
Computational Visual Media

DOI 10.1007/s41095-022-0287-3 Vol. 9, No. x, month 2022, xx–xx

Research Article

Stroke-GAN Painter: Learning to Paint Artworks Using
Stroke-Style Generative Adversarial Networks

Qian Wang1,2, Cai Guo1,3, Hong-Ning Dai4 (�), and Ping Li2,5 (�)

c© The Authors 2022.

Abstract It is a challenging task to teach machines to

paint like human artists in a stroke-by-stroke fashion.

Despite advances in stroke-based image rendering and

deep learning-based image rendering, existing painting

methods have limitations: they (i) lack flexibility

to choose different art-style strokes, (ii) lose content

details of images, and (iii) generate few artistic styles

for paintings. In this paper, we propose a stroke-style

generative adversarial network, called Stroke-GAN, to

solve the first two limitations. Stroke-GAN learns styles

of strokes from different stroke-style datasets, so can

produce diverse stroke styles. We design three players

in Stroke-GAN to generate pure-color strokes close to

human artists’ strokes, thereby improving the quality

of painted details. To overcome the third limitation,

we have devised a neural network named Stroke-GAN

Painter, based on Stroke-GAN; it can generate different

artistic styles of paintings. Experiments demonstrate

that our artful painter can generate various styles of

paintings while well-preserving content details (such

as details of human faces and building textures) and

retaining high fidelity to the input images.

Keywords AI painting, painting strokes, artistic style.

1 School of Computer Science and Engineering, Macau

University of Science and Technology, Macau, China. E-

mail: anrogim@outlook.com.

2 Department of Computing, The Hong Kong Polytechnic

University, Hong Kong, China.

3 Network and Educational Technology Center, Hanshan

Normal University, Chaozhou, China. E-mail:

c.guo@hstc.edu.cn.

4 Department of Computing and Decision Sciences,

Lingnan University, Hong Kong, China. E-mail:

hndai@ieee.org (�).

5 School of Design, The Hong Kong Polytechnic University,

Hong Kong, China. E-mail: p.li@polyu.edu.hk (�).

Manuscript received: 2022-02-14; accepted: 2022-04-12.

1 Introduction

Painting, as an important visual art, symbolizes

human imagination and ingenuity. Human artists

have used a variety of painting tools to create their

artworks with specific characteristic styles. However, it

is time-consuming for people to master painting skills,

requiring much learning, imitating and practising.

Recent computer-aided painting methods generate non-

photorealistic images similar to paintings, thereby

offering effective painting-assistants for human painting

learners, but it is still a challenging task to teach

machines to paint artworks based on given images

like human artists. Unlike directly generating a

style-transfer image or photographic image [9, 31, 36,

38], machine painting is carried out by a machine

or computer in a stroke-by-stroke manner. The

key to teaching a machine to mimic human artists

lies in addressing the following three challenges: (i)

painting artistic strokes on the canvas in a human-

painting order, starting from a given input image, (ii)

generating artistic strokes with textures like human

artists’ strokes, and (iii) preserving detailed contents

of a given image while creating a painting instead of

reconstructing a photorealistic image.

Some conventional methods include stroke-based

rendering (SBR) methods [11, 13, 20], which have

made contributions to stroke modeling. The quality

of such stroke textures is good and mimics human

strokes. However, these methods achieve a semi-

automatic painting process which needs substantial

user intervention. Furthermore, this is time-consuming

and requires considerable painting skills of the user,

and moreover, these SBR models have a limited number

of painting styles. Unlike conventional SBR models,

learning-based methods have flexible frameworks which

can adapt to diverse artistic styles. In addition,

they can create paintings without user intervention.

Recently, researchers have typically used recurrent

1

2 Q. Wang et al.

𝑁 = 200 𝑁 = 400 Input 𝑁 = 10 𝑁 = 50

Fig. 1 Learning-to-paint process of Stroke-GAN Painter. Rightmost column: input. Top to bottom: oil painting, watercolor

painting, pastel painting. N : number of painting times, rather than number of strokes.

neural networks (RNNs) [10, 37] and reinforcement

learning (RL) models [7, 16, 34] to generate stroke-

by-stroke artworks. However, such unified frameworks

lack flexibility to choose different styles of strokes and

some paintings generated in particular artistic styles

(e.g. pastel-like paintings) lack fine details.

To address limitations of existing painting methods,

we have built a new model leveraging advantages of

both conventional SBR methods and learning-based

methods, as an extension of [32]. We first describe

a novel stroke generative adversarial network (Stroke-

GAN) which learns different stroke styles from stroke-

style datasets and generates diverse stroke styles with

adjustable parameters (stroke path, stroke size and

shape, stroke color and transparency). Based on

Stroke-GAN, we then describe a neural-network painter

which learns to create different styles of paintings

in a stroke-by-stroke paradigm. We call the entire

framework Stroke-GAN Painter. Stroke-GAN Painter

learns to generate a painting in a coarse-to-fine manner,

as shown in Fig. 1. In particular, the painting quality

becomes better by repeating multiple learning-to-paint

processes, during which it proceeds from being a novice

to being a veteran. In contrast to existing methods,

such as sketching [10, 28], doodling [7], Neural Painter

(NP) [25], and MDRL Painter (MDRLP) [16], our

painter can generate diverse artistic styles of painting

with different types of strokes. Moreover, the images

generated by our painter also preserve key content

details (such as face details in portraits) well, as shown

in Fig. 1. In summary, our work makes the following

three main contributions.

