
Computational Visual Media

https://doi.org/10.1007/s41095-022-0288-2
Research Article

Autocompletion of repetitive stroking with image guidance

Yilan Chen1, Kin Chung Kwan2, and Hongbo Fu1(B)

© The Author(s)

Abstract Image-guided drawing can compensate for a
lack of skill but often requires a significant number of
repetitive strokes to create textures. Existing automatic stroke
synthesis methods are usually limited to predefined styles or
require indirect manipulation that may break the spontaneous
flow of drawing. We present an assisted drawing system to
autocomplete repetitive short strokes during a users’ normal
drawing process. Users draw over a reference image as usual;
at the same time, our system silently analyzes the input strokes
and the reference to infer strokes that follow the users’ input
style when certain repetition is detected. Users can accept,
modify, or ignore the system’s predictions and continue
drawing, thus maintaining fluid control over drawing. Our
key idea is to jointly analyze image regions and user input
history to detect and predict repetition. The proposed system
can effectively reduce the user’s workload when drawing
repetitive short strokes, helping users to create results with
rich patterns.

Keywords Interaction; Autocompletion; Digital Drawing;
Prediction; Texture Synthesis

1 Introduction
Drawing is a common form of artistic expression. By varying
the strokes, texture, and shading, artists can create drawings
in various styles [1]. However, it remains a largely manual
process that may require significant artistic expertise and
repetitive manual labor.
To reduce repetitive workload, various methods have

been proposed to automatically synthesize strokes from
user-provided examples [4–6] or through procedural steps [7].
1 School of Creative Media, City University of Hong Kong. Tat

Chee Avenue, Kowloon, Hong Kong SAR, China. E-mail:
Yilan Chen, yil.ellen.chan@gmail.com; Hongbo Fu, hong-
bofu@cityu.edu.hk.

2 University of Konstanz. University Street 10, 78464 Konstanz,
Germany. E-mail: Kin Chung Kwan, kckwan@ieee.org.

Manuscript received: 2022-01-01; accepted: 2022-01-01

However, these methods usually perform in batches, reducing
user participation in the creative artistic process. Furthermore,
since many methods have predefined styles and only allow
users to modify a few global parameters, the final results may
look monotonous and lack originality (see Figure 3). Other
interactive systems [8, 9] preserve the normal drawing flow
while automating significant stroke synthesis. We share a
similar goal to theirs. However, they typically target experts,
requiring artistic expertise for high-level picture composition
and fine-grained control.
One common way to overcome this skill barrier is to

use a reference photo as a scaffold for drawing, by tracing a
reference photo physically using transparent paper, or digitally
via layers in digital drawing applications. Prior research [10]
shows that even when a reference image is used as a scaffold,
people still enjoy the freedom of individual expression. We
thus propose to enhance drawing using an image scaffold
by automating tedious repetitions. Our idea is to bridge the
two extremes: manual drawing, which allows full control
but can be tedious, and image-based algorithmic synthesis,
which saves effort but provides limited user control and
interactivity. As the first attempt towards this goal, we focus
on autocompleting repetitive short strokes, which are very
common in pen-and-ink drawing (see Figure 2), under the
guidance of a reference image. As in typical digital drawing
applications, users can draw freely on a reference image with
our system. Meanwhile, our system analyzes the relationships
between user inputs and the reference image, detects potential
repetitions, and suggests what users might want to draw
next. Users can accept, reject, or ignore the suggestions and
continue drawing, thus maintaining fluid control of drawing.
See Figure 1 for an example.

The major contribution of this paper is the technical design
of an image-guided autocompletion drawing tool that can
preserve the natural drawing process and individual user
styles. Our approach is inspired by image analogy [4] and
operation history analysis and synthesis [9] while leveraging
two key insights. Firstly, since the act of drawing repetitive

Vol. 9, No. x, month 2022, xx–xx

2 Y. Chen, K. C. Kwan, H. Fu

(a) user input (b) suggestion (c) accept (d) type visualization (e) result

Fig. 1 Example of our system workflow. (a) A user stipples over a leaf region of a reference image while our system predicts what she
might draw next (b) (blue strokes: inferred exemplars, pale red region: inferred target region; semi-transparent strokes: system suggestions),
(c) which is then accepted by the user (green strokes: user inputs or accepted suggestions). (d) shows the manually drawn content (black, 261
strokes) and autocompleted content (red, 3510 strokes). (e) shows the final result; note the different repetitive stroke patterns in different
regions. Our autocompletion system can reduce tedious repetitive input, while providing full user control.

strokes usually indicates specific intentions (e.g. filling an
object or hatching a shaded region), we use common image
features shared by the coherent repetitive strokes to infer the
intended region. Secondly, the drawing is usually related to
the underlying reference image (e.g. the density of strokes
depends on image brightness). Therefore, we analyze the
properties of both the drawing and the reference image to
infer possible relationships as contextual constraints for stroke
prediction.
We have implemented a prototype and conducted a

pilot study with participants from different backgrounds to
evaluate its utility and usability. The quantitative analysis and
qualitative feedback, as well as various drawing results created
by the users, suggest that our system effectively reduces a
user’sworkloadwhen drawing repetitive short strokes, helping
users to create results with rich patterns.

2 Related Work
2.1 Image-assisted Drawing

Many drawing support tools adopt reference images and
provide intelligent assistance to novices, e.g. beautifying
users’ sketches with extracted image features [10–13], or
providing educational guidance to novice users [14–16].
We share a similar goal to [17–19] of reducing the user’s
workload. However, these works use predefined algorithms to
generate strokes guided by cursor movement and only take the
user’s input as an indicator of where to render, thus greatly
limiting the user’s artistic freedom. In contrast, we aim to
provide more flexibility between automatic synthesis and
manual artistic control by autocompleting tedious repetitions

during the user’s normal drawing processes.

