, which allows them to perform
complex and dynamic movements, in some cases
reaching the limits of the body. In contrast,
non-professional dancers usually have difficulties in
completing certain dance moves as they have limitations
due to their poor physical condition (to extend their body
to the limits, to perform the splits, etc.).

• Motion quality The movements of a professional dancer
are elegant, smooth, and the movement cycle is nicely
completed. In contrast, the movements of an amateur
dancer are often not in balance, they abruptly start and
end movements without fully completing the movement
cycle (sharp movements), and may be shaky, lacking
smoothness. All these result in amateurs requiring more
effort than professionals because they do not control
their movements as experts do.

• Concentration and consistency Amateur dancers
usually focus on one part of the body (e.g. legs or
arms) and may neglect the consistency of movements
of other parts of the body (such as the head, and overall
style). Note that our method does not take this feature
into account.

• Choreography Professionals have a richer choreography
in terms of the diversity of movements, compared
to amateurs who usually repeat the same movements
multiple times. Again note that changing dance
choreography is outside the scope of this paper.

3.2 Generating Amateur Dance Movements

Amateur dancers have, in general, difficulties in synchronizing
their movements to the musical beat, to achieve certain
physical amplitudes, and to perform controlled and smooth
movements. Therefore, to enrich our database, we introduce a
method that artificially alters professional dance movements,
through random disturbances, to generate corresponding
amateur counterparts. It is important to note that our approach
needs to meet the following three conditions: (a) to keep the
choreography of the professional dances unchanged, (b) tem-
poral disturbance: to alter the temporal alignment between
motion, and music and rhythm; (c) spatial disturbance: to
change the physical amplitudes of motions.
In this manner, we propose a key-pose-based scheme that

first extracts key poses based on the motion beat; then,
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(a) Key-Pose Extraction

(b) Spatial Disturbance (c) Temporal Disturbance

Spatial Factor Temporal Factor

Fig. 2 Data augmentation: the process for generating amateur dance movements. (a) Key-poses rendered on a girl’s avatar. Our skeleton
structure (top left) is highlighted within a dashed rectangle. (b) The key-poses are spatially modified based on the spatial disturbance curves.
We highlight one curve for a specific joint with the spatial factors on key-poses (indicated by yellow dots). (c) The temporally modified
key-poses and accompanying temporal disturbance curves.

it randomly generates spatial disturbance factors to limit
or exaggerate the physical amplitudes of movements, and
temporal disturbance factors to disrupt the music-motion
synchronization. Finally, it computes the spatial and temporal
disturbances in between those key-poses using piece-wise
linear interpolation [50]. These are later used to modify the
professional dances. Figure 2 overviews our data augmentation
method.

Motion Representation. We represent a dance motion
M as a sequence of T skeleton poses. Each skeleton
pose P is represented by J = 21 joint rotations that
are organized in a hierarchical order and depicted by unit
local positions [51] between parent-child joints, denoted as
P ∈ R(J−1)×3. Therefore, a dance motion can be represented
by M ∈ RT×(J−1)×3, where T = 426 to 2, 878 frames
without being trimmed into short clips. Poses are then
translated back to rotations via a Jacobian-based inverse
kinematics solver [52]. Note that the root rotations and
translations are discarded in the motion representation to
avoid significant changes to the choreography.

Key-Pose Extraction. When learning to dance, it is
usually easier for students to identify prominent changes
of movements (such as pausing and turning). Based on this
observation, we define the representative poses to be those
with changes of velocity direction [46]. To facilitate key-pose
extraction, we first uniformly sample several poses over a
certain time duration t. The time duration t is set to three
seconds in our implementation. We then search for the nearest
motion beats as the corresponding key-poses, where the
motion beat is found using the minimum of all joint speeds
in a certain frame. Since some neighboring key-poses may
bring about rapid direction changes, we filter out key-poses
that have neighboring motion beats within 1 second.

Spatial Disturbance. The spatial disturbance aims to
disrupt physical amplitudes of the movements, limiting or
exaggerating their intensity. Thus, we define the spatial factor
S′ ∈ RN×J for the N selected key-poses to control the
spatial disturbance of all skeleton joints, and randomly
generate corresponding values through an approximately
inverse normal distribution:

S′
n = tanh(s′nd)α+ β, (1)
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⊖Input Music

Mel Spectrum

MusicEnc

MotionEnc

Kinematic Feature
Amateur Dance

Affinity Matrix

Dance-to-Music Alignment Stage

Alignment Path

DanceEnc Warping DanceDec

Ground-truth

Enhanced Dance

 Dynamic Time
Warping

Alignment loss

Consistency loss

Reconstruction loss

 Dance Enhancement Stage

Fig. 3 Our two-stage dance professionalism architecture. The dance-to-music alignment stage learns the temporal alignment of the input
dance motion to the corresponding music, through a dynamic-time-warping operation on the encoded deep features of dance motion and
music. In the dance enhancement stage, we first extract the hidden dance motion features to express the original motion content, which
are then modified under the guidance of the temporal alignment matrix, and further decoded into the enhanced dance motion under the
constraints of a reconstruction and consistency loss.

where s′n is the randomly generated spatial disturbance value
for key-pose n. α and β are used to control the shape of
the inverse normal distribution; in our implementation they
equal 1.1 and 1.3 respectively. d is a randomly generated
binary parameter that enables (d = 1) or disables (d = 0)
exaggeration of the pose. All joints in a specific frame share the
same d value. S′

n is then propagated to each frame of the entire
sequence as S ∈ RT×J (T > N ) via linear interpolation.
A straightforward way to apply the aforementioned spatial

factor for motion disturbance is to directly multiply the
rotations or positions of each joint by it. However, this
may produce infeasible poses that violate physical or bone
constraints. Instead, we interpolate the new pose (local
position) between the current and a standard standing pose,
guided by the spatial factor, as follows:

p′
t,j = |pt,j |

(
pt,j

|pt,j |
St,j + uj(1− St,j)

)
, (2)

where pt,j denotes the local position of the j-th joint in the
t-th frame, and uj is the pre-defined direction for joint j of
the standard standing pose. To simplify the process, we define
three key interpolation directions for the standing pose: up
(uj = (0, 0, 1)) for joints on the spine, no modification for
the shoulder and waist joints, and down (uj = (0, 0,−1)) for
the other joints.

