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Abstract Shape descriptors have recently gained popularity
in shape matching, statistical shape modeling, etc. Their
discriminative ability and efficiency play a decisive role
in these tasks. In this paper, we first propose a novel
handcrafted anisotropic spectral descriptor using Chebyshev
polynomials, called the anisotropic Chebyshev descriptor
(ACD); it can effectively capture shape features in multiple
directions. The ACD inherits many good characteristics
of spectral descriptors, such as being intrinsic, robust to
changes in surface discretization, etc. Furthermore, due to
the orthogonality of Chebyshev polynomials, the ACD is
compact and can disambiguate intrinsic symmetry since
several directions are considered. To improve the ACD’s
discrimination ability, we construct a Chebyshev spectral
manifold convolutional neural network (CSMCNN) that
optimizes the ACD and produces a learned ACD. Our
experimental results show that the ACD outperforms existing
state-of-the-art handcrafted descriptors. The combination of
the ACD and the CSMCNN is better than other state-of-the-art
learned descriptors in terms of discrimination, efficiency, and
robustness to changes in shape resolution and discretization.
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1 Introduction
In the fields of computer graphics and computer vision, shape
descriptors were widely used in many applications, such as
shape correspondence [1, 2], cross parameterization [3, 4],
texture mapping [5], shape retrieval [6], segmentation [7],
deformation transfer [8], and symmetry detection [9].
Good descriptors should generally meet three criteria: (i)

have low computational cost, so they can be calculated quickly,
(ii) be highly discriminative, so can effectively characterize
different regions of a given shape (and even if regions are
similar, can still be distinguished), and (iii) be insensitive
to resolution and different shape discretizations. When
descriptor performance is dependent on shape discretization,
it indicates overfitting or a lack of generalization ability.
In general, descriptors can be divided into two

categories: handcrafted and learned descriptors. Spectral
descriptors, such as the heat kernel signature (HKS) [10],
wave kernel signature (WKS) [11], windowed Fourier
transform (WFT) [12], wavelet energy decomposition
signature (WEDS) [13], and so on, are a common class
of handcrafted descriptors that are constructed in the spectral
domain using the Laplace-Beltrami operator (LBO) (or
Laplacian). All of the above spectral descriptors, are,
however, based on the isotropic LBO. They ignore directional
information resulting in ambiguity under intrinsic symmetries.
To overcome this challenge, researchers [14, 15] have
incorporated directional information by changing the diffusion
speed according to the directions of principal curvature on
the surface, constructing an anisotropic Laplace-Beltrami
operator (ALBO). While keeping the desirable properties
of the standard LBO such as being intrinsic, and robustness
to different surface discretizations, using the ALBO offers
the possibility to effectively replace the omnipresent LBO in
many shape analysis methods. Various spectral descriptors
have been generalized to the anisotropic case based on
ALBO, such as the anisotropic windowed Fourier transform
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Fig. 1 Overview. We use handcrafted descriptors and learned descriptors. We calculate the anisotropic Laplacian-Beltrami operator for the
input shape and find its eigenvectors and eigenvalues. We then apply Chebyshev filters to the eigensystem to get the anisotropic Chebyshev
descriptor (ACD) G(x); x represents the shape. Although the ACD can capture shape features well, to improve its performance, we then use
the Chebyshev spectral manifold convolutional neural network (CSMCNN) to optimize it. We use closest neighbor search in descriptor
space to incorporate our descriptor into a shape matching task, and use color transfer to qualitatively evaluate the descriptor’s performance.
We can see that the color of the target shape is almost identical to the color of the source shape after optimizing ACD to give G̃(x).

(AWFT) [16], the anisotropic spectral manifold wavelet
descriptor (ASMWD) [17], and so on. Although anisotropy
allows these descriptors to disambiguate intrinsic symmetry to
some extent, many opportunities remain for development in
terms of making them more discriminative and efficient.
We propose here an anisotropic Chebyshev descriptor
(ACD) based on the ALBO, which has the advantages of
distinguishing intrinsic symmetry, quick calculation, and
robustness to surface discretization.

In recent years, deep learning methods have achieved great
success in shape analysis tasks. A very promising strategy is
to optimize the descriptor via deep learning. Existing learned
descriptors include optimal spectral descriptors (OSD) [18],
anisotropic diffusion descriptors (ADD) [15], the multiscale
graph convolutional network (MGCN) [13], the spline-based
convolutional neural network (SplineCNN) [19], and the
anisotropic Chebyshev spectral CNN (ACSCNN) [20]. In
practice, when some of the aforementioned approaches are
trained and tested on shapes with different resolutions and
discretizations, overfitting occurs. Resampling surfaces is one

way to improve robustness. However, some properties of a
given shape may be lost as a result of this strategy, reducing
discrimination performance. Because of the robustness of
wavelets to resolution change, MGCN can handle shapes
with various resolutions well, but there is the opportunity for
improvement in resolution robustness. [21] demonstrated that
a small number of LBO eigenfunctions can approximate the
functions well, and we have observed that the eigenvalues that
correspond to these LBO eigenfunctions are robust to shape
resolution. To meet the requirements of robustness to shape
resolution, we construct the Chebyshev spectral manifold
convolutional neural network (CSMCNN), approximating
spectral convolution with a small number of eigenfunctions.
We then use the CSMCNN to transform our ACD into more
discriminative and robust shape descriptors compared to other
learned descriptors.
The main contributions of this paper are firstly, a new

descriptor, called the anisotropic Chebyshev descriptor
(ACD). It captures features from different directions on a
surface, and it is better than similar descriptors in terms of
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computational efficiency and discriminative ability. Secondly,
we further improve the ACD’s by constructing a Chebyshev
spectral manifold convolutional neural network (CSMCNN)
in the spectral domain. It has better robustness to surface
discretization than current state-of-the-art networks. Our
experimental results show that the learned descriptor obtained
by combining the ACD and the CSMCNN is superior to others
in terms of discriminative ability and robustness.