2.2 Image-based Artistic Rendering

Our work is related to image-based artistic rendering
(IB-AR) [20], especially stroke-based methods and
example-based methods.

Stroke-based methods create artistic results from images by
strategically generating brushstrokes whose properties (e.g.
position, density, orientation, color, size) are related to image
properties (e.g. gradient, edges, color, salience) [7]. Among
those methods, the closest to ours are the early image-based
pen-and-ink rendering methods [21, 22], which allow users
to input sample elements for distribution. However, users
have to prepare the sample elements separately (usually as
a standalone file) and then adjust parameters to produce
the rendered output. In contrast, our system lets users
directly provide exemplars on a reference image while silently
inferring the distribution properties.

Example-based methods aim to model the visual features of
example images for transferal. There are two major modeling
approaches: the parametric approach [6, 23, 24] that is based
on statistical analysis of stroke characteristics, thus preserving
global textures better, and the non-parametric approach [4,
5, 25] based on patch-wise mapping, thus capturing local
structures better. We combine both methods to generate
strokes: the parametric approach is used to infer statistical
relationships between stroke properties and image features,
and the patch-wise matching method is used to preserve
the local arrangement of strokes. Stylit [5] allows users to
stylize a rendered ball and simultaneously propagates the

Autocompletion of repetitive stroking with image guidance 3

(a) By Alphonso Dunn (b) By Vincent van Gogh

Fig. 2 Inspiring manual drawings by artists.

(a) our result (b) produced with [2] (c) produced with [3]

Fig. 3 Style comparison. (a) our work is designed to reduce
the workload of completing repetitive patterns during the manual
drawing process. Full control over the drawing process leads to
more dynamic results than (b) Photoshop’s art history brush tool [2]
and (c) StippleShop [3].

style to arbitrary 3D shapes. Our method shares a similar
idea of interactive style propagation, but with two main
differences. Firstly, instead of propagating a style globally,
we propagate a style to perceptually similar local areas so
that users can conveniently define different styles in different
areas. Secondly, we represent drawings as discrete stroke
operations instead of raster textures to better preserve their
structure, e.g. changing the color or size of the drawn strokes.

2.3 Operation History-assisted Authoring

Operation histories [26] have been leveraged for various
authoring tasks, such as sketching [9], animation [27, 28],
modeling [29, 30], beautification of freehand drawings [31],
and handwriting [32]. Our work is most closely related to that
of Xing et al. [9], which autocompletes repetitive sketching by
analyzing dynamic operations recorded during authoring. Our
method extends their work to consider additional information
from a reference image and thus enables the propagation of
strokes to regions with similar image attributes such as color
or semantic meaning.

In our use case, an operation is an input stroke, so our work
is also related to stroke pattern analysis and synthesis [8,
33–36]. These works disregard the temporal relationships

Table 1 Differences between our tool and closely related work.
B means generation is performed in batches, based on predefined
attributes, whileDymeans generation is based on dynamic operation
history. S indicates operation on strokes, P on pixels. Dimeans users
can specify a style by directly operating on the output, I indicates
indirect interaction Y and N represent yes and no, respectively, for
using image references.

Method [22] [4] [6] [8] [9] Ours
Reference Y Y Y N N Y
Process B B B B Dy Dy
Format S P S S S S
Operate I I I Di Di Di

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4 User interface, comprising (a) a central drawing canvas,
(b) a toolbar for drawing and selection, (c) a toggle-switch for
autocompletion mode, (d) a brush property toolbar, (e) a filling
property toolbar, and (f) a layer panel.

between past strokes, and do not use image guidance, so are
different from ours.

We summarise the major differences between our work and
the discussed closely related work in Table 1.

3 User Interface
Our system prototype follows a standard digital drawing
interface, with addition of our autocompletion feature, as
shown in Figure 4. The user draws on top of the reference
image displayed semi-transparently on the main canvas, while
our system analyzes the input strokes and the reference image
in the background.

3.1 Autocompletion

In autocompletion mode, our system automatically performs
analysis whenever the user finishes a new stroke. When a
potential repetition is detected, our system highlights the
current repetitive strokes and an inferred propagation region,
updates the inferred parameters in the filling property panel,
and generates an autocompletion suggestion. Users can accept
or reject the suggestion using hotkeys, accept part of it using
lasso selection, or ignore it and continue to draw (Figure 5).
The suggestion will continuously update according to user
input.

4 Y. Chen, K. C. Kwan, H. Fu

(a) selection (b) result (c) updated (d) final

Fig. 5 An example of autocompletion. The user selects part of the suggestion using the lasso tool (a) with the result shown in (b), then
continues to draw leading to the updated suggestion (c), and accepts all the suggestions using a hotkey (d). The blue strokes in (a) and (c)
indicate inferred exemplars from the user’s input strokes.

3.2 Interactive Editing

Our system provides a set of tools to refine the autocompleted
results.
Propagation region editing. Users can create, add, or

subtract a region using the intelligent scissors tool [37],
or expand an existing region by a fixed width (see
Figure 4(e)) for stroke autocompletion. Figure 6 shows an
example of creating a new region for stroke regeneration.

Density editing. Users canmodify three parameters to adjust
the density of the generated strokes: the average spacing,
the lightness coefficient and the gradient coefficient. The
latter two define the relationships between density and
image lightness and gradient, respectively. Our system
automatically updates these parameters upon prediction,
and the updated parameters provide a starting point for
user manipulation. Figure 7 shows an example.

Orientation editing. Our system automatically predicts
whether the input exemplar is correlated with the image
flow; orientation can also be adjusted by the user
manually. The user can also modify the image flow
field using the gesture brush, and the touched strokes
will be rotated to be alignedwith the gesture. See Figure 8
for an example.