Temporal Disturbance. The temporal disturbance aims
to disrupt the mappings between the dance motion and the
corresponding musical rhythm. We define the temporal factor
Q ∈ RN to control the temporal disturbance at the N

key-poses, and randomly generate values to warp the original
dance motion sequence according to Eq. 1. The parameters
α and β are set to 50 and 0 respectively. We then move
the key-poses to new positions by shifting them Q frames,
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Fig. 4 Network architecture of the MusicEnc. The input music
feature sequence is processed by three temporal convolution blocks,
each containing a 1D-convolution layer, batch normalization and
ReLu layer. Then it goes through two transformer blocks containing
the multi-head self-attention and feed-forward layers to obtain the
encoded feature sequence. The MotionEnc and DanceEnc share the
same network architecture.

where negative Qn means shifting backward and positive
Qn indicates shifting forward. Note that in this process we
need to check time crossings between key-poses and preserve
motion monotonicity. Finally we calculate the movements of
the intermediate poses between adjacent key-poses by linear
interpolation.

Augmented Data. Using the above approach, we
constructed a large, highly variable, non-professional dataset
of dances paired to professional ones. We repeated the
temporal and spatial disturbance four times, creating
many-to-one paired amateur and professional dances, in a
dataset 4 times the size of the original AIST++ database.

4 Dance Professionalism Framework
Our framework, by taking as input a dance motion sequence
performed by an amateur dancer, and its corresponding audio
file, aims to enhance professionalism by considering the
following three conditions: retention of the original chore-
ographic content, generation of fluid movements, and am-
plification of physical amplitudes. Enhancement is made in
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both temporal and spatial domains. In the temporal domain,
our framework aligns the amateur dance motion to music
to achieve fluid and consistent motions, while in the spatial
domain, it increases the physical amplitudes of the input
motions to match those of a professional dancer, while
preserving the original content of the dance’s choreography.
To do so, we have designed a two-stage deep framework: a
dance-to-music alignment stage, and a dance enhancement
stage. The dance-to-music alignment stage estimates the
temporal mapping of the amateur dance required to match
the input music; these estimates are later integrated into the
dance enhancement stage to enable temporal warping of the
encoded dance content features, which are later decoded to
reconstruct a professional dance with the same choreographic
content. Figure 3 shows the two-stage architecture of our
framework, whose details will be described in the following
sections.

4.1 Dance-to-Music Alignment Stage

The main goal of the dance-to-music alignment stage is to
find the optimal alignment between the input music and
dance sequences. Taking into account the highly complex
correspondences between a dance motion and music, we
use auto-encoders to learn the cross-modal frame-to-frame
mapping between the high-level motion and themusic features
extracted from the raw data.

High-Level Feature Extractor. For an input music signal
with T frames, we compute the mel-scaled spectrogram using
the well-known librosa [53] audio analysis library, depicted as
G ∈ RT×B whereB is the number of frequency bins. For the
input T -frame dance motion given by position offset vectors
M ∈ RT×(J−1)×3, we first calculate the corresponding joint
positions, and then estimate the velocities and accelerations of
each joint in x, y, z directions per frame, denotedK ∈ RT×C ;
C = J × (3+3) where J = 21 joints in the human skeleton.

Dance-to-Music Alignment Network. The dance-to-music
alignment network is composed of two encoders,MusicEnc
andMotionEnc, to map the music featureG and dance motion
featureK to the corresponding latent feature sequences fG and
fK , respectively. The two encoders share the same network
architecture but have different weights. Following the two
encoders, we compute the Euclidean distance between the
frames of the two latent feature sequences to form a T × T

affinity matrix, defined as:

F (i, j) = ∥fG(i)− fK(j)∥22 (3)

where i is the index of the music frame, and j is that
of the motion frame. Figure 4 shows the structure of our
dance-to-music alignment network.
Specifically, for each encoder, the input sequence is

first processed by three temporal 1D-convolution layers
sequentially, and each is followed by batch normalization and
a ReLU layer. Considering the complex correlations between
dance choreographies and their musical correspondences, we
use the attention mechanisms in a transformer network to
learn contextualized dance-to-music information, providing
adaptive local neighbors for both the dance and music
encoders. In particular, we add a shallow transformer with two
multi-head self-attention and feed-forward layers on the basis
of the 1D-convolution layers, and thus obtain latent feature
sequences fG or fK encoding temporal context information.
Note that the self-attention layers in the transformer are
biased towards the local neighbors of each frame by setting
the attention mask matrix Ba as follows:

Ba(i, j) =

{
0, |i− j| < δ,

−∞, otherwise, (4)

where δ is a parameter to control the neighborhood size and
is set to 50 in our implementation.

Dynamic Time Warping. The target now is to find the
optimal alignment between the input dance and music, so
that each dance frame can be matched to the music frame
with minimal alignment distance. Under the guidance of the
affinity matrix deduced from the dance-to-music alignment
network, we perform dynamic programming [54, 55] to obtain
an optimal alignment path matrixW between the latent dance
and music features.

4.2 Dance Enhancement Network

The enhancement stage aims to modify amateur dances
so as to look more professional in terms of physical
amplitudes and dance-to-music synchronization. To achieve
this goal, we leverage an auto-encoder network to modify the
non-professional dances in latent feature space. Specifically,
the non-professional dance sequence given by unit local
positions is used to extract corresponding latent features
via an encoder, DanceEnc. The latent dance features are
then temporally warped under the guidance of the optimal
dance-to-music alignment path, followed by a decoder to
output the corresponding professional dance sequence.

DanceEnc has similar implementation details to the Musi-
cEnc and MotionEnc networks. We warp the encoded feature
sequence fD by calculating the dot-product between fD and
the alignment path matrixW obtained from the dynamic time
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warping module. The decoder is implemented as a three-layer
MLP network to project the feature sequence to the final
enhanced dance.

4.3 Training and Loss

The two stages in our framework are trained separately with
different loss functions. In particular, the dance-to-music
alignment network is trained using an alignment loss, while
the dance enhancement network is trained with a reconstruc-
tion and a consistency loss. In this process, we leverage the
optimal alignment path as a condition to modify the latent
dance features; we use the ground-truth alignment path as
an initial warping condition, and then fine-tune the network
with the estimated alignment path. Note that the lengths of
the input dance motions during training and testing can be
arbitrary.