2 Related work
Shape descriptors are a well-studied area in computer graphics
and computer vision. Readers can refer to the survey in [22]
for an in-depth view of this field. Below we review shape
descriptors most closely related to ours, mainly handcrafted
and learned shape descriptors.

2.1 Handcrafted Descriptors

Handcrafted descriptions were the emphasis of early work.
For rigid shapes, various successful extrinsic descriptors
have been proposed, such as spin images (SI) [23], and
signature of histograms of orientations (SHOT) [24]. These
descriptors have desirable characteristics, such as rigid
deformation invariance. However, for non-rigid deformation,
invariance is lost. Some intrinsic spectral descriptors based
on the Laplace-Beltrami operator were proposed to overcome
this problem. The HKS [10] and WKS [11] are two
extensively used spectral descriptors. The filters in the HKS
and WKS, however, can only extract information about
specific frequency bands, limiting their potential to capture
surface features. [12] used the windowed Fourier transform
defined on a manifold to construct a shape descriptor.
[25] proposed the spectral manifold wavelet descriptor
(SMWD) by applying the multiscale spectral graph wavelet
transform on a manifold to an impulse function at each
vertex and taking transformed impulse functions as elements
to construct a multi-dimensional vector. [26] presented a
discriminative local descriptor, the local point signature
(LPS), for deformable 3D shapeswith incompatible structures.
[13] obtained WEDS by decomposing the Dirichlet energy
of the surface using spectral graph wavelets [27], which
can capture both local and global information. However,
most of the above descriptors are isotropic and insensitive
to directional information. As a result, their discriminative
ability is lacking. They cannot effectively distinguish the
intrinsic symmetry of a shape.
As a result, many scholars began to study anisotropic

descriptors. The anisotropic windowed Fourier transform
(AWFT) [16] was constructed by adding directional

information to theWFT using the ALBO [15]. [17] created the
anisotropic spectral manifold wavelet descriptor (ASMWD)
by extending the spectral graph wavelet transform to the
anisotropic case, on a manifold. When compared to the
SMWD and WFT, the ASMWD [17] and AWFT [16]
have a higher discriminative ability and can distinguish
intrinsic symmetry. Although these methods are far superior
to isotropic descriptors, they are not without flaws. The
discriminative ability of AWFT is insufficient, and there is an
opportunity for efficiency enhancement in ASMWD. In terms
of discriminative ability and computational efficiency, our
experimental results show that our ACD outperforms similar
types of descriptors.

2.2 Learned Descriptors

Compared to handcrafted descriptors, learned descriptors [15,
18, 28] seem to achieve greater success. By considering the
general form of the HKS and the WKS, the OSD [18] uses
B-spline bases to represent the filters, and with learned
coefficients as parameters to construct a learnable descriptor.
To create a direction-sensitive spectral feature descriptor, the
ADD [15] uses anisotropic diffusion on 3D triangle meshes
and point clouds. It is a locally oriented learnable descriptor
generalizing the OSD [18]. Multilayer perceptions (MLPs) are
used to optimize the descriptors in both the OSD and ADD.
They treat each vertex’s feature separately, which means they
ignore geometric connections between vertices and are unable
to extract structural characteristics effectively.
To solve the problem of multilayer perceptrons

independently processing shape vertices, a feasible approach
is to use convolutional neural networks (CNN) to optimize the
descriptors. [29] presented a novel deep learning framework
to derive a discriminative local descriptor for deformable
3D shapes. [30] exploited a convolutional neural network
(CNN) based on a variational autoencoder with spectral graph
convolutional operators for sparse deformation component
extraction on meshes with irregular connectivity and large
deformation. [31] adopted geodesic distance to construct
patch operators and proposed the first intrinsic convolutional
neural network, the geodesic convolutional neural network
(GCNN). SplineCNN [19] used B-Spline kernels to weight
the relationship between a point and its neighborhood. Based
on a new extension of a manifold convolution operator,
[20] came up with a new convolution neural network,
ACSCNN. The extended convolution operator aggregates
local features of signals using a set of oriented kernels
around each point, which captures intrinsic information
more comprehensively. The multiscale graph convolutional
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network (MGCN) [13] uses isotropic spectral graph wavelets
to construct the convolutional operator. Further related work
on deep geometry learning can be found in the survey [32].

Although convolutional neural networks are more effective
at capturing shape features than multilayer perceptrons, each
of the convolutional neural networks mentioned above has its
own flaws. Calculation of convolutional neural networks based
on geodesic distances is time-consuming. The above methods’
inputs are isotropic descriptors, which may result in isotropic
learned descriptors if the convolution is also an isotropic
operation. The convolution operators of SplineCNN [19]
and ACSCNN [20] depend on the m ring neighborhood
or m nearest neighbors of each vertex, so when the shape
discretization changes, the convolution operators also change,
so they are not robust to changes in surface discretization.
MGCN’s robustness to diverse discretizations of shape is
better, but is still insufficient. Thus, it is important to
build a new convolutional neural network that combines
the characteristics of the input descriptor and the network
to construct an optimized descriptor that can disambiguate
intrinsic symmetry of shapes, be quick to calculate, and is
robust to shape discretization and resolution.