3.3 Auxiliary Functions

Our prototype also includes the auxiliary functions below.
These are not unique to our system but can facilitate the usual
drawing processes.
Post-editing stroke properties. Users can select existing

strokes and edit their properties, such as size and color.
Auto-coloring. This function, when used, can automatically

colorize strokes with color from the reference image.
View switching. Users can press the space key to switch

between the canvas view, reference view, and pure

drawing view.

4 Approach
Our system involves two key steps: (i) inferring the input
exemplar, the output region, and the contextual constraints
from the stroke history and the reference image, and (ii)
synthesizing suggestive strokes accordingly. Section 4.1
first describes how to synthesize strokes, assuming all the
information is available, and then Section 4.2 explains how
to infer the necessary information for synthesis.

4.1 Stroke Synthesis
4.1.1 Problem statement

The inputs to our stroke synthesis method include an exemplar
E consisting of repetitive strokes, the reference image I , a
target region mask M , an orientation map O, and a radius
map R. Pixel values of R determine the stroke spacing: a
smaller value leads to a denser distribution. Our goal is to
compute an output set of strokes X over the output region
M , such thatX is similar to E with respect to I . We describe
how to infer E,M , O, and R from user interaction with I in
Section 4.2.

4.1.2 Idea

To support autocompletion using the reference image, we
extend the discrete element texture synthesis method [9, 38],
which represents strokes as point samples and iteratively
improves the sample distribution by minimizing the
neighborhood difference between the exemplar and the output,
using an additional reference image. Firstly, we combine
sample neighborhoods [38] with image features [4] tomeasure
neighborhood differences. Secondly, the range and orientation
of each sample neighborhood is determined by the radius and
orientation maps inferred from the reference image. Figure 9
shows our key idea.

Autocompletion of repetitive stroking with image guidance 5

(a) initial (b) new region (c) result

Fig. 6 Region editing example. The initial prediction (a) contains only the brown region. The user-specified region (b) contains the entire
apple, with the corresponding synthesis result in (c).

(a) (8, 0, 0) (b) (15, 0, 0) (c) (8, 0.2, 0) (d) (8, 0, 0.6)

Fig. 7 Density editing example with different values of spacing, lightness and gradient parameters. Larger spacings lead to sparser strokes,
while greater lightness and gradient lead to larger stroke density variations.

(a) (b) (c) (d)

Fig. 8 Orientation editing example. (a) User gesture. (b) Orientation field updated based on the user gesture and the original image flow
field. (c) Updated result. (d) Result without any orientation field.

4.1.3 Stroke representation

A stroke s is an ordered list of sample points, each with a
timestamp and appearance attributes such as thickness and
color. Here we focus on autocompleting short strokes, so
we represent each stroke by its centroid p and the average
direction v (see Figure 10) for efficiency of synthesis, without
considering any other information about the original stroke. To
take drawing order into consideration, we obtain the dominant
direction by averaging the vectors from the start point to each
subsequent point. After synthesis, we reconstruct all sample

points according to the updated centroid and direction.
4.1.4 Initialization
We pre-process the target region maskM by removing the
area occupied by existing strokes in the same layer to avoid
clutter, and then initialize the output X by generating sample
positions with Poisson-disk sampling based on the radius
map R. For each sampled position, we copy the input stroke
with the smallest image feature distance dI , which will be
explained in Equation (2). We then optimize the output for
several objectives, as detailed below.

6 Y. Chen, K. C. Kwan, H. Fu

output strokespast strokes

reference patch

neighborhood

Fig. 9 Synthesis algorithm. We synthesize the predicted strokes
(green) from previously drawn strokes (gray) by matching their
neighborhoods as well as image features.

p

v neighborhood radius

local orientation

Fig. 10 Left: A stroke, with centroid p and dominant direction v.
Right: The neighborhood of the black stroke includes the n (n = 1
in this example) closest strokes (green) from each quadrant and the
middle image patch (blue pixel grid).

4.1.5 Neighborhood term

We define the neighborhood of a stroke s by both its
neighboring strokes as well as an R(s)×R(s) image patch
around its centroid, where R(s) is the radius value at s. Prior
methods (e.g. [38]) determine the neighboring strokes by
spatial distance. Thus, the neighborhood radius should be large
enough to capture any underlying pattern. However, this might
include redundant strokes and thus decrease performance.
Therefore, we adopt Zhao et al.’s method [39] to automatically
find a minimal representative neighborhood, considering not
only the distances between strokes but also their locations.
As Figure 10b shows, we set the neighborhood radius of the
center stroke s to 2R(s). We then divide all strokes within
the neighborhood radius into four quadrants with respect to
the local frame defined by the orientation atO(s), and collect
the n nearest strokes from each quadrant as the representative
neighborhoodN(s). In our implementation, we set n = 4 for
the input exemplar and n = 1 for the output strokes to ensure
that each output neighborhood can be maximally matched.
For a stroke s and a neighboring stroke s′ ∈ N(s), we

compute their offsets in position and direction to be:

û(s′, s) =
(
O(s)−1 (p(s′)− p(s)) /R(s) ,

O(s)−1 (v(s′)− v(s))
)
, (1)

whereO(s)−1 indicates rotating the vector inversely toO(s).
Note that the position and direction difference is computed in
the local frame defined by the density map and orientation
map. For an output stroke so and an input stroke si, we first
find their best matching pairs {(s′o, s′i)} in the neighborhoods
N(so) and N(si) using the Hungarian algorithm [38, 40].
We use the norm-2 distance of the offsets from so or si in
Equation (1) as the matching cost. The neighborhood distance
is then defined as:

dneigh(so, si) =
∑

s′o∈N(so)

|û(s′o, so)− û(s′i, si)|
2

+ µ | I(so)− I(si)|2︸ ︷︷ ︸
dI

, (2)

