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Abstract Learning based approaches havemade substantial
progress in capturing spatially-varying bidirectional
reflectance distribution functions (SVBRDFs) from a single
image with unknown lighting and geometry. However, most
existing networks only consider per-pixel losses which limit
their capability to recover local features such as smooth
glossy regions. A few generative adversarial networks
use multiple discriminators for different parameter maps,
increasing network complexity. We present a novel end-to-end
GAN to recover appearance from a single picture of a
nearly-flat surface lit by flash. We use a single unified
adversarial framework for each parameter map. An attention
module guides the network to focus on details of the maps.
Furthermore, the SVBRDF map loss is combined to prevent
paying excess attention to specular highlights.We demonstrate
and evaluate our method on both public datasets and real data.
Quantitative analysis and visual comparisons indicate that
our method achieves better results than the state-of-the-art in
most cases.

Keywords SVBRDF; appearance capture; generative
adversarial network; attention mechanism

1 Introduction
The complex interaction between light and the surfaces of
objects with various appearances explain the variations in
photographs captured in the real world. Acquiring the surface
reflection parameters of objects is one of the major tasks in
computer vision and realistic graphics [1–5], with various
applications including appearance transfer, restoration, and
augmented reality. Breaking appearance down into reflectance
and lighting leads to powerful image editing applications,
such as material transfer [6] and illumination editing [7].
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There is a trend towards data-driven approaches when
capturing surface appearance, as they are more expressive
than analytic models. Recently, lightweight capture processes
using consumer devices and uncalibrated lighting have drawn
more attention. It would benefit content creation for virtual
worlds if a user could create the appearance from a few or
even a single image. Since different lighting and material
properties may produce the same visual effects, recovering
material parameters based on a single image is an ill-posed
problem.
Researchers have proposed many learning-based

approaches to address the task; some focus on estimating
spatially-varying surface material parameters from a single
image [8–11]. The numerical pixel error in these works is low,
but the visual effect is not satisfactory in certain cases. Others
use multiple image inputs to capture materials [12, 13], but
require tedious optimization to support an arbitrary number
of input images. In this paper, inspired by the significant
progress in using GANs [14] in image processing, we propose
an end-to-end learning framework to reconstruct SVBRDFs
from a single image.
Traditional convolutional neural networks (CNNs) for

SVBRDF recovery cannot effectively express smooth
highlight details in the reconstructed appearance. Another
challenge is generalizability, especially when trained on
synthetic datasets. Some methods [15, 16] add multiple
adversarial losses to optimize individual material parameters.
Considering the inherent instability in GAN training,
increasing the adversarial loss inevitably increases redundancy
and the difficulty of determining network parameters. We
aim to obtain high-quality material parameters to efficiently
reconstruct the appearance of the input, so in our framework
we use a unified discriminator for all maps. Specifically, we
apply a binary classification discriminant network to judge the
authenticity of the generated results, and use it to optimize the
latent features in the generative network, so that the generator
can produce images of high perceptual quality.
Parameter estimation not only needs to consider overall
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quality, but also must be optimized for certain local details,
which are often the main visual clues for human determination
of material properties: when a person observes an image, they
first scan it globally, and then pay attention to details. This
focusing of attention tends to allocate more resources to the
target of interest, while suppressing the less useful features.
Therefore, we design an attention mechanism to improve the
quality of SVBRDF maps, especially for local high-frequency
details.
However, the attention mechanism may also increase error,

especially in specular regions, because it focuses on highlights
and cannot decompose the result of the joint contributions
of multiple maps, resulting in false bright regions in the
specular map. We thus add an SVBRDF-map loss to guide
weight learning after adopting the attention mechanism. Our
new joint loss consists of adversarial loss, rendering loss and
SVBRDF map loss. We have validated that our GAN-based
reconstruction framework can produce convincing results.
To summarize, our contributions include:
• a unified GAN framework for supervised high-quality
SVBRDF map recovery,

• an attention mechanism specifically designed to
improve visual quality resulting from the reconstructed
SVBRDFs, and

• a new joint loss consisting of a weighted sum of the
adversarial loss, rendering loss and SVBRDF map loss.

2 Related work
This overview mainly discusses works that allow non-expert
users to employ image-driven appearance modeling tools
with commodity devices and lightweight capturing processes.
Some use a few or multiple images as input and fit
the SVBRDF parameters using them, without any prior
knowledge. Others are deep learning-based, and use
large-scale datasets to train network parameters.