• We propose a three-player-game model, Stroke-

GAN, to generate strokes in an artistic style,

which are fully adjustable in terms of stroke

path, stroke size and shape, stroke color and

transparency, thereby greatly improving the

stylization of generated paintings. Stroke-GAN

has two generators and one discriminator; the

second generator learns to purify the stained-

color strokes generated by the first generator.

Consequently, the generated strokes have pure

colors and textures closer to human artists’ strokes.

• We design a painter based on Stroke-GAN; it

does not need to be trained on any image

datasets. It learns to create different artistic styles

of paintings based on stylized strokes, e.g. oil-

painting-like artworks, watercolor-like artworks,

2

Stroke-GAN Painter: Learning to Paint Artworks Using Stroke-Style Generative Adversarial Networks 3

pastel-like artworks, in a unified framework.

Our generated paintings preserve content details

of reference images well while offering stylistic

diversity of paintings.

• Experimental results show that our painter

generates diverse artistic styles of paintings

for various types of the image-content, e.g.

portraits, landscapes, animals, plants, and

buildings. Paintings generated by Stroke-GAN

Painter preserve content details well, such as

eyes and teeth of portraits and fine details

of buildings. User studies with a variety of

participants demonstrate that paintings generated

by Stroke-GAN Painter are preferred 77% of the

time for pastel paintings, in comparison to another

method, and 31% of the time for oil paintings, in

comparison to three other methods, in terms of

fidelity and stylization.

2 Related work

We briefly survey closely related studies on

machine painting. We classify related studies into

conventional stroke-based rendering (SBR), learning-

based rendering, and image-style transfer (IST).

2.1 Conventional stroke-based rendering

SBR methods essentially reconstruct images as

non-photorealistic imagery using stroke-based models.

Researchers have adopted SBR methods to different

types of artworks, e.g. paintings [11, 13, 20], pen-

and-ink drawings [4, 33], and stippled drawings [2,

3]. In particular, [11] introduces a semi-automatic

painting method based on a greedy algorithm; it needs

substantial human intervention to control stroke shapes

and select stroke locations. The authors of [13] propose

a style design for their painting method by using spline-

brush strokes to render the image, but this method

requires a high degree of painting skill of its users.

The work in [20] proposes a method to segment an

image into areas with similar levels of salience to

control the strokes. However, most of these methods

require substantial human intervention to choose key

parameters, and are thus inconvenient for ordinary

users. Moreover, SBR methods only generate a limited

number of artistic styles [14], consequently leading to

inflexibility.

2.2 Learning-based rendering

Recently, researchers have adopted learning-based

methods to improve the painting effects compared to

traditional SBR methods. SPIRAL [7, 24] develops

an adversarially-trained deep reinforcement learning

(DRL) agent which learns structures of images.

However, it does not reconstruct details of human

portraits well. Sketch-RNN [10] constructs stroke-

based drawings after training on human-drawn image

datasets; it achieves excellent results for common

objects, although it only makes simple-line paintings.

StrokeNet [37] trains an agent to learn to paint

based on a differentiable render and recurrent neural

network (RNN); it generalizes poorly on color images.

Computers are now able to generate quite realistic oil

paintings [16, 22, 39], and pastel-like paintings [25].

MDRLP [16] paints oil-painting-like pictures with a

small number of strokes, although it only mimics one

style in a unified framework and loses brush-stroke

textures. Methods such as those in [22, 39] improve

stroke textures by redesigning their stroke rendering.

NP [25] has a similar design to our method since

both generate strokes using a GAN-based module.

However, our approach differs from theirs in several

ways. Firstly, we use a three-player GAN model to

generate adjustable strokes while NP only uses a normal

GAN to generate fixed strokes. Secondly, our method

can learn from any stroke datasets while NP must use

strokes produced by the MyPaint program as the stroke

dataset. Thirdly, NP requires a massive manually-

labelled stroke dataset to generate one-by-one action

strokes. Their model requires the same strokes as the

stroke dataset provided by MyPaint to ensure that the

optimized strokes are those needed by the painting

model. Our model has no data-labelling owing: it

can paint well by using the three-player Stroke-GAN to

generate strokes similar to those in the stroke dataset.

2.3 Image style transfer

Image style transfer (IST) methods are popular in

both research projects and industrial applications [1, 6,

8, 18, 35], although few methods have been applied to

stroke-based image rendering. PaintBot [17] based on a

DRL network recreates the target image in a stroke-by-

stroke manner while the painting style is only restricted

to the style of the reference image. Neural Painter [25]

uses a method to generate style strokes to recreate the

target image without style reference images. However,

it requires a large manually-labelled stroke dataset and

also lacks flexibility to choose different styles of strokes.

Moreover, the generated paintings lack fine details, e.g.

in the human face and textures of buildings.

In this paper, we propose a new learning-based

method, Stroke-GAN Painter. It integrates the

advantages of SBR methods with learning-based

3

4 Q. Wang et al.

: Reference image

(a)

Canvas

64

64
Stroke-GAN

(b)

Datasets

TrainingStroke
designer
module

Rendering
module

Stroke
selection

Fig. 2 The network architecture of Stroke-GAN Painter mainly

comprises Stroke-GAN, the rendering module and the canvas.