The second term measures the image feature distance dI ; µ
(= 0.1 in our implementation) controls its relative weight.
We use the mean Lab* color of an r × r patch at the stroke
centroid as the image feature vector. The overall neighborhood
term to minimize is:

φneigh(X,E) =
∑
so∈X

min
si∈E

dneigh(so, si). (3)

4.1.6 Correction term

Since the neighborhood term is a one-way matching from
output neighborhoods to input neighborhoods, sometimes
optimization may tend to leave out some void regions.
Furthermore, the neighborhood term does not preserve the
alignment of strokes to the image (e.g. see Figure 11e). To
address these issues, we apply a correction term. We compute
a weighted centroidal Voronoi diagram from all the strokes’
center points, using 1/R as weight; we denote the computed
region centroids as {p̄}. Then we can minimize the total
distance between each output stroke centroid and the region
centroid, defined as follows:

φcorr(X) =
∑
so∈X

|p(so)− p̄(so)|2 . (4)

4.1.7 Solver

The energy function we aim to minimize is defined as:

φ(X,E) = (1− w)φneigh + wφcorr. (5)

We iteratively minimize the energy function following
the EM methodology in [38]. In each iteration, for each
output stroke so, we search for the closest matching input
stroke si to minimize φneigh, compute the Voronoi diagram
centroid p̄ to minimize φcorr, and solve a least-squares system
combining both terms. Letm be the total number of iterations.
For the i−th iteration, we set w = (i/m)2, so that more
weight is given to φneigh in earlier iterations, to optimize the

Autocompletion of repetitive stroking with image guidance 7

(a) input (b) initialization (c) iteration 5

(d) iteration 15 (e) w/o φcorr (f) w/o dI

Fig. 11 (a) Input. (b–d) Iteration process. (e,f) Ablation studies. Without the correction term φcorr the predicted strokes tend to cluster
together (e). Without the image term dI the predicted strokes may not follow the reference sufficiently(f).

neighborhood distribution first before making corrections:
this leads to better results.
Figures 11b–11d show iterative optimization of both

objectives. For comparison, Figure 11e shows the result
without the correction term and Figure 11f shows the result
without using the image neighborhood in both initialization
and optimization.

4.2 Inference

In this section, we describe how we infer E,M , O, and R for
synthesis from user interactions with I .

4.2.1 Input exemplar E

In this step we aim to detect whether stroke repetitions exist
and obtain the repetitive group as an exemplar for the synthesis
process. Since people usually draw strokes in a coherent
manner [9] and they usually have specific intentions when
drawing repetitive strokes, we assume the example strokes
to be temporally consecutive and to have certain similar
properties.

We start from the last stroke input by the user and search
backward in the stroke sequence to incrementally find strokes
with similar shape and image features to the last stroke. Stroke
shape similarity is measured using the Fréchet distance, while
the image features include Lab* color (weighted by 0.12, 0.44,
and 0.44 to suppress the impact of lightness) and precomputed
semantic segmentation [41] at a stroke’s center. Alternatively,
one could use different image features to capture different
drawing intentions. We compare the standard deviation of a
feature in the traversed k strokes against a threshold (15/255
for the color feature, 1 for the segmentation feature) for
similarity measurement. Back-traversal stops when the next
stroke does not contain a similar feature or k > 50. These k
strokes serve as the input exemplar for the synthesis process.
See Figure 12 for an example of the incremental search
process.

4.2.2 Output regionM

The shared features of the obtained stroke exemplar also
indicate the intended region. For instance, if all exemplar

8 Y. Chen, K. C. Kwan, H. Fu

s10

s9

s11s12

s1

co
st

stroke index
10 9 8 7 6 5 4 3 2 1

co
st

stroke index
11 10 9 8 7 6 5 4 3 2 1

co
st

stroke index
12 11 10 9 8 7 6 5 4 3 2 1

k=10 k=11 k=1

color
semantic
threshold

Fig. 12 Predicting the input exemplar and output region. Left, above: the input stroke sequence (black dots, only a few indices are shown
for clarity) on the reference image. Left, below: image features. Right, above: threshold lines and the image feature cost curves for s10, s11,
s12 respectively. Right, below: corresponding predicted output regions. The cumulative number k is determined when both cost curves
exceed the threshold. Note that the third region prediction result is only for demonstration: since the exemplar only contains one stroke (i.e.,
k = 1), it is not considered a valid exemplar and would not be used for synthesis.

strokes lie inside the same object segmentation region, it is
very likely that the user intends to fill that region. Therefore,
we use the shared features obtained in the exemplar grouping
process to find a similar region for output.
Since we have only two features in our implementation,

we simply obtain the region by GrabCut [42] if the Lab*
color feature is shared by the exemplar strokes, we directly
take the corresponding segmentation if the semantic feature
is shared, and we take the intersection if both features are
shared. See Figure 12 for an example. When there are multiple
disconnected regions, we retain the nearest region to the user’s
last stroke and discard the remainder, as it is less natural to
propagate to distant regions.

4.2.3 Contextual constraints

Since the drawing is usually related to the underlying reference
image, we analyze the properties of both the drawn strokes
and the reference image to infer possible relationships to
control the global distribution of strokes. The constraints we
consider are orientation O and radius R.

Artists usually adjust stroke directions to convey curvature,
but may sometimes randomize or fix stroke orientation
regardless of the depicted objects to create different visual
effects. Therefore, the problem is to decide which case the
input exemplar implies. We first compute the edge tangent
field (ETF) [43] for the reference image and then calculate the
angles between the exemplar strokes and the ETF directions
at their centroids. If the standard deviation of the angles is

small (less than 15°), we consider the stroke orientations to
be related to the ETF and take the ETF as the orientation
field; otherwise, we set a default global coordinate frame at
each point of the orientation field.
Since density is inversely proportional to the spacing

between strokes, we reframe the spacing problem as predicting
a radius map that controls the extents of stroke neighborhoods.
First, we compute the distance from each exemplar stroke to
its nearest neighbor. We assume a linear relationship between
these minimum distances r and the image features, including
image lightness l and gradient strength g at a stroke’s centroid,
represented as:

r =
(
l g 1

)
· t, (6)

where t denotes the coefficients to be found. Using the fitted
linear model, if the squared correlation value is lower than
0.5 (the closer to 1, the better explanation), we use the model
to compute a radius map. Otherwise, we consider the density
to be uniform and create a constant radius map using the
average spatial distance of the exemplar. We then update the
user interface with the computed coefficients.