2.1 Multi-Image Appearance Modeling

Several works use multiple images as input to capture
SVBRDFs. Chandraker et al. [17] use motion cues to jointly
optimize the shape and reflectance of objects, under known
lighting conditions. Hui et al. [18] capture several images of
an object from a fixed viewing angle under varied lighting
to estimate shape and reflectance. Riviere et al. [19] use
a handheld camera or mobile phone to collect spatially
varying material samples and utilize hand-crafted heuristics
to estimate specular and diffuse reflectance. Xia et al. [20]
estimate SVBRDFs and detailed geometric shapes from
videos of rotating objects under unknown natural lighting.

Although these methods can obtain accurate reflectance, they
need heuristic regularization or assumptions due to the paucity
of input samples. In contrast, our method can perform well
even for a single input image.

2.2 Single or Few Image Appearance Modeling

Other works aim to estimate material properties by inputting
one or a minimal number of images. Boivin et al. [21] use a
single image and a 3D geometric model to recover surface
reflectance. Their algorithm first classifies the materials in the
image, and finds the optimal values of material parameters by
continuous layering and iteration. Aittala et al. [22] recover
reflectance from only two photos assuming that each local
area is statistically similar. Xu et al. [23] obtain the BRDF of a
homogeneous plane sample from two photos; the approach can
be can also be simply extended to acquisition of SVBRDFs by
clustering the materials. These methods usually require strict
constraints and complex fitting or optimization to achieve
their goals.

2.3 Learning-based Appearance Modeling

At present, most successful works are deep learning based, as
this allows use of prior knowledge to help solve this ill-posed
problem. Li et al. [8] obtain diffuse albedo and normal
maps from nearly-planar samples under global illumination,
using a self-augmentation strategy to train the model using a
small training set. Deschaintre et al. [9] proposed a parallel
network structure that combines a fully connected layer with
a traditional U-Net [24] to extract global features, in order to
reduce artifacts. They extended this work to flexibly allow
a varying number of images by using an order-independent
fusion layer [25]. Li et al. [26] designed a complicated cascade
network that can recover shape and SVBRDFs simultaneously.
They added a rendering layer to the network to estimate global
illumination effects; this is essential for real-world scenes. The
method proposed by Gao et al. [12] can estimate SVBRDF
maps for a flat sample from any number of input photos.
They train an autoencoder to build the latent space of the
SVBRDF maps, and then optimize the material maps within
it. Using more input images, the SVBRDF maps become
more accurate, but takes more time.
Zhao et al. [27] proposed an unsupervised generative

adversarial neural network that can generate high-quality
SVBRDFs from a single photograph with a repetitive
structure. Guo et al. [13] proposed MaterialGAN to solve
the problem of SVBRDF reconstruction from multiple
input images. Generally, the multi-view method requires
relatively correct viewing angles and light directions to
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Fig. 1 Overview of our GAN architecture. The input is a single image. Solid arrows indicate the direction of data flows, while dashed
arrows indicate the direction of gradient propagation.

provide high-quality output, but non-expert users cannot
accurately determine these parameters, increasing difficulty
and decreasing robustness of the method. Asselin et al. [28]
use a new portable capture device to obtain real datasets,
and estimate material maps based on the deep learning
architecture of StyleGANv2 [29]. Zhou et al. [15] adopt
multiple adversarial losses and add some real-world images
during training to improve the quality of the reconstructed
parameter maps, but the generated maps have artifacts in
saturated highlight regions. Guo et al. [16] designed a
two-stream neural network to obtain SVBRDF maps, which
contains two independent feature extraction modules and four
feature fusion modules to reduce artifacts caused by input
highlights, but there are still large errors in some cases. Our
solution is an end-to-end GAN architecture; an attention
mechanism is embedded in the generator to keep details.
A comprehensive comparison of results demonstrates the
superiority of this method.

3 Method
Inspired by the progress of GANs in image processing tasks,
we propose a new GAN architecture, which can generate
reliable SVBRDF maps from a single image. The main
structure of our GAN architecture is shown in Fig. 1. We
input a picture taken by a mobile phone or camera into
the generation network to give an initial result. We then
input the predicted SVBRDF maps and ground truth maps
into the rendering layer to randomly render multiple images
and concatenate them. The discriminant network is used to
distinguish between true and false, and the final difference is
combined as the loss function.
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Fig. 2 Generative network architecture for one level, including
down-sampling components, up-sampling components and a fully
connected layer. The attention mechanism module is embedded
within the down-sampling component.