(a) shows style strokes generated by Stroke-GAN. (b) shows

states of the canvas during the learning-to-paint process.

methods to generate diverse styles of paintings with

high quality. Specifically, Stroke-GAN can generate

different styles of strokes, and stroke designer modules

can generate different style stroke datasets for Stroke-

GAN. Meanwhile, we use a rendering module to

optimize stroke selection, to ensure Stroke-GAN

generates well-behaved strokes, which are rendered onto

the canvas to create high quality paintings.

3 Stroke-GAN painter

3.1 Overview

We propose a new painting model, Stroke-GAN

Painter, to achieve stroke-by-stroke painting for

machines or computers. The goal of Stroke-GAN

Painter is to paint in diverse artistic styles of paintings

in a unified framework. We mainly consider oil

paintings, watercolor paintings, and pastel paintings

here, although further painting styles could also be

easily added to our framework. When given an image,

our model can continually render style-strokes onto the

canvas to create different artistic styles of paintings by

choosing the style of the strokes. Fig. 2 depicts our

proposed Stroke-GAN Painter which consists of a stroke

designer module, Stroke-GAN, the rendering module,

and the canvas. The stroke designer module provides

different styles of stroke datasets for training Stroke-

GAN, which generates style strokes (see Fig. 2(a)).

The rendering module feeds in both the reference

image U0 and canvas Cn to optimize stroke selection,

which controls Stroke-GAN to generate well-behaved

strokes. The states of the canvas during the learning-

to-paint process are shown in Fig. 2(b). Stroke-

GAN Painter learns to create paintings from novice to

veteran ability and its painting quality improves with

more painting time. Section 3.2 presents the stroke

designer module to generate different styles of stroke

datasets for training Stroke-GAN. Section 3.3 presents

Stroke-GAN, which feeds in values obtained from stroke

selection to generate style strokes, which are then

painted on the canvas Cn. The rendering module feeds

in both U0 and Cn to optimize stroke selection, thereby

finishing the painting process. Section 3.4 describes the

painting process and stroke selection optimization.

3.2 Stroke designer module

3.2.1 Stroke modeling

The artistic style of a painting can be affected

by the stroke style. The stroke designer module is

used to create different styles of strokes to provide

training datasets for Stroke-GAN. Inspired by previous

studies [16, 25], our stroke designer modules consider

the following variables: P denotes a set of control points

of a Bézier curve, S denotes a set controlling size of

a geometric shape, T denotes a set to control stroke

transparency, and V denotes a set to control stroke

color.

• Stroke path: We use different geometric shapes

to represent the brush tip and Bézier curves to

represent the path of a brush. The points in

P = {(xi, yi)|i = 0, . . . , d} control a Bézier curve,

where d is the order of the Bézier curve. See Eq. (1)

later.

• Stroke size and shape: We use S = {s0, s1} to

define the size of a geometric shape to control the

stroke size and shape. The size of the brush tip

varies with the values of S.

• Stroke transparency: We use T = {t0, t1} to

control the transparency of the stroke. The

transparency of the stroke varies with the values

of T.

• Color: Primary colors denoted by V = {r, g, b}
determine the color of the stroke.

3.2.2 Stroke datasets

The stroke designer module provides different stroke-

style datasets for training Stroke-GAN. Each stroke

dataset includes 200,000 stroke images, each with

64 × 64 resolution. We currently provide stroke

datasets in three diverse styles, although others could

be added: a watercolor-stroke dataset, an oil-painting-

stroke dataset, and a pastel-stroke dataset. The pastel-

stroke dataset is from [25] while both oil-painting-stroke

dataset and watercolor-stroke dataset are provided by

our stroke designer modules. We model the stroke as

its path and tip, using a Bézier curve (BC) to construct

the stroke path. Circles with variable radii are used to

4

Stroke-GAN Painter: Learning to Paint Artworks Using Stroke-Style Generative Adversarial Networks 5

simulate the stroke tip. Each stroke is made from 100

variable circles moving along BC, which is given by

B(t) =
d∑

i=0

(
d

i

)
(1− t)(d−i)tiPi, t ∈ [0, 1], (1)

where Pi denotes the control point with coordinates

(xi, yi) ∈ P.

3.3 Stroke-GAN

3.3.1 Basics

In order to improve the painting quality and the

fidelity of the stroke, we have designed a three-player

GAN model, Stroke-GAN, to generate stylized strokes

for the painting process. Stroke-GAN is the core

component which allows our model to use a unified

framework to produce diverse artistic styles of paintings

from a given image. Its third player, the coloring

module, allows preservation of high fidelity details.

Paintings contain several elements: lines, textures,

colors and so on [19]. Our Stroke-GAN is designed to

generate strokes containing these elements; the stroke

style has a major influence on the painting style. As

Stroke-GAN has an end-to-end training model, our

painter framework has the flexibility to change the

artistic style by choosing differently-trained Stroke-

GAN models. We do not need to train the whole painter

on any image datasets since the model is designed to

learn to paint from novice to veteran ability.