3 Foundation
3.1 Anisotropic Laplace Beltrami Operator

The Laplace-Beltrami operator (LBO) is commonly used in
non-rigid shape analysis and processing. Given a connected
smooth compact two-dimensional manifold (surface) X
(possible with boundaries) embedded into R3 the LBO on a
manifold X is defined as:

∆Xf(x) = −divX(∇Xf(x)), (1)

where divX and ∇Xf are the divergence and the intrinsic
gradient of function f(x) ∈ L2(X). Since the LBO is
a positive-semidefinite operator, it admits a real eigen-
decomposition:

∆Xφk(x) = λkφk(x).

One of the notable drawbacks of the isotropic LBO is that it
ignores directional information. Such information, however,
may often carry important cues about the local structure of the
surface. To overcome the challenge, researchers constructed
the anisotropic Laplace-Beltrami operator (ALBO) [14]. It
incorporates directional information into LBO by changing
the diffusion speed according to the directions of principal
curvature on the surface, so is not intrinsic. To overcome this
problem, [15] simplified the thermal conductivity tensor to a
constant, which controls the diffusion speed and considers all
directional information via rotation. [15] demonstrated that if

the origin is fixed using a reference direction (e.g. a principal
curvature direction), the ALBO is intrinsic. The final ALBO
is defined as:

∆αθf(x) = −divX(RθDα(x)RT
θ∇Xf(x)), (2)

where Dα(x) is the thermal conductivity tensor applied to
the gradient in the tangent plane, and the parameter α controls
the degree of anisotropy. Dα(x) can be represented as:

Dα(x) =

[
1/(1 + α)

1

]
.

Rθ represents rotation through an angle θ about the
surface normal, and RT

θ denotes its transpose. We obtain
the eigenvectors and eigenvalues {φαθk, λαθk}k>1 through
eigendecomposition of the above ALBO.
In the discrete setting, we are given a triangular mesh

M(V,E, F ), where the set V includes N vertices, and E
and F are the sets of edges and triangles, respectively. The
function f on meshM is represented as a vector f ∈ RN .
Setting an anisotropy level α and a rotation angle θ, the
discrete ALBO can be represented as a sparse matrix Lαθ =

A−1Bαθ ∈ RN×N , where the matrix A is the diagonal
matrix of vertices’ areas, and Bαθ is the weight matrix.
We compute the eigendecomposition of the

ALBO by solving a generalized eigenproblem:
Bαθφαθk = λαθkAφαθk. The eigenvectors
{φαθk}k>1 ∈ RN are mutually A-orthogonal. Let
matrices Φαθ = (φαθ,1, · · · , φαθ,N ) ∈ RN×N and
Λαθ = diag(λαθ,1, · · · , λαθ,N ) ∈ RN×N . We then
have Lαθ = ΦαθΛαθΦ

T
αθA. Setting α = 0, θ = 0,

we get the eigenvalues and eigenvectors of the isotropic
Laplace-Beltrami operator: {φk, λk}k>1.

3.2 Spectral Convolution and Spectral CNN

The core of any convolutional neural network is its convolution
operator. However, it is very difficult to define convolution
kernels directly in the spatial domain because of the irregular
nature of 3D triangular meshes. Due to the harmonic
properties of the eigenvalues and eigenvectors of the (A)LBO,
the convolution theorem can be extended to the manifold case,
giving spectral convolution, defined as:

(f ∗ g) (x) =
∑
k>1

f̂(λk)ĝ(λk)φk(x), (3)

where f̂(λk) = 〈f, φk〉X is called the manifold Fourier
transform; f can be represented as f =

∑
k f̂(λk)φk. The

convolution kernel gy(x) centered at point y can be generated
by convolution with the Dirac delta function δy . As δ̂y(λk) =
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〈δy, φk〉X = φk(y), we have

gy(x) = (δy ∗ g)(x) =
∑
k>1

ĝ(λk)φk(y)φk(x).

Formally, we define the convolution of function f and kernel
gy via the inner product:

(f ∗ gy) = 〈f, gy〉X =
∑
k>1

f̂(λk)ĝ(λk)φk(y). (4)

Given a triangle mesh M with N vertices as above,
the discrete ALBO can be represented by Lαθ =

A−1Bαθ = ΦαθΛαθΦ
T
αθA. We may rewrite Eq.(4) in

matrix representation [20]:

(f ∗ g)αθ = Φαθ ĝ(Λαθ)Φ
T
αθAf . (5)

Representing the spectral filter ĝ(λ) as polynomials ĝ(λ) =∑
d ηdλ

d, the above equation can be simplified to

(f ∗ g) =

D∑
d=1

ηdL
d
αθf . (6)

Lαθ has non-zero values in a 1-ring neighborhood of each
vertex. Consequently, spectral filters represented by order D
polynomials of the Laplacian are exactly D-localized, so are
not robust to shape discretization or resolution.