Alignment loss. We assume that the dance sequences and
their corresponding music sequence are well-synchronized: a
motion frame is well matched with its paired music frame.
Therefore, we design the temporal alignment loss on the
affinity matrix in a contrastive learning manner. To be more
specific, for each music frame, we select the corresponding
dance frame as the positive sample and a randomly selected
frame as the negative one. Then, we compute the triplet loss
on the latent features of the three frames as the alignment
loss:

Ltriplet =

T∑
t

[∥∥∥fG(t)− fK(ϕ̂(t))]
∥∥∥2
2
−

∥fG(t)− fK(r)∥22 + a
]
+
,

(5)

where fG, fK are the music feature and dance feature
respectively, r is a randomly sampled frame index, ϕ̂(t)
is the index of the corresponding dance frame for the music
frame t.

Reconstruction loss. To improve the physical amplitudes
of the movements in amateur dances so that they look more
professional, we trained our network using paired amateur and
professional data; our target is to force the enhanced amateur
movements to be as close as possible to the corresponding
professional ones. Therefore, we define a reconstruction loss
that minimizes the local position error between the enhanced
motion and the ground truth, given by the equation:

Lrecon =

T∑
t

J∑
j

|pt,j − p̂t,j |, (6)

where pt,j is the local position of joint j at frame t in the
enhanced dance motion, and p̂t,j is the corresponding local
position in the ground-truth professional dance motion.

Consistency loss. To enforce temporal coherence in the
enhanced dance, we introduce a consistency loss bymeasuring
the error between the velocity of the enhanced dance and that
of the corresponding ground-truth. Our consistency loss is:

Lcons =

T∑
t

J∑
j

|vt,j − v̂t,j |, (7)

where v and v̂ are the velocities of the enhanced and
ground-truth dance motion, respectively.

5 Results and Discussion
In this section, we present the dataset used for training and
testing our method, implementation details, and evaluation
metrics. We also demonstrate the efficiency of our framework
in several experiments, a perceptual survey that evaluates
its performance in terms of professionalism, realism, and
dance-to-music synchronization, and an ablation study.
Figure 1 shows a gallery of selected frames extracted from
the input amateur motion (yellow), our result (red), and the
ground-truth professional dance (blue). It can be observed
that our method enhances professionalism so that the input’s
temporal and spatial features better match those of the
ground-truth dance sequence. The quality of our enhanced
dance animations may be examined in the supplementary
video.

Dataset. The original AIST++ dataset [3] contains 1,408
sequences of 3D human dance motion represented as joint
rotations along with root trajectories. Each sequence of
dance motion is accompanied by corresponding music
well-synchronized to the animation. Overall, the dataset
includes 10 dance genres with hundreds of different
choreographies, providing rich and varied dance content.
We follow the music-choreography data splits used in the
original paper [3] for network training and testing/validation.
For each professional music-dance pair in the AIST++ dataset,
we produced multiple amateur dance counterparts using our
key-pose based dance synthesis algorithm (see Section 3),
by controlling their temporal and spatial disturbance factors.
In total, we generated 3, 680 non-professional dances for
training, 80 for testing and 80 for validation.

Implementation Details. We implemented our framework
in PyTorch and tested it on a 6-core PC with a 3.7 GHz Intel
i7 CPU, 16 GB RAM, and an NVIDIA Tesla P100 GPU. All
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Input

Ours

Aberman et al.

Holden et al. 

Ground-Truth

Music

Fig. 5 Qualitative comparison of our method to baseline methods [7, 8]. Each row shows a set of frames selected from the same music
beat. It can be observed that our results are closer to the ground-truth than the two alternatives, in terms of dance-to-music alignment and
pose reconstruction. For an animated version, please refer to our supplementary video.

networks in our framework were trained with a batch size of
64 and learning rate of 10−4, and optimized by the Adam
optimizer [56]. In total, it took about 12 training hours for the
dance-to-music alignment network and 6 training hours for
the dance enhancement network, on 4 NVIDIA Tesla P100
GPUs.

Evaluation Metrics. To the best of our knowledge,
no quantitative metrics currently exist to evaluate the
professionalism of dances. Therefore, we used the tempo-
ral alignment error (time error), the pose error (PE) and
the Fréchet inception distance (FID), as evaluation metrics,
and observed the temporal and spatial differences between
the input motions, our enhanced dance motions, and the
corresponding ground-truth professional dances. The three
evaluation metrics are defined as follows:

• Temporal alignment error is the average distance
between the indices of motion poses per music frame,
in the optimal dance-to-music alignment path and the
ground-truth alignment path.

• Pose error measures the average Euclidean distance
between joint positions for specific poses in two motions
sequences to be compared.

• Fréchet inception distance measures how far the
distribution of the enhanced dance is to that of the
ground-truth professional one [4, 57]. We calculate FID
based on the extracted kinematic features [3] of the

enhanced and ground-truth professional dances.

5.1 Evaluation

In this section, we evaluate the performance of our method
with two baseline methods – the Holden’s et al. [7]
and the Aberman’s et al. [8] methods – using the three
aforementioned evaluation metrics. In addition, we conducted
three perceptual studies to qualitatively evaluate: (a) the
quality and realism of our artificially generated amateur
dance motions; the quality and realism of our experimental
results in enhancing professionalism on amateur movements
using (b) our synthetically generated amateur dataset, and (c)
real, motion-captured amateur dances. More details about our
perceptual study can be found in our supplementary materials.
5.1.1 Comparisons
Baseline Methods. As far as we know, there are no other
methods in the literature that deal with the dance enhancement
problem. Thus, we compare the results of our approach with
two state-of-the-art motion style transfer methods due to
Holden et al. [7] and Aberman et al. [8], which also use
auto-encoders as a backbone network. Unlike our problem,
these methods take a content motion and a target style motion
as input, and then generate an output motion by preserving the
same but desired style of input content with the target motion.
Note that, these methods do not take music into consideration.
To adapt the two baseline methods to our problem, wemade

the following modifications. (1) Since they require motions
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Table 1 Quantitative evaluation of our results and the motion style
transfer methods on the test set.