5 Evaluation
5.1 Approach

We conducted a pilot study to evaluate the utility and
usability of our approach. We compared three modes through
quantitative analysis and qualitative feedback.

Autocompletion of repetitive stroking with image guidance 9

(a) bear (b) drawing (c) segmentation (d) orientation

(e) beach (f) drawing (g) segmentation (h) orientation

Fig. 13 Target session tasks. (a, e): Reference photos. (b, f): corresponding sample outputs.

In autocompletion mode, users had full access to our
prototype, including autocompletion and interactive editing.

In interactive batch filling mode (batch mode), users were
required to create a texture example first and then manually
specify properties for batch filling. It simulates the sequential
procedure in many IB-AR methods (e.g. [21]), although
they rarely allow users to directly define examples on target
images. This mode was performed using our system with
autocompletion turned off.

In fully manual drawing mode (manual mode), users had to
manually draw each stroke without any automatic synthesis.
We also tested the expressiveness of our system through

an open creation session and obtained comments for future
improvements.

5.2 Target Session

The goal of this session was to compare the three interaction
modes in terms of utility and usability. Since we aim to
facilitate drawing using an image scaffold, we included general
users with different backgrounds but focusing on less skillful
users, who are more likely to want to use reference images.
We thus recruited 12 participants, including nine novices with
little drawing experience, two amateurs with some experience
(P3, P4), and a student majoring in illustration (P5). Most of
the studies were conducted on a LenovoMiix 520 tablet with a
stylus, in a lab environment, except for two studies conducted
remotely using a mouse (due to the covid pandemic).

The study procedure consisted of a tutorial followed by
target tasks, and took each participant about two hours in
total.

Each participant was first given a brief introduction to our
system and then asked to fill the apple in Figure 4 with short
hatches as a training task. They were encouraged to vary
the density and orientation of input strokes and to become
familiar with the features of our system.

We used a within-subject design, in which each participant
was asked to reproduce two target drawings (see Figure 13)
in all three modes: autocompletion, batch mode, and manual
mode. The target drawings contained an object and a
landscape, common illustration topics (e.g. see Figure 2). The
assigned order of modes was randomised over all participants.
Since we focus on region filling, we asked the participants to
draw the outlines of both images in advance, so that they could
focus on drawing the textures during the study.We encouraged
the participants to finish each drawing as soon as possible,
preferably within about a dozen minutes, but without any hard
time limit. After completing the two drawings in each mode,
each participant filled in a NASA-TLX questionnaire [44].
Finally, we asked the participants about their preferred mode
and usage experience, and for other comments.

5.3 Open session

The goal of this session was to observe how users interact with
our system and to learn about users’ subjective experiences.

10 Y. Chen, K. C. Kwan, H. Fu

(a) NASA-TLX (b) time (c) # strokes

Fig. 14 Target session results. (a) Average NASA-TLX scores from 12 participants. Lower scores are better. (b) Average completion time.
(c) Average stroke counts. The number of system-generated strokes is labeled in each column.

We invited seven participants (one professional artist, two
amateurs and four novices) for this session. They were asked
to create a drawing freely from the same reference image
(Figure 15a) using our system. The reference image was
a portrait photo, also common in illustrations. The only
requirement was that the drawings should contain some
repetitive content. We again commenced with a tutorial
and conducted the task on a Lenovo Miix 520 tablet with
stylus. The participants were encouraged to think aloud
and describe their thought processes and interaction during
this session. After this task, participants could optionally
create further drawings from any images they wanted. Since
our prototype does not contain all common functionality of
commercial drawing tools, we allowed the participants to
retouch the resulting drawings, without adding more strokes,
in Photoshop.

5.4 Results and Observations
5.4.1 Workload
Figure 14a shows the perceived workload scores from
the target session. Generally, the autocompletion mode
received the lowest (best) scores for almost all factors.
One-way ANOVA showed the three modes have significant
differences in physical demand (F = 10.69, p < 0.001)
while having no significant difference in other factors.
Regarding physical demand, post-hoc pairwise tests showed
that the autocompletion mode and batch mode both rated
significantly lower than manual mode, but had no significant
difference from each other. This matches our expectation,
since automatic synthesis should only reduce physical load
and not cause extra pressure over manual work.

5.4.2 Efficiency
We calculated the average completion time (Figure 14b) and
stroke count (Figure 14c) for each mode and task. Generally,
the system synthesized about 82% of the strokes in the

autocompletion mode and about 92% of the strokes in batch
mode. Although manual mode took the shortest time for
participants to complete, it also resulted in the fewest total
strokes. We thus calculated the strokes per minute for each
mode: autocompletion (111.03, SD=38.76), batch (101.98,
SD=45.13), manual (115.95, SD=46.73). It turns out that
automatic generation did not improve efficiency, probably
because the users spent extra time adjusting and experimenting
with the generated effects instead of just drawing strokes. It
should be noted that such directed tasks omit the time taken
to explore alternative patterns, which, however, might be high
in a fully manual case.