4 Anisotropic Chebyshev Descriptor
Spectral descriptors are local shape descriptors which exploit
spectral properties of the (A)LBO. Following [18], a general
Q-dimensional descriptor of this kind has the form

f(x) =
∑
k>1

Γ(λk)φ2k(x) ≈
K∑
k=1

Γ(λk)φ2k(x), (7)

where Γ(λ) = (τ1(λ), · · · , τQ(λ))
T is a bank of ‘transfer

functions’ acting on the Laplacian eigenvalues λk. Such
descriptors are dense (computed at every point x), and
typically can be efficiently computed using a small number
K of Laplacian eigenfunctions and eigenvalues. The filter
used in the HKS [10] is τt(λ) = e−tλ, which is a set of
low pass filters with parameter t; the filter of the WKS [11]
is τv(λ) = exp

(
−(log v − log λ)

2
/(2σ2)

)
, which is a set

of band pass filters with parameter v. Both the HKS and
WKS are isotropic descriptors, so insensitive to directional
information. Here, we construct a descriptor that is sensitive
to directional information, has high computational efficiency
and is robust to surface discretization.
Chebyshev polynomials are mutually orthogonal and

recursively defined. We use Chebyshev polynomials to
construct compact and computationally efficient descriptors.
We use Chebyshev polynomials Td(λ̃) to represent τ(λ) in
Eq. (7), where λ̃ ∈ [−1, 1] and d represents the order of the
Chebyshev polynomials. Chebyshev polynomials are given

by:

Td(λ̃) = 2λ̃Td−1(λ̃)− Td−2(λ̃)(d > 2), T1 = λ, T0 = 1.

We scale eigenvalues λ into the Chebyshev polynomial
domain [−1, 1]. We use λ̃ to denote scaled eigenvalues,
λ̃ = 2λ/λmax − 1, then,

Γ(λ) = (T0(λ̃), · · · , TD(λ̃))
T
,

where D represents the maximal order of Chebyshev
polynomials.Eq. (7) can now be expressed as

f(x) =

K∑
k=1

(T0(λ̃k), · · · , TD(λ̃k))
T
φ2k(x)

= [g0(x), · · · , gD(x)]T,

(8)

where

gd(x) =

K∑
k=1

Td(λ̃k)φ2k(x), d = 0, · · · , D.

f(x) represents an isotropic Chebyshev descriptor. As the
isotropic descriptor has the defect that it cannot discriminate
intrinsic symmetries of shapes, we construct the anisotropic
Chebyshev descriptor in the following.
With the help of the ALBO, we can get the eigensystem

related to the direction {φαθk, λαθk}Kk=1. From Eq. (8), we
can get the Chebyshev descriptor at a fixed angle θj :

fαθj (x) =

K∑
k=1

(T0(λ̃αθjk), · · · , TD(λ̃αθjk))
T
φ2αθjk(x)

= [gαθj0(x), · · · , gαθjD(x)]T,

(9)
where j = 1, · · · , J , and J is the number of anisotropic
angles, while

gαθjd(x) =

K∑
k=1

Td(λ̃αθjk)φ2αθjk(x),

To consider information from all orientations, we combine
the Chebyshev descriptors from all angles to construct a
multi-angle Chebyshev descriptor as:

G(x) = [fαθ1(x), · · · , fαθJ (x)]T. (10)

G(x) is the anisotropic Chebyshev descriptor (ACD) at a
point x. Algorithm 1 describes the main steps of computing
the ACD.

5 Chebyshev Spectral Manifold CNN
5.1 Chebyshev Spectral Convolution

For learned descriptors, the multilayer perceptron (MLP) is
a commonly used network. However, as Sharp et.al. [33]
noted, such a network structure considers the shape vertices
separately, without considering the links between vertices
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Algorithm 1 ACD computation
Input: MeshM(V,E, F ) with N vertices,

parameters α, J ,K, D.
Output: ACD.
for j = 1 to J do

(1) Compute the ALBO: Lαθj = A−1Bαθj

via [15];
(2) Find

{
φαθjk

}K
k=1

and
{
λαθjk

}K
k=1

from
Bαθjφαθjk = λαθjkAφαθjk;

(3) Compute fαθj (x) via Eq. (9).
end for
ACD of meshM: G(x) = [fαθ1(x), · · · , fαθJ (x)]T.

of the shape, making the features learned from the whole
insufficient. Unlike MLPs, convolutional neural networks
(CNN) [19, 20, 34] take into account local structural
information of every vertex of a shape. To further improve the
discriminative ability of our ACD, we resort to a spectral CNN
to optimize it. An important design criterion for our learning
pipeline is the robustness to different surface discretizations
including triangulations with varying numbers of vertices. At
the same time, we desire our network to be computationally
efficient. To meet the above requirements, we make some
improvements to the existing spectral CNN.
ChebyNet [34] and ACSCNN [20] are representative

spectral CNNs differing in the Laplacian used. ChebyNet uses
the graph Laplacian which only considers the connectivity of
the mesh graph. The graph Laplacian can well approximate
the smooth Laplacian only when the mesh is uniformly
distributed. To faithfully approximate the smooth Laplacian
on arbitrary meshes, geometric information should be
considered. The anisotropic Laplacian used in ACSCNN
considers not only geometric structures but also directional
information. However, ACSCNN has to aggregate local
information from different directions, which is unnecessary
for our ACD as directional information has already been
considered. Thus, we simply use ACSCNN in the isotropic
case to improve computational efficiency.