Method Pose Error↓ FID ↓
Holden et al. [7] 4.323 322.327
Aberman et al. [8] 3.156 36.456
Ours 1.951 14.817

to have the same length, we down-sampled our dataset to
the same length (400 frames). (2) We used our synthesized
amateur dance together with the accompanying music as the
input, and randomly selected another professional dance of the
same genre as the target motion style for their network. (3) As
Aberman’s et al. [8] network is trained using unpaired motion
datawith a consistency loss, minimizing a reconstruction error
between the input and output content when the input content
sequence and the style sequence have the same style. To make
their method applicable to paired motion data, we use the
consistency loss to calculate the reconstruction error between
the output of the network and the ground-truth professional
dance. Holden’s et al. [7] method was trained with its original
loss functions.

Qualitative Comparison. Figure 5 illustrates selected
poses from the input dance motion sequence (yellow), our
method (red), Aberman’s method (green), Holden’s method
(gray), and the ground truth (blue). The music beat [53]
is marked with a gray dotted line to indicate the temporal
coherence. It can be observed that our method successfully
produces good correspondences to the professional dance
sequences, with satisfactory temporal alignment and spatial
amplitudes. In contrast to our method, the two alternatives
are not synchronized to the beat (since they are not designed
for aligning dance-to-music), and their reconstructed poses
are further than ours from the ground-truth movement.

Quantitative Comparison. Table 1 quantitatively reports
the pose error and the FID metric. These metrics confirm our
observations; the two baseline methods produce worse results
than our method, having larger pose error and FID score.
Since they are not designed to compute an explicit temporal
alignment between dance and music, we do not consider the
time error metric in this evaluation.
In addition, we use a professional dance sequence as input

to the network to further evaluate the naturalness and realism
of the output motion. As Figure 6 shows, the results confirm
the ability of our method to generate natural movements,
returning a movement that is realistic and well aligned to the
music beat.

Input

Ours

Fig. 6 In this example, we tested our network by inputting a dance
sequence performed by a professional dancer. It can be observed
that the output motion remains natural and realistic, and similar to
the input.

5.1.2 Perceptual Study

Evaluation of our synthetic amateur dance dataset. We
first conducted a perceptual study to evaluate the quality and
realism of our synthetic amateur motions, and whether they
resemble true amateur dances. For this task, we recruited, in
total, 20 participants, 11 female and 9 male. Each participant
watched 28 pairs of side-by-side dance motions; on the
right side, we showed amateur motions, which were either
selected from our synthetic dataset (16 samples), or captured
by amateur dancers who imitated professional dance moves
(12 samples); on the left side of the video, we showed the
corresponding ground-truth dance expert motions, so that the
participants could use the professional motion as a reference
to examine the quality of the amateur and synthetic motions.
The participantswere asked to rate on a Likert scalewhether

the presented motion on the right side was captured from an
amateur dancer, or generated by a computer algorithm. The
scale was 0: the motion was not performed by an amateur,
there is too much computer-generated noise, 2: it is hard
to decide, 4: the participant is strongly confident that the
motion was performed by an amateur dancer. The scores were
statistically analyzed to compare our synthetic motions and
the true amateur motions. Figure 7 shows box-plots of the
average score for the synthetic and true amateur motions. Both
cases have an average score between two and three, which
indicates that it is hard for participants to discriminate whether
the motions are computer-generated or not. However, it is
important to mention here that our synthetic dataset may have
some differences compared to the true, motion-captured data.
Our synthetic amateur motions are generated by randomly
setting disturbances in spatial and temporal spaces to imitate
the amplitude and music synchronization of amateur dances,
so some motions may exist with too exaggerated or limited



12 Q. Zhou, M. Li, Q. Zeng, A. Aristidou, X. Zhang, C. Lin, C. Tu

Synthetic Amateur Motions True Amateur Motions

1.0 1.5 2.0 2.5 3.0 3.5 4.00.50

Fig. 7 Average scores evaluating whether dance motions were
captured from amateur dancers or algorithmically synthesized. Red:
score for all synthetic amateurmotions. Green: score for real, motion-
captured, amateur motions.
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(a) Results from Amateurs(a) Results from amateur participants.
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Fig. 8 Professionalism evaluation for synthetic dance motions.
Each group of bars indicates the average percentage of participants
that preferred our results, with 95% confidence intervals. Blue bars:
motion fluidity, yellow bars: naturalness of amplitudes, green bars:
dance-to-music synchronization. Bars higher than the red dotted
line indicate cases when our results were preferred by a majority of
users.
movements. In addition, dances performed by amateurs may
have lower consistency of the body parts and contain different
choreographies compared to those performed by experts;
these differences have not been considered in our synthetic
data generation process. Therefore, as expected, our synthetic
amateur motions got a slightly lower score than the true
amateur motions.

Professionalism Evaluation on Synthetic Data. We
conducted a perceptual survey to evaluate the quality of
our results when the synthetic dataset was used. We compared
the results of our method with two baselines [7, 8], the input,
and the ground truth, considering the following three aspects
of professionalism: (i) the smoothness and fluency of the
dance motions; (ii) the naturalism of the dance physical am-
plitudes; and (iii) the dance-to-music synchronization. For
this evaluation, we randomly selected seven motions, each

40.00%

50.00%

60.00%

Motion Fluency Natural Amplitude Music Synchronization
Amateurs: Ours/Input Expert: Ours/Input

Fig. 9 Professionalism evaluation on true amateur dance motions.
Each group of bars indicates the average percentage of participants
that preferred our results, with 95% confidence intervals. Gray bars:
votes of amateur users, orange bars: votes of expert users.
from a different dance genre.
We recruited 20 participants, 15 amateur dancers with

less than one year of dance experience and 5 expert dancers
with more than eight years of experience. Each participant
was shown, in total, 28 pairs of dance motions; each pair
included one generated by our approach, and the other from
the ground-truth dataset or generated using one of the two
baselines. For each pair, in three independent questions, the
participants were asked to select the dance motion that: (i)
is smoother and more fluid, (ii) has more natural physical
amplitudes, and (iii) is better synchronized to the music. All
experimental dance motions were randomly ordered to avoid
learning effects.
The answers were gathered to quantify the overall

professionalism of the dance motions. Results of the
perceptual study are shown in Figure 8, which lists the
average percentage of participants who preferred our results
over the results of the two baseline methods, the input, and
the ground-truth. It can be observed that our method received
higher scores than the two baselines and the input for all three
aspects of professionalism, in the votes of both amateur and
expert participants. Apart from smoother and more natural
motion, we believe that the better dance-to-music alignment
plays an important role in these results. As expected, both the
amateur and dance expert participants gave higher scores to
the ground-truth motions than to ours.