3.3.2 Motivation for Stroke-GAN

Our design for Stroke-GAN follows the Deep

Convolutional Generative Adversarial Network

(DCGAN) [26], which offers more stable training than

conventional GANs. However, the strokes generated

by a normal DCGAN (i.e. a two-player game) have

stained colors. It is unreasonable to try to reproduce

the painting process of human artists by rendering

strokes in stained colors. To address this problem,

we design a second generator (the third player) to

re-color strokes with three color parameters to generate

pure-colored strokes, which are better for painting

(closer to the strokes painted by human artists).

3.3.3 Three-player-game of Stroke-GAN

In order to obtain pure-colored strokes for reasonable

painting strokes, we provide a coloring module as a

second generator G′ immediately following the normal

generator G (being essentially a convolutional neural

network), as shown in Fig. 3. Stroke-GAN consists

of a normal generator G, a coloring module G′ and

a discriminator D. Let ht denote the one-dimensional

(1-D) vector used as the random noise to generated

strokes. Let hs
t and hc

t denote 1-D vectors being fed into

Normal
generator

Discriminator

Coloring
module

Real sample

Purified stroke

Stained stroke

Fig. 3 Structure of Stroke-GAN. The stroke designer module

provides stroke datasets. Stroke-GAN consists of a normal

generator G, a coloring module G′ and a discriminator D.

G and G′, respectively, and ht = [hs
t ,h

c
t]. After being

fed with hs
t and hc

t , respectively, G learns to generate

stroke images but stained-colored, and G′ learns to

generate pure-color strokes. The discriminator first

determines whether a stroke generated by G is valid or

not, and then determines the stroke image generated by

G′. Both G and G′ update during the adversary mode

with D. Since the randomness of DCGAN leads to the

unexpected stroke color, we build a second generator

G′ (the coloring module) to control the stroke color.

Particularly, the vector ht consists of 50 elements. The

normal generator (G) feeds the variable hs
t with 47

elements and outputs the stroke image G(hs
t) while hc

t

is used to control the stroke color {r, g, b} fed into G′.

Stroke-GAN improves the original DCGAN to purify

the colors of strokes (see Fig. 3). The coloring module

feeds hc
t with the stroke G(hs

t) to learn to purify the

stroke.

Since the stroke image just contains the background

and the stroke, we can use threshold segmentation [5]

to separate the stroke region from the background. Let

P = [p1, . . . , pc] denote the matrix of pixels in the stroke

image, where c is the number of channels of the image.

The average of P denote by P. Since the pixel values

of the background in the stroke image generated by G

are unknown, we should train G′ to find the threshold

of the background pixels. We denote the threshold

by γ. We use threshold segmentation to eliminate the

background region from the stroke image, and the result

is denoted by P̃, which is obtained as follows:

P̃ = γ −P. (2)

The values of the elements in P̃ are 0 or close to 0

in the background region. We use min(·) and max(·)
to calculate the minimum and maximum values in

P̃, respectively. We determine the stroke region and

denote the results by SP , which is obtained by

SP = (P̃−min(P̃))/(max(P̃)−min(P̃)). (3)

In particular, the values of the elements in SP close

5

6 Q. Wang et al.

to 1 are stroke pixels, and values close to 0 represent

background pixels. We then use hc
t to recolor the stroke

and obtain the pure stroke image PS as follows:

PS = [SP ,SP ,SP] · hc
t . (4)

The coloring module endows our painter with more

creativity in painting, e.g. outputting paintings with

different colors even from the same input image. The

reason is that the coloring module in Stroke-GAN takes

in hc
t directly to recolor the stroke image by learning

the color information of the input. This is the reason

that Stroke-GAN can be trained without the data-

labelling restriction of generating an image the same as

the labeled image. Even though Stroke-GAN generates

strokes different from the dataset, the coloring module

learns color information by analyzing the input image

directly so as to ensure that the rendered canvas is close

to the input image. The design of the coloring module

plays an important role in ensuring the GAN generates

realistic human strokes. Moreover, this design also

allows Stroke-GAN to easily learn different styles of

strokes. Therefore, while Stroke-GAN utilizes a unified

framework, it can generate different styles of paintings.

3.3.4 Training of Stroke-GAN

We train Stroke-GAN to acquire different stroke

models to endow our painter the ability to paint with

different stroke styles. Fig. 3 depicts the structure of

Stroke-GAN. Stroke-GAN is trained with 128 images

as a mini-batch for each stroke dataset containing

200,000 images. We use the whole dataset as the

training set since the DCGAN model has no need for

validation. When training Stroke-GAN, we directly

feed the generator with a 1-D vector (ht) to generate a

stroke image. The initial values of the elements in ht

are random. During training, the generator learns to

produce images close to the dataset by optimizing the

values of these elements. We use the Adam optimizer

to train the Stroke-GAN model, with a learning rate

of 0.0002, and values of betas of 0.5 and 0.999. Each

pair comprising a generated stroke image and a real

stroke image is then fed into the discriminator. The

discriminator next determines whether the pair of

strokes is valid or not. If the generated stroke image

is similar to the real stroke image, the pair is valid, and

invalid otherwise.