Recall Eq.(6) from Sec.3.2. ChebyNet and ACSCNN both
use Chebyshev polynomials to avoid eigendecomposition
of the Laplacian. However, they are D-localized so are
sensitive to shape discretization and resolution. From the view
of the frequency domain, they use all the eigenvalues and
eigenfunctions of the (A)LBO. Consequently, all frequency
information is considered, resulting in strong fitting ability and
easy overfitting to shape resolutions. We have observed that
the firstK eigenvalues are almost independent of the shape
resolution (see Fig. 2), and a small number of eigenfunctions

0 20 40 60 80 100

k

0

130

260

390

520

650

k

N=6890

N=8000

N=10000

N=12000

N=15000

Fig. 2 The first 100 eigenvalues of the LBO for a fixed shape in
the FAUST dataset with different resolutions. N is the number of
vertices.

can approximate the functions well [21]. To make spectral
convolution robust to shape discretization and resolution, we
approximate the convolution operation in Eq.(5) with the first
Ks eigenvalues and eigenfunctions. We obtain the Chebyshev
spectral convolution on the manifold:

(f ∗ g) = Φ

(
Ds∑
d=1

cdTd(
∼
Λ)

)(
ΦTAf

)
, (11)

where
∼
Λ = 2Λ/max(Λ) − I, Λ = diag(λ1, · · · , λKs

), I

is an identity matrix, Φ ∈ RN×Ks constitutes the first Ks

eigenfunctions of LBO, and cd are learnable coefficients.

5.2 Design of Network Architecture

The Chebyshev spectral manifold convolution layer
(CSMCONV) mentioned above can be used to build
CSMCNN. In this section, we describe the network used
to optimize our descriptor. To learn the optimal shape
descriptor, we build a CSMCNN with three CSMCONV
layers and two MLP layers: MLP64 + CSMCONV64 +
CSMCONV64 + CSMCONV128 + MLP256, where MLPh
represents a multilayer perceptron with h-dimensional output
and CSMCONVh similarly represents a CSMCONV. We
use a classification network for learning our descriptor. One
MLPN is added after the last MLP layer, using entropy loss
as the loss function of the network. N means the number of
the reference shape vertices. During training, we set the batch
size to 1, as the data used has inconsistent numbers of shape
vertices. In all our experiments, we used 50 epochs, and the
ADAM optimizer with β1 = 0.9, β2 = 0.999, ε = 10−8.
Fig. 1 gives an overview of our learning framework, with

handcrafted and learned descriptors. In the first part, we
use Chebyshev polynomials and the ALBO to construct the
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Fig. 3 Shape matching performance using the ACD with different parameter settings and the remeshed TOSCA. Parameter values: (a)
varying α, J = 20,K = 10,D = 6, (b) varying J , α = 10,K = 10,D = 6, (c) varyingK and α = 10, J = 8,D = 6, (d) varyingD,
α = 10, J = 20,K = 10.

handcrafted ACD. The second part is a learned ACD using
convolutional neural networks. The original ACD is taken as
the input and CSMCNN is used to optimize it.

6 Experimental Results
All experiments used a PC with an Intel Core i7-4970 CPU
at 3.6GHz, 16GB RAM, and an Nvidia GeForce RTX 2080
Ti (11GB RAM). We implemented ACD in Matlab and
CSMCNN in Pytorch. We evaluated the shape descriptors
through a shape correspondence task: for a pair of shapes, we
first compute the descriptors of each shape, then we calculate
correspondences using nearest neighbor search based on
Euclidean distance in descriptor space.

6.1 Evaluation Criteria

We use two criteria for evaluating correspondences.
(1) The correspondence quality characteristics (CQC)

curve. Given a pair of shapes X and Y , let the calculated
correspondence be yj = T (xi), xi ∈ X, yj ∈ Y , and
the ground-truth corresponding point to xi be y∗j . Then the
matching error for point xi is ε(xi) = G(yj , y

∗
j )/d(Y ),

where G(yj , y
∗
j ) is the geodesic distance between points yj

and y∗j , and d(Y ) is the diameter of the shape Y . The CQC
curve reflects the proportion of correspondences with error
less than a certain threshold.
(2) Average geodesic error. AGE =

∑N
i=1 ε(xi

)/N . This
measure supplements the CQC curve.

6.2 ACD Evaluation

In this section, to test the performance of ACD, we select
three representative datasets: FAUST [35], TOSCA [36],
SHREC’19 [37]. Instead of the original versions, we use the
more challenging remeshed versions from [1, 38]. Compared
to the original datasets, the vertex positions and connections
in each shape in remeshed version are completely different,
making them more challenging. The FAUST dataset contains

Table 1 Average geodesic error with different descriptors on the
Remeshed FAUST, Remeshed SHREC’19, and Remeshed TOSCA
dataset. Errors reported in Table are scaled by 10−3.

Descriptors Dataset
FAUST SHREC’19 TOSCA

WEDS 135 284 154
AMKS 152 219 152
WKS 145 215 147
DEP 167 254 186
SHOT 199 315 240
HKS 165 249 178
SMWD 183 249 162
ASMWD 87 189 123
AWFT 137 273 136
WFT 124 228 135
ACD 77 172 121

pairs of 10 different people in 10 different poses. The
TOSCA dataset consists of 80 objects in various classes
of animals and humans in different poses. SHREC’19 is
a considerably more challenging dataset. It has 44 shapes,
which come from different sources including FAUST [35],
SCAPE [39], CAESAR [40], SHREC14 [41], etc. Since every
data source was generated using different modeling principles
and purposes, there are larger geometric variations between
shapes than in FAUST and TOSCA.
As indicated in Algorithm 1, the first important step in

constructing the descriptor is to determine a set of appropriate
values for the four parameters: the number of eigenvalues
K, the number of anisotropic rotation angles J , the order of
Chebyshev polynomials D and the degree of anisotropy α.
Through the parameter analysis experiments summarised in
Fig. 3, parameters were determined that balance calculation
efficiency and quality of results. In our experiments, we set
α = 10, J = 20,K = 10, and D = 6.
We compare the ACD to ten state-of-the-art descriptors,

including eight isotropic descriptors (HKS [10], WKS [11],
SHOT [24], DEP [42], AMKS [43], SMWD [25],



8 S.Liu, H.Liu, W.Chen, D-M.Yan, L.Hu, X.Liu, Q.Li

(a) (b) (c)

Fig. 4 Correspondence quality characteristics for three datasets. Left to right: CQC curves of remeshed FAUST, remeshed SHREC’19, and
remeshed TOSCA. The number after each descriptor is its average geodesic error. A higher CQC curve and smaller average geodesic error
indicate better matching results (a more accurate descriptor). The ACD is superior to other descriptors for all three datasets.