Professionalism Evaluation on Real Motions. Finally,
we used the 12 motion-captured dance sequences performed
by amateur dancers to further evaluate our method on real
amateur data. The motion-captured dances were performed by
amateur dancers, who imitated 12 ground-truth professional
dances chosen from our testing dataset.
In this survey, we recruited 20 participants, 15 amateur

dancers, and 5 expert dancers. As in the previous study,
each participant was shown pairs in random order of true
amateur motions and our enhanced results, and asked to



Let’s All Dance: Enhancing Amateur Dance Motions 13

w/o DTW Ours w/o DTW Ours
(a) Case 1 (b) Case 2

Fig. 10 Visualization of temporal alignment results. The temporal affinity matrix is encoded by a Blue colormap with white as low values
and blue as high values. The optimal alignment path is illustrated as a yellow curve.

select the motion that: (i) is smoother and more fluid, (ii)
has more natural physical amplitudes, and (iii) has better
synchronization to the given music. Figure 9 presents the
results of this study. Compared to the input amateur dances,
our enhanced results were preferred by most amateur and
expert participants; our results scored significantly higher
with respect to motion fluency and music synchronization.
As expected, our method performs worse on the true amateur
dataset than the synthetic dataset, because our network has
been explicitly trained using synthetic amateur data. An
interesting future problem is to enrich our training dataset
with true amateur dances or to better simulate synthetic data
so that they can better execute real amateur dance motions.

5.2 Ablation Study

To evaluate the contribution of the dance-to-music alignment
stage and the necessity of each of its components, we
conducted an ablation studywhich evaluated several variations
of the proposed network, by removing or replacing key
components with other alternatives. In detail, we assessed
our network: (i) without integrating the dynamic time
warping module (W/O DTW); and (ii) without combining
the dance-to-music alignment stage (W/O Alignment).
Table 2 reports the results of the ablation study; for visual
comparisons, please refer to our supplementary material.

Temporal-Alignment Stage. If the temporal alignment
stage is not integrated into our framework (W/O Alignment),
we concatenate the input music and amateur dance, and
provide them as input to the dance encoder during the dance
enhancement stage. The encoded latent features are directly
fed into the decoder without warping. Table 2 lists results
using this setup; we can easily observe the necessity of having
the temporal alignment stage: the network cannot implicitly
learn the temporal warping from the convolutional layers.

Table 2 Temporal alignment analysis and spatial enhancement
analysis results.
Method Time Error↓ Pose Error ↓ FID↓
Input 24.433 3.081 29.973
W/O Alignment - 2.479 31.324
W/O DTW 21.177 2.366 20.392
ConvNet 18.547 1.998 13.595
Transformer 18.547 3.371 77,317
Conv.+Trans. (Ours) 18.547 1.951 14.817

Dynamic-Time-Warping Component. To evaluate the
effect of the dynamic-time-warping component, we
use temporal attention mechanisms as an alternative
to our learning alignment method. Without the
dynamic-time-warping component, we built the optimal
temporal alignment path for each music frame by selecting
the motion frame with the maximum attention value in
the affinity matrix. More details of how we have built and
trained the affinity matrix can be found in the supplementary
material. The results in Table 2 confirm that the performance
of the attention-based implementation (W/O DTW) is worse
than the original implementation. To better demonstrate the
results, we show alignment results of our method and the
attention-based implementation in Figure 10. In each case,
the blue background gives the T × T temporal affinity matrix
(rows are motion frames, columns are music frames), and it
is overdrawn by the optimal alignment path (yellow curve). A
white color indicates low alignment correspondence between
the motion and music frame. It can be observed that the
optimal alignment path produced by the W/O DTW approach
is scattered: aligned poses between neighboring frames may
have large changes, causingmotion jitters. Instead, our optimal
alignment path is continuous and monotonic. This validates
the necessity for a separate dynamic time warping component
to give temporal alignment.
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Fig. 11 Ablation study: visual comparison between our final configuration, and when using only ConvNet or Transformer. Our final
structure produces dance poses closest to the ground-truth.

Dance Enhancement Stage. To examine the impact of
our deep neural architectures, we reimplemented the dance
enhancement network with two baseline structures, Con-
vNet and Transformer. The ConvNet encoder is composed
of three Conv-BN-ReLU blocks. The encoder of Trans-
former is implemented as a shallow network with two
attention-forward blocks, while our method (ConvNet with
a Transformer) concatenates three Conv-BN-ReLU blocks
and two attention-forward blocks. The decoder for all
three structures is implemented as the three-layer MLP.
In this experiment we kept the same parameters, for the
dance-to-music alignment stage, for all three structures.
The last three rows in Table 2 show that our network’s

structure performs better than Transformer. Compared to
ConvNet, our performance is slightly better in pose error,
but a little worse in FID. Since pose error measures pose
similarity to the ground-truth per frame while FID measures
overall kinematic feature distribution, we believe that the
pose error metric is more important when evaluating visual
effects. As Figure 11 shows, the enhanced poses produced
by our structure are visually closer to the ground-truth than
when using ConvNet or Transformer alone. This evaluation
indicates that the convolution layers are essential for encoding

dance features with temporal contextual information.

5.3 Application: Dance-to-Music Synchronization

One of the main features of our method is that it aligns 3D
motion data with audio files in the presence of non-uniform
and irregular misalignment. This feature enables some very
interesting applications, where the same dance can be reused
with audio files with different beats. Figure 12 shows an
example of such dance-to-music synchronization. It can be
observed that the input and output dance sequences share
similar poses, but are temporally misaligned since they are
artificially synchronized to music files played at different
beats. To the best of our knowledge, there are no other works
in the literature that do dance-to-music synchronization in
3D motion. Our approach enables data reuse, and puts the
foundations to facilitate future development in this important
application area.