3.1 Network Structure

Our generator consists of an encoder and a decoder, and
finally generates a normal map, a diffuse albedo map, a
roughness map, and a specular albedo map. For convenience,
we denote the layers producing outputs of the same resolution
as a level. Fig. 2 shows our generator architecture for one
such level, which includes down-sampling, up-sampling, and
a parallel fully connected layer to fuse global information. A
typical down-sampling block contains 4 layers: a convolution
layer, an attention layer, an InstanceNorm layer and a Leaky
ReLU [30] activation layer. The attention mechanism module
will be explained in Section 3.2. A typical up-sampling block
contains 4 layers: a deconvolution layer, an InstanceNorm
layer, a Leaky ReLU activation layer and a dropout layer.
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For image generation tasks like ours, the generated result
mainly depends on one image instance, so we use instance
normalization instead of normalizing the entire batch. In
order to increase the nonlinear relationship between the layers
of the network, the choice of activation function is crucial.
We use the Leaky Relu function with a weight of 0.2, as,
compared to Relu, doing so can speed up convergence and
effectively avoid gradient vanishing and dead neurons during
training. We introduce skip connections to sample blocks of
the same size to reintroduce missing high-frequency details.
Deschaintre et al. [9] showed that the current task cannot
be readily be solved using only a network structure similar
to U-Net, as the convolution operation is usually used to
extract spatially local features. The practical receptive field
of the CNN is actually much smaller than the theoretical
value especially at high levels, as shown by Zhou et al. [31].
Therefore, a global feature extraction module is needed to
fuse far-away information. Specifically, we add a network
composed of fully connected (FC) layers parallel to the U-Net
as the global feature extractor, following [9]. The output of
the InstanceNorm layer in each sampling block is added to
the output of the FC layer in the current level and then passed
to the activation layer. The output of the FC layer is further
concatenated with the mean vector of the activation layer
output, as the input to the FC layer in the next level. The
discriminator follows Isola et al. [32].

3.2 Attention Module

Attention mechanisms [33, 34] are widely used in natural
language processing, speech and image processing, etc. [35–
37]. We designed an attention module considering multi-scale
features (see Fig. 3) to improve both global and local quality
of the reconstructed results. Intuitively speaking, ‘high-level’
attention tends to concentrate on highlight saturated area,
while ‘low-level’ attention focuses on details like local
high-frequency variations in SVBRDF maps. Experimental
results of ablation studies of the attention module are given
in Section 4.3.
X ′ in the attention module is given by

X
′

h,w,c = σ(

N∑
i=1

fi(Wc ⊗ αi(X
l
h,w,c)))⊙X l

h,w,c, (1)

where αi represents average pooling, Wc denotes a
1 × 1 convolution kernel, fi is bilinear interpolation for
up-sampling, σ is the activation function, ⊗ represents
convolution, and ⊙ represents element-wise product.
After adding this mechanism, detailed features are

enhanced, as can be seen later from the results in Fig. 6.

Avg Pooling Conv Up-Sampling

Relu

C

C

Fig. 3 Attention module. Arrows indicate directions of data flows.
Xl is the input to level l.X ′ is the result of multiplying the output
of the activation function and the input feature map. Xl+1 is the
output of the entire attention module to the next level, concatenating
Xl andX ′.

3.3 Loss Function

Choice of loss function is critical for generators. Deschaintre et
al [9] showed that L1 loss using SVBRDF maps alone cannot
recover appearances relatively consistent with the ground
truth, so they used the rendering loss instead of L1 loss.
Although re-rendering of the restored SVBRDF maps can
produce an appearance relatively consistent with the input,
there are still large errors for some reflection parameters,
especially the roughness map and the specular albedo map.
In order to account for both per-pixel error and consistency,
we apply a joint loss function which is a weighted sum of
adversarial loss, rendering loss and SVBRDF map loss:

LG = λ1Ladv + λ2Lrender + λ3Lsvbrdf (2)

The optimized objective function for the generative adversarial
network is

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))] +

Ez∼pz(z)[log(1−D(G(z)))],
(3)

where G is the generative network, which represents the
mapping of training samples to generated data. D is the
discriminant network, which discriminates the input samples
and maximizes the distance between the real data and the
generated data. x ∼ pdata(x) is the real data, and z ∼ pz(z)

is the input data. The two networks optimize the objective
function through alternated iterative training.
The rendering loss

Lrender =
1

N

N∑
i=1

∥log(Ri(x))− log(Ri(y))∥1 (4)

is an L1 loss between the rendering result of the predicted
SVBRDF maps and the ground truth SVBRDF maps under
several lighting and viewing directions. The logarithmic
transformation aims to enhance details especially in dark
regions, following [38].N represents the number of generated
images rendered in random directions, andRi is the rendering
layer in the network. The rendering layer acts as a pixel shader
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that evaluates the rendering equation at each pixel of the
SVBRDFs, given a pair of viewing and lighting directions.
The process is performed in SVBRDF coordinate space. We
use the Cook-Torrance [39] BRDF model to render the image
following Aittala et al. [40]. The SVBRDFmap loss is defined
as:

Lsvbrdf = λnLn + λdLd + λrLr + λsLs, (5)

where Ln, Ld, Lr, Ls are the L1 loss of the normal map,
diffuse albedo map, roughness map, and specular map. In our
experiments, λn = λd = 1, λr = λs = 0.5.