WEDS [13], and WFT [12]) and two anisotropic descriptors
(ASMWD [17] and AWFT [16]). We randomly selected
100, 284, and 430 matching pairs from the remeshed
FAUST, remeshedTOSCA, and remeshed SHREC’19 datasets
respectively. For remeshed FAUST and remeshed TOSCA
datasets, isometric matching pairs are used (if the matching
pair are in the same shapes with different poses, they are
considered to be isometric, otherwise, they are non-isometric).
For remeshed SHREC’19, we used non-isometric matching
pairs.
Fig. 4 and Table. 1 demonstrates that the results of our

descriptors vary with dataset, but remain better than other
descriptors on all three remeshed datasets: ourACD is superior
to the state-of-the-art descriptors in terms of discriminative
ability. The main reason is that the ACD can extract features in
different directions andChebyshev polynomials have powerful
feature extraction ability as filters.
To make overall comparisons, we visualize comparative

results in Fig. 5. The scale from blue to red indicates
increasing distance of the descriptor of the reference point to
the descriptor of the other points. Unlike isotropic descriptors
such as HKS and WKS, ACD can distinguish intrinsic
symmetries: for HKS, WKS, WEDS, and DEP, intrinsically
symmetric points to the selected reference points are dark
blue, so these methods cannot effectively distinguish the
intrinsic symmetry. Although for AWFT the color differs
between the reference point and its intrinsically symmetrical
point, the color difference is not as great as for ACD: AWFT
cannot as effectively distinguish intrinsic symmetries as ACD.
We also provide a visual comparison in Fig. 6, where

matching shapes come from different categories. Again, our
method is superior to others.

Table 2 Computation times (seconds) for different descriptors, for
different resolutions, on the FAUST dataset. ACD is fastest.

Resolution
5000 6890 8000 10000 12000 15000

DEP 29.13 62.26 90.82 160.70 259.13 470.91
WEDS 10.90 20.01 26.63 41.38 58.65 90.69
WFT 18.34 32.40 41.28 61.98 85.93 129.06
AWFT 23.91 35.20 44.57 61.04 80.09 109.55
ASMWD 8.07 11.69 14.40 18.94 23.80 30.77
ACD 3.84 5.12 6.11 7.46 9.00 11.40

In Table 2, we compare the computation time for these
five descriptors, at different resolutions on FAUST [44].
It confirms that our method is much faster than these five
other methods. DEP has much a higher computation cost
than ours since it needs to solve several large systems of
linear equations and compute the geodesic distance between
all points. ASMWD is our strongest competitor from these
descriptors, but it is not as efficient. Because Chebyshev
polynomials can be computed quickly by their recursive
representation, the calculation time for ACD is very short.
Meanwhile, because the ALBO is direction sensitive, the
Chebyshev filter can capture features from different diffusion
directions. Thus, ACD is better than other descriptors in terms
of both accuracy and speed.

6.3 Learned Descriptors Evaluation
6.3.1 Setting

We now focus on the robustness of the learned descriptors
to variations in shape resolution. Two datasets were selected
to measure the robustness of the learned descriptor, FAUST
and SCAPE. FAUST and SCAPE use different algorithms
to obtain data at different resolutions. FAUST was remeshed
into datasets of 10000 and 15000 vertices using a remeshing
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HKS WKS

AWFT DEP

WEDS ACD

SHREC’19 TOSCA SHREC’19 TOSCAFAUSTFAUST FAUSTFAUST

Fig. 5 Visualization of descriptor distance between a selected vertex and other vertices in the same shape. The scale from blue to red
indicates increasing distance. The first three shapes in each case are from the FAUST dataset, the next three shapes from SHREC’19, and
the last three shapes from TOSCA. Reference points (white ball) were selected at different locations to illustrate ACD’s superiority in
distinguishing intrinsic symmetry.

HKS WKS AWFT DEP WEDS ACD

Remeshed SHREC’19 

Remeshed TOSCA

Remeshed FAUST

Fig. 6 Visualizing descriptor distance between a selected vertex
(black ball) on the leftmost shape and vertices on the other shape.
Hotter colours indicate greater distances as before.

operator [44] that can maintain the positions of the original
vertices. For convenience, we denote the original dataset and
the two remeshed datasets as FAUST 6890, FAUST 10000,
and FAUST 15000. SCAPEwas remeshed with approximately
5K vertices per shape by using the LRVD [45] remeshing
method.We denote the original and remeshed SCAPE datasets
as SCAPE 12500 and SCAPE 5000 respectively. The vertex
positions and connectivity of the remeshed SCAPE dataset
are quite different from the original dataset.