6 Limitations and Future Work
Our study mainly focuses on two attributes of dance
professionalism, extending specific physical amplitudes
via spatial amplitude enhancement, and making dances
fluid by temporal motion-rhythm synchronization. However,
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Fig. 12 Synchronizing the same dance to different audio files. Above: the dance and its original music rhythm. Below: dance motion
synchronized to a new audio file. Our method can align a dance motion to audio files with different rhythms and beats, enabling data reuse.
See our supplementary video for animated results.

dance professionalism is also correlated with other semantic
attributes, such as smoothness, energy, balance, and aesthet-
ics. In future work, it would be interesting to investigate these
attributes, and design algorithms that emphasize semantics
in dances, e.g. to enhance the aesthetics of the input dance.
Furthermore, our framework modifies input amateur dances
based on their original content. No additional constraints
have been considered for adding or deleting poses in the
original amateur dances. Therefore, when choreographic
errors exist in the input amateur dances, or their choreography
is not rich or diverse enough, our method cannot improve
it. A possible future direction is to use motion motifs [58]
to learn fine-grained mappings between professional and
non-professional dances, and to build a knowledge code-book
for dance enhancement, similar to the concept of [41]. Last
but not least, our framework is built on a paired professional
and synthetic non-professional dance motion dataset. When
the input amateur dance contains poses far away from
the distribution of dances in the dataset, our method may
produce unsatisfactory results. A future improvement would
be to enrich the synthetic non-professional dataset with real
captured amateur dance motions, or to design an unpaired
dance enhancement approach by leveraging characteristics of
different dance genres. We would also like to experiment with
other pose representations, e.g. see [59, 60], to avoid the use of
inverse kinematics to restore joint rotations, and avert potential
rotation discontinuities caused by the network. Finally, our
method can be used to improve e-learning applications e.g.
for XR systems when users try to learn dance with a virtual
avatar.

7 Conclusions
In this paper, we have presented a deep learning framework
that enhances professionalism of amateur dances, satisfying
threemain professionalism properties: fluid dance movements,
physical amplitudes, and temporal alignment of dance and mu-
sic, without changing the content of the original choreography.
The framework consists of a dance-to-music alignment stage
and a dance-enhancement-stage, the first learning an optimal
temporal alignment path between the input dance and the
accompanying music, and the second enhancing the dance
motion in both spatial and temporal domains. We have also
presented a key-pose based dance augmentation scheme that
artificially generates non-professional dance data from the
AIST++ [3] dataset. We demonstrate the effectiveness of
our framework by comparing it to two baseline style transfer
methods [7, 8] via a qualitative visual survey, quantitative
metrics, and a perceptual study. We have also presented a
useful application that reuses existing dance motion files by
synchronizing them with audio files with a different rhythm.

Acknowledgements

This research was supported by an NSFC grant (No.
62072284), a grant from the Natural Science Foundation
of Shandong Province (No. ZR2021MF102), a Special
Project of Shandong Province for Software Engineering
(11480004042015), and internal funds from the University
of Cyprus. The authors would like to thank Anastasios
Yiannakidis (University of Cyprus) for capturing the amateur
dances, and the volunteers for participating in the perceptual
studies. The authors would also like to thank the anonymous
reviewers and editors for their fruitful comments and



16 Q. Zhou, M. Li, Q. Zeng, A. Aristidou, X. Zhang, C. Lin, C. Tu

suggestions.

Declaration of competing interest

The authors have no competing interests to declare relevant
to the content of this article.

Electronic Supplementary Material

We provide a supplementary document describing details
of our implementation and the perceptual study. We also
provide an accompanying video with visual comparisons of
our method and the baseline methods.

References
[1] Hanna JL. The Performer-Audience Connection: Emotion to

Metaphor in Dance and Society, 1983, Univ. of Texas Press.
[2] Aristidou A, Shamir A, Chrysanthou Y. Digital Dance Ethnog-

raphy: Organizing Large Dance Collections. ACM Journal on
Computing and Cultural Heritage, 2019, 12(4): 29:1–29:27.

[3] Li R, Yang S, Ross DA, KanazawaA. AI Choreographer: Music
Conditioned 3D Dance Generation with AIST++. In Proceed-
ings of the IEEE International Conference on Computer Vision
(ICCV), 2021, 13401–13412.

[4] Chen K, Tan Z, Lei J, Zhang SH, Guo YC, Zhang W, Hu
SM. ChoreoMaster: Choreography-Oriented Music-Driven
Dance Synthesis. ACM Transactions on Graphics, 2021, 40(4):
145:1–145:13.

[5] Butterworth J. Dance Studies: The Basics, 2011, Routledge
Press.

[6] Holden D, Saito J, Komura T, Joyce T. Learning Motion
Manifolds with Convolutional Autoencoders. In SIGGRAPH
Asia 2015 Technical Briefs, 2015, 1–4.

[7] Holden D, Saito J, Komura T. A Deep Learning Framework for
Character Motion Synthesis and Editing. ACM Transactions
on Graphics, 2016, 35(4): 138:1–138:11.

[8] Aberman K, Weng Y, Lischinski D, Cohen-Or D, Chen B.
Unpaired Motion Style Transfer from Video to Animation.
ACM Transactions on Graphics, 2020, 39(4): 64:1–64:12.

[9] DongY,AristidouA, Shamir A,MahlerM, Jain E. Adult2child:
Motion Style Transfer Using CycleGANs. In Motion, Interac-
tion and Games (MIG), 2020, 13:1–13:11.

[10] Wen YH, Yang Z, Fu H, Gao L, Sun Y, Liu YJ. Autoregressive
Stylized Motion Synthesis With Generative Flow. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2021, 13612–13621.

[11] Koutedakis Y, Sharp NCC. The Fit and Healthy Dancer, 1999,
Wiley Press.

[12] Krasnow D, Chatfield SJ. Development of the "Performance
Competence Evaluation Measure": Assessing Qualitative As-
pects of Dance Performance. Journal of dance medicine &
science, 2009, 13(4): 101–107.

[13] Neave N, McCarty K, Freynik J, Caplan N, Hönekopp J, Fink
B. Male Dance Moves that Catch a Woman’s Eye. Biology
Letters, 2011, 7(2): 7221–224.