4 Experiments
We now introduce the dataset and experimental parameters
used in our experiments, and give a quantitative and qualitative
evaluation of our proposed methods.

4.1 Datasets and Implementation

For evaluation we use a synthetic dataset provided by
Deschaintre et al. [9]. It contains approximately 200,000
synthetic samples, including training and test samples. Each
sample contains the original image, normal map, diffuse
albedo map, roughness map, specular albedo map; the size of
the image is 256.
We implemented our model using the Tensorflow [41]

deep learning framework. Training was performed on a Tesla
V100 GPU. The generator and the discriminator were trained
alternately, and the discriminator was updated once after the
generator was trained 5 times, on average. Training used
the Adam optimizer [42], with initial learning rate 0.00002,
reduced by half every two epochs. All other hyperparameters
were set to the default values for Tensorflow. We set λ1 = 0.1,
λ2 = 0.5, λ3 = 0.5 forLadv. The batch sizewas 8. We trained
our GAN architecture for 20 epochs, which took about 7 days.

4.2 Comparison

We conducted quantitative and qualitative comparisons on
the synthetic dataset to verify the validity. For further
experimental results, refer to the electronic supplementary
material. The test dataset is a selection from the synthetic
dataset to provide ground truth, and was not used in training.
4.2.1 Synthetic Data
We chose several state-of-the-art methods [9, 12, 15, 16]
for comparison. Gao et al. [12] can use an arbitrary number
of input images; to be fair, we set N = 1. The root mean
square error (RMSE) on each reflectance map was calculated.
Merely calculating the numerical error of the material map
does not suffice to show the superiority of our method, so

Table 1 Comparison to various baseline methods. RMSE for each
map is given; the maps were rendered using 6 random lighting and
viewing directions. The best scores are highlighted in bold.
Method Normal Diffuse Roughness Specular Render
RADN 0.061 0.018 0.118 0.036 0.052
DIR 0.064 0.021 0.106 0.031 0.057
ASSE 0.066 0.045 0.111 0.040 0.077
HATN 0.066 0.021 0.109 0.030 0.056
Ours 0.062 0.017 0.103 0.028 0.051

Table 2 Comparison using SSIM.
Method Normal Diffuse Roughness Specular Render
RADN 0.791 0.916 0.701 0.864 0.862
DIR 0.763 0.872 0.699 0.897 0.848
ASSE 0.758 0.804 0.689 0.894 0.760
HATN 0.774 0.885 0.704 0.932 0.842
Ours 0.784 0.921 0.709 0.944 0.872

the RMSE between the re-rendered image and the original
image under 6 random lighting and viewing directions was
also calculated. Average results for all test sets are given in
Tab. 1. To further demonstrate the superiority of our method,
we also considered two more advanced evaluation metrics,
SSIM and LPIPS, with results shown in Tabs. 2 and 3. Our
method achieves better results on several error metrics.
To make a qualitative comparison, we randomly selected

some synthetic data, and provide visual results for each
algorithm in Fig. 4. When the method of Deschaintre et al. [9]
processes input images with strong highlights, the output
material maps have noticeable artifacts. Gao et al. [12] need a
reconstruction method to give the initial input material maps;
we used the material maps provided by Deschaintre et al. [9].
If these initial maps are not close to the ground truth, the
optimization result is likely to fall into a local minimum.
Furthermore, their method is not designed for a single input
only. Zhou et al. [15] suffer from artifacts or color distortion
when dealing with areas with significant highlight saturation,
as shown in the upper row of Fig. 4. Guo et al. [16] can
effectively suppress artifacts, but there are still noticeable
visual errors in some cases, as shown in the left column of
Fig. 4. Our results are better than previous methods in terms
of overall visual appearance and some local details, due to
our joint loss and attention mechanism, which help to restore
global and local consistency of feature details.

4.2.2 Real Data

We compared our results to those of other methods [9, 12, 15,
16] using the collected real samples [9, 43]. Pictures taken by
cameras or mobile phones were used as inputs, and the output
SVBRDF maps were re-rendered under the same lighting
conditions; final results are displayed in Fig. 5. As can be
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Fig. 4 Comparison to RADN of Deschaintre et al. [9], DIR of Gao et al. [12], ASSE of Zhou et al. [15] and HATS of Guo et al. [16], using
synthetic data. The parameters from our method and its results after re-rendering are closer to the ground truth.