5.4.3 Quality
We asked 30 external volunteers to evaluate the quality of
participants’ drawings.We randomized all drawings created
by the participants, showed each output drawing alongside the
target drawing, and asked volunteers to rate the resemblance
of the output drawing to the target drawing, on a scale from
1 (very dissimilar) to 5 (very similar). The volunteers were
instructed to focus more on the overall stroke distributions
and flows instead of individual stroke thickness and detailed
shapes. We calculated average scores for each mode:
autocompletion (3.10, SD=1.24), batch (3.09, SD=1.21),
manual (2.98, SD=1.20). The quality of the drawings created
with automatic synthesis was slightly better than for the
fully manual drawings, but without a significant difference.
From the participants’ perspective, three novices commented
that the automated strokes were better than their manual
strokes, because they tend to become impatientwhenmanually
drawing all strokes, lowering quality.

5.5 Preferred mode

Seven participants preferred autocompletion mode while
the other five participants preferred batch mode. Generally,
autocomplete mode was considered more convenient, but less

Autocompletion of repetitive stroking with image guidance 11

(a) reference (b) 81/1563 (c) 428/4593 (d) 272/1266

(e) 68/8356 (f) 165/17111 (g) 443/2931 (h) 261/6018

Fig. 15 Example drawing results from the open session. Each case indicates the number of manual / autocompleted strokes.

precise; batchmode was consideredmore precise, but requires
toomuch interaction. P12 commented, “autocompletionmode
is more straightforward, because you can see the filling effects
instantly without doing a lot of manipulation beforehand;
while in batch mode, you have to remember the meanings
of parameters and adjust them in order to create strokes.”
P10 also said, “Compared to batch filling, autocompletion
mode provides a quick guess for filled regions and allows
me to get results more quickly with less work.” However,
autocompletion mode is “less accurate in some vague and
detailed regions, such as the shadows of the boat, where it
tends to include some unwanted regions, so I had to manually
subtract those regions, which is a bit tedious”, according to
P3. The professional, P5, also preferred batch mode for being
able to precisely select regions. Therefore, we consider the
autocompletion function and the interactive editing function
to be complementary in usability.

5.6 Creative results and experience

Figure 15 shows outcomes from the open session. Although
from the same reference image and widely using repetitive

short strokes, the study participants were able to create
different results by varying the stroke shapes and arrangement.
Figure 16 demonstrates further results. Regarding the creation
experience, one user said “it is playful, the final result is also
good”, two users described it as “encouraging”, because the
system allows beginners to quickly create stylistic drawings,
and one user commented that she “felt creative when drawing
with this system”’, because she could try out patterns over
image regions conveniently and she was more comfortable
with drawing from a reference image than from scratch.
The professional suggested that the tool itself was somewhat
limited to pointillism and hatching styles, but could be helpful
in adding interesting textures to color paintings (e.g. see
Figure 16i). Two users commented that the reduction in
workload is useful, but they also complained about some
inaccurate inferences of the autocompletion. We further
discuss this problem in Section 6.

6 Limitations and Future Work
From our observation and users’ feedback, we identified
several opportunities for improvement.

12 Y. Chen, K. C. Kwan, H. Fu

(a) (b) 446/9617 strokes (c)

(d) (e) 264/840 strokes (f)

(g) (h) 654/1971 strokes (i)

Fig. 16 Sample results. For each example: left: reference image, center: manual (black) and autocompleted (red) strokes, right: final
drawings. In the last example, the strokes were created with our system first and then imported into Photoshop for background coloring.

Autocompletion of repetitive stroking with image guidance 13

Fig. 17 Example of visual blocking. Left: reference image. Right:
canvas view.

6.1 Accuracy of autocompletion

We rely on simple Lab* color and semantic segmentation for
region inference. While color features suffice for most cases,
regions with similar colors but different semantics require
sufficient segmentation accuracy for region inference (e.g. see
Figure 13c). More advanced semantic selection methods (e.g.
[45]) might help to infer more accurate regions. However,
granularity of selection requires further study. For example,
when users draw on a bear’s limb, is the intended region the
whole bear, or all limbs? We leave this as future work.

6.2 Visual blocking

Since the drawing and the system’s suggestions are overlaid
on the reference image, it can be difficult for users to see the
image when selecting parts of the suggestions (see Figure 17)
or adding a new layer of strokes. Although users can switch
views using a hotkey, it might be helpful to provide some
reference information, like image darkness or boundaries,
through additional visual hints [10, 16].

6.3 Higher-level image features

We only consider relationships between strokes and low-level
image features, like colors and flows, over regions. By
considering higher-level image features, such as elements
and edges, it may be possible to extend the scope of
autocompletion, such as autocompleting the sparse flowers
in the foreground of Figure 16i through the correspondences
between strokes and elements.

6.4 Stroke types

Our method only supports short strokes, while artists
frequently also use long repetitive strokes [1]. It is worth
investigating the possibility of incorporating continuous
strokes [46] in our analysis and synthesis framework and
extending support to different input strokes.

7 Conclusions
We have presented a new drawing concept and designed an
assisted drawing system to help users autocomplete repetitive
short strokes with guidance from reference images while
maintaining the flexible control of manual drawing. By
extending operation history analysis and synthesis with image
analysis, our system is able to generate results adapted to
reference images and users’ prior inputs. We conducted a
pilot study to validate the usefulness of our approach and
show various drawing results from the users.

Acknowledgements

We are grateful to Li-Yi Wei for his insightful comments
and suggestions. We also thank the anonymous reviewers for
feedback, and funding fromAdobe Research and the Deutsche
Forschungsgemeinschaft, Project-ID 251654672-TRR 161.

Declaration of competing interest

The authors have no competing interests to declare that are
relevant to the content of this article.