[14] Torrents C, M C, Jofre T, Morey G, Reverter F. Kinematic
Parameters that Influence the Aesthetic Perception of Beauty
in Contemporary Dance. Perception, 2013, 42(3): 447–58.

[15] Park YS. Correlation Analysis between Dance Experience and
Smoothness of Dance Movement by Using Three Jerk-Based
Quantitative Methods. Korean Journal of Sport Biomechanics,
2016, 26(1): 1–9.

[16] Alexiadis DS, Kelly P, Daras P, O’Connor NE, Boubekeur T,
MoussaMB. Evaluating a Dancer’s PerformanceUsingKinect-
Based Skeleton Tracking. In Proc. of the ACM International
Conference on Multimedia, MM ’11, 2011, 659–662.

[17] Raheb KE, Stergiou M, Katifori A, Ioannidis Y. Dance Inter-
active Learning Systems: A Study on Interaction Workflow
and Teaching Approaches. ACM Computing Surveys, 2019,
52(3): 50:1–50:37.

[18] Chen HY, Cheng YH, Lo A. Improve Dancing Skills with
Motion Capture Systems: Case Study of a Taiwanese High
school Dance Class. Research in Dance Educat., 2021: 1–19.

[19] Chan JC, Leung H, Tang JK, Komura T. A Virtual Reality
Dance Training System Using Motion Capture Technology.
IEEE Trans. on Learning Technologies, 2011, 4(2): 187–195.

[20] Aristidou A, Stavrakis E, Charalambous P, Chrysanthou Y,
Himona SL. Folk Dance Evaluation Using Laban Movement
Analysis. ACM Journal on Computing and Cultural Heritage,
2015, 8(4): 20:1–20:19.

[21] Laban R. The mastery of Movement (4 ed.), 2011, Dance
Books Ltd.

[22] Tenenbaum J, Freeman W. Separating Style and Content. In
Advances in Neural Information Processing Systems (NIPS),
volume 9, 1997, 662–668.

[23] Aristidou A, Zeng Q, Stavrakis E, Yin K, Cohen-Or D,
Chrysanthou Y, Chen B. Emotion Control of Unstructured
DanceMovements. In Proc. of the ACM SIGGRAPH/EG Symp.
on Computer Animation, SCA ’17, 2017, 10:1 – 10:9.

[24] Brand M, Hertzmann A. Style Machines. In Proceedings of the
27th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH), 2000, 183–192.

[25] Hsu E, Pulli K, Popović J. Style Translation for HumanMotion.
ACM Transactions on Graphics, 2005, 24(3): 1082–1089.

[26] Xia S, Wang C, Chai J, Hodgins J. Realtime Style Transfer for
Unlabeled Heterogeneous Human Motion. ACM Transactions
on Graphics, 2015, 34(4): 119:1–119:10.

[27] Mason I, Starke S, Zhang H, Bilen H, Komura T. Few-shot
Learning of Homogeneous Human Locomotion Styles. Com-
puter Graphics Forum, 2018, 37(7): 143–153.

[28] Smith HJ, Cao C, Neff M, Wang Y. Efficient Neural Networks
for Real-Time Motion Style Transfer. Proceedings of the ACM
on Computer Graphics and Interactive Techniques, 2019, 2(2):
13:1–13:17.



Let’s All Dance: Enhancing Amateur Dance Motions 17

[29] Du H, Herrmann E, Sprenger J, Cheema N, Hosseini S, Fischer
K, Slusallek P. Stylistic LocomotionModelingwithConditional
Variational Autoencoder. In In Proc. of Eurographics - Short
Papers, 2019, 9–12.

[30] Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA.
Stacked Denoising Autoencoders: Learning Useful Represen-
tations in a Deep Network with a Local Denoising Criterion.
J. of Machine Learning Research, 2010, 11(110): 3371–3408.

[31] Gatys L, Ecker A, Bethge M. A Neural Algorithm of Artistic
Style. Journal of Vision, 2016, 16(12).

[32] Huang X, Belongie S. Arbitrary Style Transfer in Real-Time
with Adaptive Instance Normalization. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV),
2017, 1510–1519.

[33] Arikan O, Forsyth DA. InteractiveMotion Generation from Ex-
amples.ACM Transactions on Graphics, 2002, 21(3): 483–490.

[34] Kim Th, Park SI, Shin SY. Rhythmic-Motion Synthesis Based
on Motion-Beat Analysis. ACM Transactions on Graphics,
2003, 22(3): 392–401.

[35] Lee HC, Lee IK. Automatic Synchronization of Background
Music and Motion in Computer Animation. Computer Graph-
ics Forum, 2005, 24(3): 353–361.

[36] Shiratori T, Nakazawa A, Ikeuchi K. Dancing-to-Music Char-
acter Animation. Computer Graphics Forum, 2006, 25(3):
449–458.

[37] Tang T, Jia J, Mao H. Dance with Melody: An LSTM-
Autoencoder Approach to Music-Oriented Dance Synthesis.
In Proceedings of the 26th ACM International Conference on
Multimedia (MM), 2018, 1598–1606.

[38] Lee HY, Yang X, Liu MY, chun Wang T, Lu YD, Yang
MH, Kautz J. Dancing to Music. In Conference on Neural
Information Processing Systems (NeurIPS), volume 32, 2019,
1–11.

[39] Tsuchida S, Fukayama S, Hamasaki M, Goto M. AIST Dance
Video Database: Multi-genre, Multi-dancer, and Multi-camera
Database for Dance Information Processing. In Proceedings of
the 20th International Society for Music Information Retrieval
Conference (ISMIR), 2019, 501–510.

[40] Zhuang W, Congyi Wang SX, Chai J, Wang Y. Music2Dance:
DanceNet for Music-driven Dance Generation. ACM Trans.
Multimedia Comput. Commun. Appl., 2022, 18(2).

[41] Aristidou A, Yiannakidis A, Aberman K, Cohen-Or D, Shamir
A, Chrysanthou Y. Rhythm is a Dancer: Music-Driven Mo-
tion Synthesis with Global Structure. IEEE Trans. Visual. &
Comput. Graph., 2022, Early Access.

[42] Tadamura K, Nakamae E. Synchronizing Computer Graphics
Animation and Audio. IEEE MultiMedia, 1998, 5(4): 63–73.