Table 3 Quantitative comparison using LPIPS.
Method Normal Diffuse Roughness Specular Render
RADN 0.284 0.127 0.442 0.349 0.290
DIR 0.286 0.149 0.476 0.379 0.298
ASSE 0.267 0.254 0.414 0.271 0.274
HATN 0.274 0.128 0.387 0.257 0.271
Ours 0.278 0.124 0.384 0.341 0.268

seen, results of our method after re-rendering are closer to
the real input.

4.3 Ablation Studies

We performed a set of ablation experiments to verify the
contribution of each component of our method, and compared
our GAN architecture to ablated versions. The variants
considered were:
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Fig. 5 Comparison to RADN of Deschaintre et al. [9], DIR of Gao et al. [12], ASSE of Zhou et al. [15] and HATS of Guo et al. [16] using
a single real image as input. All re-rendered results were generated with the same lighting conditions and viewing direction. It can be seen
that our results are closest to the input pictures, effectively reconstructing the SVBRDF maps.

• without Ladv. To analyze the importance of the
adversarial loss in restoring material maps, we removed
the discriminator network and set λ1 = 0.

• without AM. To verify that the attention mechanism
module can effectively enhance details, we removed the
module.

• without Lsvbrdf . To verify that, if SVBRDF map loss is
not used (λ3 = 0), there will be incorrect bright regions
in the specular map.

• MultiGAN. To demonstrate that our unified GAN
framework can produce better results, multiple
adversarial loss experiments were conducted.

Deschaintre et al. [9] have already demonstrated the

Table 4 RMSE evaluation of ablation studies; w/o means without.
Method Normal Diffuse Roughness Specular Render
w/o Ladv 0.067 0.018 0.109 0.029 0.055
w/o AM 0.063 0.018 0.112 0.038 0.052
w/o Lsvbrdf 0.063 0.017 0.110 0.050 0.054
MultiGAN 0.065 0.018 0.149 0.036 0.059
Ours 0.062 0.017 0.103 0.028 0.051

importance of rendering loss.
We trained the above models on the same dataset under the

same training conditions as before. Quantitative results of the
ablation studies are shown in Tab. 4.
The visual comparison in Fig. 6 further shows that our

approach provides the best results. Fig. 6(a) shows that when
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Fig. 6 Examples of qualitative displays of ablation experiments. The difference has been shown in red and zoomed in.

the adversarial loss is removed, the overall error increases,
especially in the normal map: the adversarial loss has a
significant impact on the quality of the generator. In Fig. 6(b),
there is higher error in the roughness map: it lacks details after
removing the attention module. Simply using the rendering
loss to update the network parameters, without Lsvbrdf , leads
to weight reduction for the specular albedo map, resulting
in higher errors, as shown in Fig. 6(c). If SVBRDF loss is
omitted, if a picture with specular highlights is input, the
network will pay more attention to it due to the existence of
the attention mechanism, but cannot decompose the maps,
resulting in the false highlight in the specular albedo map, as
shown in Fig. 6d. When adding multiple adversarial losses for
training as inMultiGAN, the recovery of SVBRDFmaps is not
significantly improved. This is due to the inherent difficulty
in achieving the Nash equilibrium between the generator and
multiple discriminators, so it is difficult and time-consuming
to obtain thane optimal solution.
In order to further study the role of SVBRDF map loss

in the training process when the input image has specular
highlights, we analyzed its effect by changing the value of

λ3, as shown in Fig. 7. As λ3 increases, the false highlights
in the specular albedo map are eliminated, and the learned
results become closer to the ground truth.

5 Conclusions
This paper presents a novel solution based on a GAN to
recover SVBRDF maps from a single image. It can generate
more accurate material maps and re-rendered appearance is
more realistic. However, our method also has limitations.
Although we achieve reasonable results for input images

containing specular highlights, when the highlights are too
large, low-saturation pixels will dominate the entire image. In
this case, the network cannot learn enough features to generate
plausible SVBRDF maps, resulting in color distortion around
highlights in the re-rendered image. One possible way to
improve this is to use multiple inputs from different lighting
and viewing directions. A more flexible network structure
should also be designed to support multiple inputs.
Currently, a synthetic dataset is used for training, then

the model is applied to real data to generate material maps,
because labelled real datasets are scarce and difficult to
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Fig. 7 Effect of λ3 on results.

acquire. Therefore, another potential direction for future work
is to find a way to utilize real datasets in training.
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