References
[1] Dunn A. Pen and Ink Drawing: A Simple Guide. New Jersey:

Three Minds Press, 2015. 1, 13
[2] Adobe. Paint stylized strokes with the Art History Brush.

https://helpx.adobe.com/photoshop/using/painting-stylized-
strokes-art-history.html, 2017. 3

[3] Martín D, Arroyo G, Rodríguez A, Isenberg T. A Survey of
Digital Stippling. Computers & Graphics, 2017, 67: 24–44,
doi:10.1016/j.cag.2017.05.001. 3

[4] Hertzmann A, Jacobs CE, Oliver N, Curless B, Salesin DH.
Image Analogies. In SIGGRAPH ’01, 2001, 327–340, doi:
10.1145/383259.383295. 1, 2, 3, 4

[5] Fišer J, Jamriška O, Lukáč M, Shechtman E, Asente P, Lu J,
Sýkora D. StyLit: Illumination-guided Example-based Styl-
ization of 3D Renderings. ACM Trans. Graph., 2016, 35(4):
92:1–92:11, doi:10.1145/2897824.2925948. 2

[6] Gerl M, Isenberg T. Interactive Example-based Hatching.
Comput. Graph., 2013, 37(1-2): 65–80, doi:10.1016/j.cag.20
12.11.003. 1, 2, 3

[7] Hegde S, Gatzidis C, Tian F. Painterly rendering techniques:
a state-of-the-art review of current approaches. Computer
Animation and Virtual Worlds, 2013, 24(1): 43–64. 1, 2

https://helpx.adobe.com/photoshop/using/painting-stylized-strokes-art-history.html
https://helpx.adobe.com/photoshop/using/painting-stylized-strokes-art-history.html

14 Y. Chen, K. C. Kwan, H. Fu

[8] Kazi RH, Igarashi T, Zhao S, Davis R. Vignette: Interactive
Texture Design and Manipulation with Freeform Gestures
for Pen-and-ink Illustration. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI
’12, 2012, 1727–1736, doi:10.1145/2207676.2208302. 1, 3

[9] Xing J, Chen HT, Wei LY. Autocomplete Painting Repetitions.
ACM Trans. Graph., 2014, 33(6): 172:1–172:11, doi:10.1145/
2661229.2661247. 1, 3, 4, 7

[10] Xie J, Hertzmann A, Li W, Winnemöller H. PortraitSketch:
Face Sketching Assistance for Novices. In UIST ’14, 2014,
407–417, doi:10.1145/2642918.2647399. 1, 2, 13

[11] Kang HW, He W, Chui CK, Chakraborty UK. Interactive
sketch generation. The Visual Computer, 2005, 21(8): 821–
830, doi:10.1007/s00371-005-0328-9.

[12] Su Q, Li WHA, Wang J, Fu H. EZ-sketching: Three-level
Optimization for Error-tolerant Image Tracing. ACM Trans.
Graph., 2014, 33(4): 54:1–54:9, doi:10.1145/2601097.260120
2.

[13] Li G, Bi S, Wang J, Xu Y, Yu Y. ColorSketch: A Drawing
Assistant for Generating Color Sketches from Photos. IEEE
Computer Graphics and Applications, 2017, 37(3): 70–81,
doi:10.1109/MCG.2016.37. 2

[14] Iarussi E, BousseauA, Tsandilas T. TheDrawingAssistant: Au-
tomated Drawing Guidance and Feedback from Photographs.
In UIST ’13, 2013, 183–192, doi:10.1145/2501988.2501997.
2

[15] Matsui Y, Shiratori T, Aizawa K. DrawFromDrawings: 2D
Drawing Assistance via Stroke Interpolation with a Sketch
Database. IEEE transactions on visualization and computer
graphics, 2017, 23(7): 1852–1862.

[16] Williford B, Doke A, Pahud M, Hinckley K, Hammond T.
DrawMyPhoto: Assisting Novices in Drawing from Pho-
tographs. In Proceedings of the 2019 on Creativity and Cogni-
tion, C&C ’19, 2019, 198–209, doi:10.1145/3325480.33
25507. 2, 13

[17] Haeberli P. Paint by Numbers: Abstract Image Representations.
In SIGGRAPH ’90, 1990, 207–214, doi:10.1145/97879.97902.
2

[18] Benedetti L, Winnemöller H, Corsini M, Scopigno R. Painting
with Bob: Assisted Creativity for Novices. In UIST ’14, New
York, NY, USA: ACM, 2014, 419–428.

[19] Tsai HC, Lee YH, Lee RR, Chu HK. User-guided line abstrac-
tion using coherence and structure analysis. Computational
Visual Media, 2017, 3(2): 177–188. 2

[20] Kyprianidis JE, Collomosse J, Wang T, Isenberg T. State of
the ”Art”: A Taxonomy of Artistic Stylization Techniques for
Images and Video. IEEE Transactions on Visualization and
Computer Graphics, 2013, 19(5): 866–885, doi:10.1109/TV
CG.2012.160. 2

[21] Salisbury MP, Wong MT, Hughes JF, Salesin DH. Orientable
Textures for Image-based Pen-and-ink Illustration. In Proceed-
ings of the 24th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’97, New York, NY, USA:

ACM Press/Addison-Wesley Publishing Co., 1997, 401–406,
doi:10.1145/258734.258890. 2, 9

[22] Hiller S, Hellwig H, Deussen O. Beyond stippling—Methods
for distributing objects on the plane. In Computer Graphics
Forum, volume 22, Wiley Online Library, 2003, 515–522. 2, 3

[23] Kalogerakis E, Nowrouzezahrai D, Breslav S, Hertzmann A.
Learning Hatching for Pen-and-ink Illustration of Surfaces.
ACM Trans. Graph., 2012, 31(1): 1:1–1:17, doi:10.1145/2077
341.2077342. 2

[24] Gatys LA, Ecker AS, Bethge M, Hertzmann A, Shechtman E.
Controlling Perceptual Factors in Neural Style Transfer. ArXiv
e-prints, 2016. 2