[43] Cardle M, Barthe L, Brooks S, Robinson P. Music-driven Mo-
tion Editing: Local Motion Transformations Guided by Music
Analysis. In Proceedings 20th Eurographics UK Conference,
2002, 38–44.

[44] Laichuthai A, Kanongchaiyo P. Synchronization Between
Motion and Music Using Motion Graph. In The 8th Electrical

Engineering/ Electronics, Computer, Telecommunications and
Information Technology (ECTI) Conference, 2011, 496–499.

[45] Davis A, Agrawala M. Visual Rhythm and Beat. ACM Trans-
actions on Graphics, 2018, 37(4).

[46] Bellini R, Kleiman Y, Cohen-Or D. Dance to the Beat: Syn-
chronizing Motion to Audio. Computational Visual Media,
2018, 4(3).

[47] Chung JS, Zisserman A. Out of Time: Automated Lip Sync
in the Wild. In Asian Conference on Computer Vision, 2016,
251–263.

[48] Halperin T, Ephrat A, Peleg S. Dynamic Temporal Alignment
of Speech to Lips. In IEEE Intern. Conf. on Acoustics, Speech
and Signal Processing (ICASSP), 2019, 3980–3984.

[49] Wang J, Fang Z, Zhao H. AlignNet: A Unifying Approach to
Audio-Visual Alignment. In Proc, of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), 2020,
3309–3317.

[50] Phillips GM. Interpolation and Approximation by Polynomials,
2003, springer Science & Business Media.

[51] Holden D, Komura T, Saito J. Phase-Functioned Neural Net-
works for Character Control. ACM Transactions on Graphics,
2017, 36(4).

[52] Aristidou A, Lasenby J, Chrysanthou Y, Shamir A. Inverse
Kinematics Techniques in Computer Graphics: a Survey. Com-
puter Graphics Forum, 2018, 37(6): 35–58.

[53] McFee B, Raffel C, Liang D, Ellis DP, McVicar M, Battenberg
E,NietoO. librosa: Audio andMusic SignalAnalysis in Python.
In Proceedings of the 14th Python in Science Conference,
volume 8, 2015, 18–24.

[54] Sakoe H, Chiba S. Dynamic Programming Algorithm Opti-
mization for Spoken Word Recognition. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 1978, 26(1): 43–49.

[55] Rabiner L, Juang BH. Fundamentals of Speech Recognition,
1993, prentice-Hall, Inc.

[56] Daugman JG. Uncertainty Relation for Resolution in Space,
Spatial Frequency, and Orientation Optimized by Two-
dimensional Visual Cortical Filters. Journal of the Optical
Society of America A, 1985, 2(7): 1160–1169.

[57] Dowson D, Landau B. The Fréchet Distance between Multi-
variate Normal Distributions. Journal of Multivariate Analysis,
1982, 12(3): 450–455.

[58] Aristidou A, Cohen-Or D, Hodgins JK, Chrysanthou Y, Shamir
A. Deep Motifs and Motion Signatures. ACM Transactions on
Graphics, 2018, 37(6): 187:1–187:13.

[59] Zhou Y, Barnes C, Lu J, Yang J, Li H. On the Continuity of
Rotation Representations in Neural Networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, 5745–5753.

[60] Andreou N, Lazarou A, Aristidou A, Chrysanthou Y. A
Hierarchy-Aware Pose Representation for Deep Character
Animation. CoRR, 2021, abs/2111.13907.



18 Q. Zhou, M. Li, Q. Zeng, A. Aristidou, X. Zhang, C. Lin, C. Tu

Author biographies
Qiu Zhou is a postgraduate in the School of
Computer Science and Technology at Shan-
dong University. She received a B.Sc. from
Shandong University in 2019. Her main in-
terests are motion analysis and synthesis.

Manyi Li is an Associate Researcher in the
School of Software at Shandong University.
She received B.Sc. and Ph.D. degrees from
Shandong University in 2013 and 2018 re-
spectively and was a postdoc fellow in the
GrUVi Lab, Simon Fraser University during
2019–2021. Her main interests are 3D content
creation and understanding.

Qiong Zeng is an Associate Researcher in the
School of Computer Science and Technology
at Shandong University. She received B.Sc.
and Ph.D. degrees from Nanchang University
and Shandong University in 2010 and 2015
respectively. Her main interests are focused
on motion analysis and visualization.

Andreas Aristidou is an Assistant Profes-
sor in the Department of Computer Science,
University of Cyprus. He has been a Cam-
bridge European Trust fellow at the University
of Cambridge, where he obtained his Ph.D.
He received his B.Sc. from the National and
Kapodistrian University of Athens and has an
M.Sc. from Kings College London. His main

research interests are focused in the areas of computer graphics and
character animation.

Xiaojing Zhang is an undergraduate student
in Taishan College of Shandong University.
She entered the university in 2019. Her main
interests are focused on computer graphics
and visualization.

Lin Chen is an Associate Professor in the
Qingdao Institute of Humanities and So-
cial Sciences, Shandong University. She re-
ceived her doctorate from the Freie Univer-
sität Berlin. Her research interests include
the aesthetic ideas of Baumgarten and their
far-reaching influence, theatre and dance re-
search, and cultural studies.

Changhe Tu is a Professor in the School of
Computer Science and Technology, Shandong
University. He received his B.Sc., M.Eng.,
and Ph.D. degrees from Shandong University
in 1990, 1993, and 2003, respectively. His
research interests are in the areas of computer
graphics and robotics.


	1 Introduction
	2 Related Work
	2.1 Dance Evaluation
	2.2 Motion Style Transfer
	2.3 Music-driven motion synthesis
	2.4 Audio Alignment

	3 Data Augmentation
	3.1 The Definition of Dance Professionalism
	3.2 Generating Amateur Dance Movements

	4 Dance Professionalism Framework
	4.1 Dance-to-Music Alignment Stage
	4.2 Dance Enhancement Network
	4.3 Training and Loss

	5 Results and Discussion
	5.1 Evaluation
	5.1.1 Comparisons
	5.1.2 Perceptual Study

	5.2 Ablation Study
	5.3 Application: Dance-to-Music Synchronization

	6 Limitations and Future Work
	7 Conclusions