The training procedure for Stroke-GAN is given in

Algorithm 1. We essentially train the normal generator

G, the coloring module G′ and the discriminator D by

back-propagating the loss, to update the parameters θg,

θc and θd, respectively. In particular, the discriminator

D has the loss `d, the generator G has the loss `g and

Algorithm 1 Training Stroke-GAN. Discriminator D,

normal generator G, second generator G′. The number of

iterations is m, and the mini-batch is k.

1: for m do

2: for k do

3: Sample real data {x1, . . . , xk} from stroke dataset;

4: Set label = 1;

5: Train D with the real-loss function using

BCELoss(D(x), label);

6: Sample fake data {g1, . . . , gk} generated by using

random noise ht = [hs
t ,h

c
t];

7: Set label = 0;

8: Train D with the real loss added to the fake-loss

function using

BCELoss
(
D(x), 1

)
+BCELoss

(
D
(
G(hs

t)
)
, label

)
;

9: Set label = 1;

10: Sample fake data {g1, . . . , gk} generated by using

random noise hs
t ;

11: Train G with the loss function

BCELoss
(
D
(
G(hs

t)
)
, label

)
;

12: Sample fake data {g1, . . . , gk} generated by using

random noise hs
t ;

13: Input hc
t ;

14: Train G′ with the loss function:

BCELoss
(
D
(
G′(G(hs

t),hc
t)
)
, label

)
;

15: end for

16: end for

the generator G′ has the loss `c. We use binary cross

entropy (BCE) denoted by `(z,y) to measure the loss

of the input sample z on conditional variable y, with

the number of the samples of T , as follows:

`(z,y) =
1

T

T∑
t=1

(
−yt log(zt)−(1−yt) log(1−zt)

)
. (5)

When training the discriminator on real stroke images

(denoted by x), y = 1, so using Eq. (5), the loss `dr for

real strokes is:

`dr = `
(
D(x), 1

)
. (6)

When training the discriminator on fake stroke images

generated by G, we then have y = 0, so the loss for

fake strokes, `da, is:

`da = `
(
D(G(hs

t)), 0
)
. (7)

When training the discriminator on fake stroke images

generated by G′, we again have y = 0, so the loss for

fake strokes `db, is:

`db = `
(
D
(
G′(G(hs

t),h
c
t)
)
, 0
)
. (8)

The entire loss of the discriminator is

`d = `dr + `da + `db, (9)

6

Stroke-GAN Painter: Learning to Paint Artworks Using Stroke-Style Generative Adversarial Networks 7

0

5

10

15

20

25

30

35

40

0 5000 10000 15000

Watercolor

Oil painting

Pastel

Iteration times

L
o

ss
 o

f
C

o
lo

r-
G

(b) (a)

Dataset W/O CM W CM

-stroke style

Pastel

Oil painting

Watercolor
Dataset

Dataset

-stroke style

-stroke style

Fig. 4 Training Stroke-GAN. (a): stroke samples generated by two comparative methods: Stroke-GAN with coloring module (W

CM) and without coloring module (W/O CM). (b): loss of Stroke-GAN versus iterations for three different stroke datasets.

so

`d =
1

T

T∑
t=1

[
− log

(
D(xt)

)
− log

(
1−D

(
G(hs

t)
))

− log
(

1−D
(
G′(G(hs

t),h
c
t)
))]

.

(10)

Similarly, the normal generator G has the loss :

`g =
1

T

T∑
t=1

− log
(
D(G

(
hs
t)
))
, (11)

and the loss function of the coloring module is:

`c =
1

T

T∑
t=1

− log
(
D
(
G′(G(hs

t),h
c
t)
))
, (12)

where the strokes in G(hs
t) are visually stained. The

coloring module learns to compute the content of the

stroke region in G(hs
t) and recolor the stroke by hc

t .

Fig. 4(a) compares sample strokes generated by

Stroke-GAN with and without the coloring module

(CM) for various stroke datasets. Fig. 4(b),

shows convergence of Stroke-GAN for different stroke

datasets. The stained-color strokes generated by

Stroke-GAN W/O CM cannot mimic human artists’

strokes. The pure-color strokes generated by Stroke-

GAN W CM are close to human artists’ strokes,

benefiting the quality of the content. Although both

Stroke-GAN W/O CM and Stroke-GAN W CM can

generate strokes similar to the given strokes, the

former generates parti-colored strokes while the latter

generates pure-colored strokes, which are better as they

are closer to those of human artists. Stroke-GAN can

learn any styles of strokes given an appropriate training

dataset. In this paper, we use three stoke datasets:

watercolor , oil-painting , and pastel stroke datasets,

and save the trained models as Style 1, Style 2, and

Style 3, respectively. We then choose the corresponding

model to give a certain artistic style.

In summary, Stroke-GAN has the following merits.

Firstly, it can recolor the stroke according to the design

of the coloring module, thereby improving the artistic

creativity of the painter. For example, the color of the

painting can be recreated close to but not the same

as the input reference image. Secondly, it can flexibly

learn any style of strokes as long as a stroke dataset is

available, owing to its completeness and independence.

Thirdly, it enables end-to-end training so that it can be

easily applied in a painting models for various artistic

styles, by choosing different Stroke-GAN models.