[25] Kaspar A, Neubert B, Lischinski D, Pauly M, Kopf J. Self
Tuning Texture Optimization. Computer Graphics Forum,
2015, doi:10.1111/cgf.12565. 2

[26] Nancel M, Cockburn A. Causality: A Conceptual Model of
Interaction History. In Proceedings of the 32Nd Annual ACM
Conference on Human Factors in Computing Systems, CHI
’14, New York, NY, USA: ACM, 2014, 1777–1786, doi:
10.1145/2556288.2556990. 3

[27] Xing J, Wei LY, Shiratori T, Yatani K. Autocomplete Hand-
drawn Animations. ACM Trans. Graph., 2015, 34(6): 169:1–
169:11, doi:10.1145/2816795.2818079. 3

[28] Peng M, Wei LY, Kazi RH, Kim VG. Autocomplete Animated
Sculpting. In UIST ’20, 2020, 760–777, doi:10.1145/3379337.
3415884. 3

[29] Peng M, Xing J, Wei LY. Autocomplete 3D Sculpting. ACM
Trans. Graph., 2018, 37(4). 3

[30] Suzuki R, Yatani K, Gross MD, Yeh T. Tabby: Explorable
Design for 3D Printing Textures. In PG ’18 Short Papers,
Goslar, DEU: Eurographics Association, 2018, 29–32, doi:
10.2312/pg.20181273. 3

[31] Fišer J, Asente P, Sýkora D. ShipShape: A Drawing Beautifi-
cation Assistant. In Proceedings of the Workshop on Sketch-
Based Interfaces and Modeling, SBIM ’15, Goslar Germany,
Germany: Eurographics Association, 2015, 49–57. 3

[32] Zitnick CL. Handwriting Beautification Using Token Means.
ACM Trans. Graph., 2013, 32(4), doi:10.1145/2461912.2461
985. 3

[33] Barla P, Breslav S,Markosian L, Thollot J. Interactive Hatching
and Stippling by Example. Research Report RR-6461, INRIA,
2006. 3

[34] Ijiri T, Mêch R, Igarashi T, Miller G. An Example-based Pro-
cedural System for Element Arrangement. Computer Graphics
Forum, 2008, 27(2): 429–436, doi:10.1111/j.1467-8659.2008
.01140.x.

[35] dos Passos VA, Walter M, Sousa MC. Sample-Based Synthesis
of Illustrative Patterns. In 2010 18th Pacific Conference on
Computer Graphics and Applications, 2010, 109–116, doi:
10.1109/PacificGraphics.2010.22.

[36] Hsu CY, Wei LY, You L, Zhang JJ. Autocomplete Element
Fields. InCHI ’20, 2020, 1–13, doi:10.1145/3313831.3376248.
3

Autocompletion of repetitive stroking with image guidance 15

[37] Mortensen EN, Barrett WA. Intelligent Scissors for Image
Composition. In SIGGRAPH ’95, 1995, 191–198, doi:10.114
5/218380.218442. 4

[38] Ma C, Wei LY, Tong X. Discrete Element Textures. ACM
Trans. Graph., 2011, 30(4): 62:1–62:10, doi:10.1145/201032
4.1964957. 4, 6

[39] Zhao M, Zhu SC. Customizing Painterly Rendering Styles
Using Stroke Processes. In NPAR ’11, 2011, 137–146, doi:
10.1145/2024676.2024698. 6

[40] MaC,Wei LY, Lefebvre S, TongX.Dynamic Element Textures.
ACM Trans. Graph., 2013, 32(4): 90:1–90:10, doi:10.1145/24
61912.2461921. 6

[41] Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid Scene Parsing
Network. In CVPR, 2017, 2881–2890. 7

[42] Rother C, Kolmogorov V, Blake A. “GrabCut”: Interactive
Foreground Extraction Using Iterated Graph Cuts. In ACM
SIGGRAPH 2004 Papers, SIGGRAPH ’04, New York, NY,
USA: Association for Computing Machinery, 2004, 309–314,
doi:10.1145/1186562.1015720. 8

[43] Kyprianidis JE, Kang H. Image and Video Abstraction by
Coherence-Enhancing Filtering. Computer Graphics Forum,
2011, 30(2): 593––602, doi:10.1111/j.1467-8659.2011.01882
.x, proceedings Eurographics 2011. 8

[44] Hart SG, Staveland LE. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research.
In Advances in psychology, volume 52, Amsterdam: Elsevier,
1988, 139–183. 9

[45] Chen X, Zhao Z, Yu F, Zhang Y, DuanM. Conditional diffusion
for interactive segmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, 7345–
7354. 13

[46] Tu P, Wei LY, Yatani K, Igarashi T, Zwicker M. Continuous
Curve Textures. ACM Trans. Graph., 2020, 39(6), doi:10.114
5/3414685.3417780. 13

Author biographies
Yilan Chen received her Ph.D. degree from
the School of Creative Media, City Univer-
sity of Hong Kong, Hong Kong, China. Her
research interests include computer graphics
and human-computer interaction.

Kin Chung Kwan received B.Sc. and Ph.D.
degrees from the Chinese University of Hong
Kong in 2009 and 2015. He is now a post-
doctoral researcher at the University of Kon-
stanz. His research interests include computer
graphics and human-computer interaction.

Hongbo Fu is a Professor in the School
of Creative Media, City University of Hong
Kong. Previously, he had postdoctoral re-
search training at the Imager Lab, University
of British Columbia, Canada, and the Depart-
ment of Computer Graphics, Max-Planck-
Institut Informatik, Germany. He received a
Ph.D. degree in computer science from Hong

Kong University of Science and Technology in 2007 and a B.S.
degree in information sciences from Peking University, China, in
2002. His primary research interests fall in the fields of computer
graphics and human-computer interaction. He has served as an
associate editor of The Visual Computer, Computers&Graphics, and
Computer Graphics Forum.