Few existing learned descriptors take robustness to differing
resolution into account. The relatively recent MGCN [13]
uses wavelets as a set of convolution kernels to construct a
new convolution operator. After training on one resolution
dataset, its CQC curves when tested on other resolution
datasets do not drop too much. For comparisons to our
learned descriptor, four learned descriptors, ADD [15],
SplineCNN [19], ACSCNN [20], and MGCN [13], were
selected. All of the above methods use cross-entropy loss for
training. In addition, we added another MLP256 as the last
layer of ADD to make the dimension of its learned descriptor
consistent with the others. In the original papers, the inputs
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SCAPE n = 5000 SCAPE n = 12500

FAUST n = 6890 FAUST n = 15000

SplineCNNSource ACSCNN MGCN CSMCNN SplineCNN ACSCNN MGCN CSMCNN

Fig. 7 Performance comparisons of different learned descriptors at different resolutions. The top part shows the result in the FAUST
dataset and the bottom is for the SCAPE dataset. The source shapes of FAUST and SCAPE have 6890 and 5000 vertices, respectively. The
targets of FAUST have 6890 vertices in the left and 15000 vertices in the right. And then, the targets of SCAPE are 5000 and 12500 vertices,
respectively. Note that, except for our CSMCNN, all the other learned descriptor methods have large color variations on the target shapes.

(a)6890-6890 (b)6890-10000 (c)6890-15000

Fig. 8 Correspondence quality characteristics for the FAUST dataset and different learned descriptors. The FAUST 6890 dataset was
used to train all networks. Left to right: results for FAUST 6890, 10000, and 15000 datasets. Other learned descriptors, unlike ours, do not
generalize well to datasets with differing resolutions.

Table 3 Datasets and their splits for training and testing.

Datasets FAUST SCAPE
Percentage #Samples Percentage #Samples

Training 80% 80 72% 51
Testing 20% 20 28% 20
Total 100% 100 100% 71

to the above methods differ; we use the name of the network
instead of the name of the whole descriptor learning process.
For example, the input to MGCN [13] is WEDS and the
network is MGCN, so we use MGCN instead of all of its
process.

6.3.2 FAUST dataset

In the experiment, all learned descriptors were trained on
FAUST 6890 and tested on FAUST 6890, FAUST 10000,

Table 4 Average geodesic errors of 20 × 19 matching pairs of
different learned descriptors on the FAUST dataset. Errors reported
in Table are scaled by 10−3. 6890-15000 represents training on the
FAUST 6890 dataset and testing on the FAUST 15000 dataset, etc.

Method Resolution
6890-6890 6890-10000 6890-15000

ADD 85 142 171
MGCN 8 57 97
ACSCNN 3 225 265
SplineCNN 148 273 299
CSMCNN 10 15 17

and FAUST 15000 respectively. Table 3 gives details of the
datasets and their splits for training and testing. Training used
the first 80 shapes of FAUST6890 and the remaining 20 shapes
were used for testing. Table 4 and Figure 8 give results for
different datasets and different learned descriptors. ACSCNN
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Fig. 9 Correspondence quality characteristics of the optimal de-
scriptors obtained by combining ACD with different convolutional
neural networks, using the FAUST dataset.

severely overfits on FAUST 6890, and average geometric
error increased by about 80 times as the resolution changed.
Overall, SplineCNN and ACSCNN perform much worse
than our CSMCNN. A major cause is that their convolution
operations use anm ring neighborhood of each surface vertex
to extract local features. When the discretization changes, the
m ring neighborhood of each vertex also alters. Although
MGCN has slightly better results than our CSMCNN on
the FAUST 6890 dataset, its test results for other resolution
datasets are 4 to 6 times worse than ours. ADD’s network has a
stack ofmultipleMLPs; its ability to optimize descriptors is far
weaker than for the convolutional neural networks. Overall,
CSMCNN has the best resolution robustness. CSMCNN
makes use of Chebyshev polynomials’ powerful fitting ability
and approximates the convolution operation with a small
number of eigenvalues and eigenfunctions of LBO to ensure
robustness to changes in resolution.
Based on the above results, we consider the MGCN to be

our main competitor. Although the CSMCNN achieves the
best result in Fig. 8, the inputs to theMGCNandCSMCNNare
the ACD and WEDS respectively, which makes it difficult to
clearly see whether the result is caused by the input descriptor
or the network. To further investigate which network has the
stronger resolution robustness, we performed experiments
on ACD+MGCN and ACD+CSMCNN. Fig. 9 shows that
CSMCNN performs better than MGCN with respect to
different resolutions. On the one hand, because wavelets
are robust to changes in resolution and triangulation, MGCN
can cope with different resolutions. However, on the other
hand, since any set of wavelets can be approximated by a
fixed set of Chebyshev polynomials [27], this reflects the low
degrees of freedom characteristics of the wavelet filters. This

Table 5 Average geodesic errors on 22 × 21 matching pairs of
different learned descriptors on the SCAPE dataset. Errors are scaled
by 10−3. 5000-12500 represents training on the SCAPE 5000 dataset
and testing on the SCAPE 12500 dataset, etc.

Method Resolution
5000-5000 5000-12500

ADD 185 213
MGCN 70 73

ACSCNN 27 370
SplineCNN 216 388
CSMCNN 22 24

is maybe why the resolution robustness of MGCN is weaker.
Therefore, CSMCNN is a better network choice for learning
ACD.