3.4 Rendering Module

3.4.1 Basics

We endow our painter with the capability to paint

in diverse artistic styles. Besides using diverse stroke-

styles generated by Stroke-GAN, we also consider the

feature-extraction network (FEN) to extract contents

of reference images. After processing by the FEN,

the original reference image may lose some content but

retaining the core information of the image. We design

the rendering module with a FEN and an optimization

algorithm. We use the FEN in our rendering module

to process the features of the reference image and the

canvas. We use the optimization algorithm to ‘pick’

well-behaved strokes for rendering the canvas.

7

8 Q. Wang et al.

Stroke-GAN

Stroke-GAN

Stroke-GAN

Stroke
selection

Stroke
selection

Stroke
selection

Rendering
module

Rendering
module

Rendering
module

Stroke
selection Stroke-GAN

Stroke-GAN

Initial
action

Fig. 5 Coarse-to-fine learning-to-paint process. The reference

image is U0, while Cn denotes the current state of the canvas,

and N is the number of painting processes. The width and the

height of the canvas are w and h, respectively.

3.4.2 Painting Process

We design our painter to mimic the painting process

used by human artists painting in a given style.

Painting is conducted in a coarse-to-fine manner, in

which our painter learns to paint from scratch to a

finely-detailed painting after multiple times of painting.

The Stroke-GAN generates a sequence of strokes at

one time and the rendering module optimizes stroke

selection (see Section 3.4.3) to ‘render’ these strokes on

the canvas. The painting process is shown in Fig. 5.

The painting model consists of the rendering module,

stroke selection, the canvas, and the Stroke-GAN. The

rendering module optimizes the stroke selection and

the Stroke-GAN generates continually strokes used

to paint. Stroke-GAN Painter learns to paint from

novice to veteran ability. We observe that the painting

quality improves by repeating multiple learning-to-

paint processes. The painting quality becomes better

with increased n. The reference image is denoted by

U0. The content state of a certain canvas and the

set of stroke selections are denoted by Cn and Hn,

respectively. The height h and the width w of the

canvas are automatically configured according to the

aspect ratio of the reference image.

We model our painting process as a stroke state

optimization process with a canvas state set S, a

stroke selection H and a mapping f : S → H. Let

S = {Cn|n = 1, . . . , N}, H = {Hn|n = 1, . . . , N},
where N is the number of iterations of the painting

model (also the number of times of painting). Let

the total number of strokes needed to complete the

painting be T . Since each Hn has T elements, we then

choose Hn = {ht|t = 1, . . . , T}, where ht is also the

input of Stroke-GAN when training the Stroke-GAN

(mentioned in Sec. 3.3.3). One ht in the stroke selection

is used to pick one stroke (generated by Stroke-GAN).

For each painting iteration, the stroke selection outputs

a set of Hn of size T to let Stroke-GAN generate

T strokes. One painting process is finished when T

strokes have all been rendered onto the canvas, i.e. Cn

is completed for some n.

Each stroke generated by the Stroke-GAN is

essentially an image, with 64 × 64 pixels. Thus,

the canvas is divided into grid cells for rendering

convenience, with the size of each cell also 64 × 64

pixels. We render T strokes onto the canvas cell-by-

cell to finish one painting process. In each cell, the

content at the stroke position in the new stroke image

replaces that at the corresponding position. Stroke-

GAN produces T strokes at a time, where T equals the

number of strokes in each cell multiplied by h×w cells.

The strokes are sequentially rendered in a grid order.

Stroke-GAN runs once in one painting process. The

mapping f : S → H uses the transition function Cn+1 =

f(Cn, Hn+1). Stroke selection first outputs an initial

set H1; each element in H1 denotes an effect for

rendering a stroke at a certain position of the canvas.

The rendering module then optimizes stroke selection

via the stroke-selection-optimization algorithm and

generates a new set of elements Hn, which are used

to render strokes on the canvas to get Cn. We continue

the coarse-to-fine process from Cn to Cn+1, where

Cn+1 denotes a finer-grained painting (with optimized

strokes). Continuing the above process, we finally

obtain the best painting CN .

3.4.3 Stroke selection optimization

A rendering module is used to optimize stroke

selection; it consists of a FEN and the optimization

algorithm. During the painting process, the rendering

module first feeds in both the reference image and the

painted canvas to compute the distance between them,

then optimizes the stroke selection. Stroke selection

picks well-behaved strokes generated by the Stroke-

GAN. This ensures that the state of the canvas Cn+1

is better than Cn. This procedure continues until one

painting process is complete, and the painting CN is

generated after N painting process. The learning-to-

paint process works in a coarse-to-fine manner.

It is a key task to optimize the stroke generated

by the Stroke-GAN in the stroke selection step. The

rendering module first extracts the feature maps of

U0 and Cn, then processes the difference of the input

and the canvas by computing their `1-distance. We

denote the extracted feature maps of the input reference

image U0 and those of the painted canvas Cn by

8

Stroke-GAN Painter: Learning to Paint Artworks Using Stroke-Style Generative Adversarial Networks 9

F(U0) = {Ij |j = 1, . . . ,M} and F(Cn) = {cj |j =

0, . . . ,M}, respectively, where M is the number of

features extracted by the neural rendering module. In

particular, Ij , cj denote the features of U0 and those

of a certain state of the canvas Cn, respectively. We

calculate the `1-distance loss function L(U0, Cn) as:

L(U0, Cn) =
1

M

M∑
j=1

|Ij − cj |. (13)

This essentially computes the distance between the

features of the reference image U0 and those of

canvas Cn. The stroke selection algorithm optimizes

the generated stroke by resetting the values of

the elements in ht based on the `1-distance loss

function. The function f(Cn, Hn+1) is computed by

the backpropagation algorithm for L(U0, Cn). Each Cn

(the state of the canvas) is rendered by T strokes, and

each stroke is produced according to the values in ht.

Therefore, the values of the elements in each ht can

be updated to the ones needed by backpropagation for

L(U0, Cn).

3.5 Style reconstruction

3.5.1 Basics

As explained in Section 3.3, Stroke-GAN is the core

component for generating the style. The rendering

module also contributes to the stylization of the whole

painting. In particular, we use the FEN in the

rendering module to extract features of the reference

image as well as the painted canvas. This process loses

some content of the original image but mimics paintings

close to the original image. This step can make the

generated painting differ from but be similar to the

reference image, providing artistic mimesis or ‘realism’.

We reconstruct the painting style by using the Stroke-

GAN and FEN in the rendering module. In particular,

Stroke-GAN endows the painter with diverse styles of

strokes and the FEN in the rendering module creates

the artistic style.

3.5.2 Artistic style

Since [25] indicates that the content objective

preserves only high-level features while the

parameterization can fill in details, we also only

take high-level features as inputs. We adopt two

of the most representative deep neural networks:

GoogleNet [29] or residual nets (ResNets) [12] for the

digital rendering module. The design of using FEN

to process the original reference image, rather than

directly using the original image, endows our painter

with artistic creativity while retaining a high similarity

to the reference image. We focus on realism in oil

Watercolor Oil painting Pastel

Fig. 6 Samples from three datasets used to mimic the styles of

watercolor, oil-painting, and pastel strokes, respectively.

paintings, so we use ResNet to build the FEN in the

rendering module. ResNets have high accuracy when

extracting information [12], so can keep a high fidelity

in the extracted features. On the other hand, features

extracted by GoogleNet are relatively sparse so that

may offer more space for our painterly creativity.

Therefore, we use GoogleNet for watercolor and pastel

paintings.

3.5.3 Stroke style

Different strokes can produce different styles of

artwork even when used by the same human artist. We

provide three kinds of strokes to endow our painter

with more creativity. Fig. 6 shows different stroke

styles for watercolors, oil-painting and pastels. The

watercolor strokes have smooth, soft contours and the

brush paths are simple and pure. In contrast, oil-

painting strokes have sharp contours and volatile paths.

When stacking multiple strokes on the canvas, the

oil-painting texture can be recognised easily due to

these characteristics. The pastel strokes seem to be

accumulated from many uneven points (mimicking the

granular textures of pastel paintings). These different

styles of strokes cause the canvas to show different styles

of painting. After utilizing different FENs to process

the reference image in conjunction with different types

of strokes, we obtain different styles of paintings.

4 Experimental results

We have evaluated our approach with several

experiments. We first describe the implementation.

Then, we evaluate three styles of paintings generated

by our painter and compare the output of the proposed

Stroke-GAN Painter to state-of-the-art methods.

Finally, we study alternatives to understand how

our Stroke-GAN Painter generates different styles of

paintings by fine-tuning the design.

4.1 Implementation

Our experiments were conducted on a workstation

with an i7-7700k CPU and an NVIDIA Titan RTX

9

10 Q. Wang et al.

Pastel

Paintings

Oil

paintings

Watercolor

paintings

Img 12Img 39 Img 32 Img 35 Img 15

Reference

images

Fig. 7 Three artistic styles of paintings generated by Stroke-GAN Painter using images from CelebA [23], ImageNet [27] and a

real-world photo (Img 15).

GPU. We evaluated our painter on three image

datasets: CelebA [23], ImageNet [27], and real-world

photos. These images cover various types of content

including portraits, landscapes, animals, plants, and

buildings. All images used in experiments are labelled

by ‘Img No.’. Style 1 (Stroke-GAN model 1) and

the rendering module using GoogleNet were used to

generate watercolor paintings, Style 2 and ResNet

were used to generate oil paintings, and Style 3 and

GoogleNet were used to generate pastel paintings.

4.2 Comparison of stroke styles

We compare paintings generated by different styles of

strokes on CelebA, ImageNet, and real-world photos.

In Fig. 7 and Fig. 8, the top row shows the inputs,

and the images in successive rows show oil painting,

watercolor painting, and pastel painting results. Img 39

and Img 12 were randomly selected from CelebA [23],

Img 32 and Img 35 were randomly selected from

ImageNet [27], and the others are real-world photos.

Fig. 7 and Fig. 8 show that all generated paintings

exhibit different styles in contrast to the reference

images. In particular, the oil-painting-stroke paintings

in the second row well preserve textures, lines and

color features, consequently capturing fine details in

the reference images. Meanwhile, we observe stroke

textures from oil paintings, demonstrating oil-painting

stylization. The watercolor-stroke paintings in the third

row exhibit a style between pastel paintings and oil

paintings; this style is good at expressing details for

scenery and building images (see Imgs 26, 15, 11, 21,

and 23). The pastel-stroke paintings in the last row

preserve some textures and lines while losing some color

features.