6.3.3 SCAPE dataset

Different datasets can also affect experimental results. As for
the experiments on the FAUST dataset, we trained all neural
networks on SCAPE 5000 and tested on the SCAPE 5000 and
SCAPE 12500 datasets, respectively. Because the positions
and connectivity of the vertices for the same shapes differs
completely for different resolution SCAPE datasets, this test
is more challenging. As Table 3 shows, we selected the first 51
shapes from the SCAPE dataset for training and the remaining
20 shapes for testing. Table 5 and Fig. 10 give results for
different learned descriptors for shapes at different resolutions.
Compared to the experimental results of the FAUST datasets,
results for ACSCNN on SCAPE 5000 and SCAPE 12500
show a significant decrease in performance. This is mainly
because the connectivity of each shape in SCAPE 5000 is
inconsistent. SplineCNN and ACSCNN also overfit to one
resolution dataset. In SCAPE, the changes to MGCN’s results
are much more stable, but it performs worse overall than
CSMCNN. ADD’s performance is still poor. This is mainly
because MLP can only aggregate information within vertices
independently. Compared to SplineCNN, ACSCNN, MGCN,
and ADD, our method has better results, ensuring robustness
to the change of resolution. Fig. 7 shows corresponding results
for different methods at different resolutions. Our method is
most discriminative and robust to changes in shape resolution.

6.3.4 Ablation Experiments

We performed ablation experiments using FAUST 6890 to
prove that the combination of ACD and CSMCNN is a correct
choice. In Fig. 11, we present the correspondence quality
characteristics results. The blue curve is the handcrafted
descriptor ACD; the black curve replaces the CSMCONV
layer in the network structure described in Section 5.1 to
improve ACD performance by an MLP. In this network
structure, the MLP considers each shape vertex independently
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(a)5000-5000 (b)5000-12500

Fig. 10 Correspondence quality characteristics on the SCAPE dataset. SCAPE 5000 was used to train all networks. Testing on SCAPE
5000 and 12500 datasets are shown on left and right. Other learned descriptors, unlike ours, do not generalize well to datasets of differing
resolutions.
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Fig. 11 Ablation experiments for our learning descriptor.

without using the connections between shape vertices. The
red curve is ACD with CSMCNN training as described in
Section 5.2. The experiment proves that CSMCNN is a better
choice for improving ACD performance than an MLP.

6.3.5 Robustness to geometric noise

To further demonstrate the robustness of CSMCNN to
noisy data, we evaluated the performance of the optimized
descriptors for shapes from the FAUST dataset with varying
levels of geometric Gaussian noise. We trained CSMCNN on
the original noise-free FAUST 6890 dataset and computed the
optimized descriptor of the noisy shape in the testing stage.
We visualize descriptor distances in Fig.12. Experimental
results show that even as noise increases, our descriptor

Reference 0.0 0.4 0.8

Fig. 12 Experiment using shapes with different levels of geometric
Gaussian noise. One point on the leftmost shape is chosen as a
reference (white ball). We visualize the normalized L2 descriptor
distance between this point and all the points on each query shape.
Left to right: Gaussian geometric noises of 0, 0.4, and 0.8. Hotter
colors represents greater distances.

Table 6 Number of network parameters (millions) and runtimes
(seconds per epoch).
Method MGCN ACSCNN SplineCNN CSMCNN
Parameters 3.03 4.80 4.11 1.90
Training time 106.86 20.27 4.95 4.77
Testing time 23.89 2.07 0.87 0.72

produces the correct region corresponding to the reference
point.

6.3.6 Speed

We also compared the number of parameters and runtimes
of different convolution neural networks. The runtime for
all methods was evaluated on the FAUST 6890 dataset;
each epoch contained 80 and 20 shapes during training and
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Source ACD Source ACDCSMCNN CSMCNN

Fig. 13 Left: results for shape with part missing, right: results for topological change, using ACD, and combining ACD with CSMCNN
and nearest neighbor searching in the descriptor space. Hotter colors represent larger geodesic distances to the ground truth match.

testing, respectively. Table 6 reports the numbers of network
parameters and runtime, showing that our method has fewer
parameters and runs faster than the others.

7 Conclusions
We have proposed a novel handcrafted spectral descriptor
and a powerful learning descriptor approach. To begin,
we use the anisotropic Laplace-Beltrami operator and
Chebyshev polynomials to create an anisotropic Chebyshev
descriptor (ACD) in the spectral domain. It has many good
properties and characteristics, including being intrinsic,
highly discriminative and computationally efficient. Then,
using an adaptation of ACSCNN, we create a spectral CNN
called the Chebyshev spectral manifold convolution neural
network (CSMCNN). To make the CSMCNN resilient to
shape discretization and resolution, we approximate the
spectral convolution in CSMCNN using a small number
of eigenfunctions. A new learning descriptor is formed
by combining the CSMCNN with the ACD. Experimental
results demonstrate that the ACD has stronger discriminative
ability than state-of-the-art handcrafted descriptors. It
not only can distinguish intrinsic symmetry but also is
computationally efficient. Furthermore, we demonstrate that
the ACD-CSMCNN combination is extremely resilient when
dealing with datasets of various resolutions. As we can see
from the paper, spectral descriptors and spectral convolution
both depend on how filters are represented. We use Chebyshev
polynomials because of their orthogonality and recursive
representation. Theoretical analysis of the filters’ effect when
represented with other basis functions is an important future
topic.
One limitation must be noted. Both ACD and CSMCNN

are spectral-based methods, which are suitable for non-rigid
shape analysis due to their intrinsic characteristics. However,
thesemethods are sensitive to topological variations of shapes,

and cannot handle partial shapes, and topology changes in
shapes. Fig. 13 demonstrates our results on shapes with parts
missing or changing topology.
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