Fig. 9 plots `1-distances between the generated

images and the reference images. Specifically, Fig. 9(a)

plots the `1-distance versus painting times for the

three stroke styles. We observe that all three styles

10

Stroke-GAN Painter: Learning to Paint Artworks Using Stroke-Style Generative Adversarial Networks 11

Pastel

Paintings

Oil

paintings

Watercolor

paintings

Img 26 Img 11 Img 21 Img 23

Reference

images

Fig. 8 Three artistic styles of paintings generated by Stroke-GAN Painter using images from real-world photos.

ℓ 1
−
𝑑
𝑖𝑠
𝑡𝑎
𝑛
𝑐𝑒

Painting times

0.05

0.1

0.15

0.2

0.25

0 200 400

Oil painting

Watercolor

Pastel

(a)

ℓ 1
−
𝑑
𝑖𝑠
𝑡𝑎
𝑛
𝑐𝑒

Painting times

0.05

0.1

0.15

0.2

0.25

0 100 200 300 400

ImageNet

CelebA

Actual image

(b)

Fig. 9 The `1-distance between the generated images and

reference images. (a): `1-distance of different stroke styles for

real-world photos. (b) `1-distance of different datasets for the

watercolor-stroke style.

nearly converge after 300 painting times, although

the oil-painting stroke style converges faster than the

other two. The pastel-stroke style paintings converge

slowest since they lose more content detail. Fig. 9(b)

compares convergence for three types of image datasets

using the same watercolor-stroke style. It takes 200

painting iterations to recreate the images in CelebA,

300 iterations for images from ImageNet, and 400 for

real-world photos. The portrait images of CelebA are

relatively easier to learn than those of ImageNet and

real-world photos as they have fewer features.

4.3 Comparison to prior methods

4.3.1 Methods

We further evaluate our painter by comparing it

to various state-of-the-art learning-based methods,

including Neural Painter (NP) [25], MDRL Painter

(MDLRP) [16], SNP [39] and PaintTF [22]; these

outperform other learning methods and traditional

SBR methods. We do so using two representative

artistic styles for our model: pastel-stroke painting and

oil-stroke painting. We use NP for comparative pastel-

stroke paintings, and MDRLP, SNP and PaintTF for

comparative oil paintings. In order to obtain the best

11

12 Q. Wang et al.

NP OursInput

Fig. 10 Comparison to the prior method: Pastel-stroke

paintings generated by our painter and NP [25].

paintings generated by the compared methods, we use

the authors’ pre-trained models and default parameter

values .

4.3.2 Qualitative comparison

Fig. 10 and Fig. 11 compare paintings generated

by our painter and these compared models. Fig. 10

compares pastel paintings generated by NP and our

painter. Our painter generates images with more

details and textures than NP. For example, we cannot

see facial texture and teeth in the woman’s portrait

generated by NP while the image generated by our

painter well preserves those details, thereby looking

more vivid. NP [25] only generates fixed strokes,

while our Stroke-GAN generates variable strokes thanks

to the coloring module. This allows strokes to be

tuned according to the input image, thus retaining

more details. Fig. 11 compares oil paintings generated

by MDRLP, SNP, PaintTF and our painter. Images

generated by our painter suffer less content loss than

those generated by MDRLP, SNP and PaintTF. It

is quite obvious when comparing inset close-ups, e.g.

our painter well preserves details of the man’s eyes

and mouth, and textures of the motorcycle and the

cloud. Our model uses the independent Stroke-GAN to

generate strokes with diverse shapes and variable sizes

so can depict detailed contents. However, brushstrokes

used in SNP and PaintTF have few shape variants

as they are directly generated by their entire models.

In particular, their models have only two shapes of

strokes despite variant stroke size and angles. On the

other hand, the stroke-texture representation differs

between all compared methods. MDRLP presents

stroke textures while losing some content since it has

no special process during stroking to mimic the stroke

textures. Adding more strokes and painting steps

can make the result more similar to the input photo

instead of a painting. SNP and PaintTF present stroke

textures by adding a stroke-texture mask after stroke

generation. In other words, the stroke contains no

textures when generated and the textures have no

affect on optimizing the stroke. Our Stroke-GAN

painter renders the stroke texture by generating a

sharp contour that mimics the thick edge of oil paints

in a stroke. Therefore, the painting results present

irregular-line textures instead of the brush textures.

4.3.3 Quantitative comparison

To further compare the quality of paintings generated

by Stroke-GAN Painter and the other methods, we

conducted a two-step user study inspired by [15, 30].

For fairness, the experiments were blind trials, in which

users did not know which paintings were generated

by which methods. User Study I investigated relative

preferences for paintings generated by these methods.

User Study II investigated preservation of detailed

content and stroke textures in paintings generated by

these methods.

User Study I. User Study I used two questionnaires,

the first one to compare pastel style artworks, and

the second one to compare oil-painting style artworks.

Since User Study I was designed to evaluate the

preferences of people for artworks generated by different

methods, we did not emphasize the backgrounds of

users in the comparison, although they came from both

artistic and non-artistic backgrounds.

In the first questionnaire, we arbitrarily choose 20

images from CelebA [23] (3 images), ImageNet [27] (6

images), and real-world photos (11 photos); the images

included various types of contents including landscapes,

buildings, animals, and portraits. The first group

of participants had various backgrounds (10% with

artistic training), age groups (17–50), and gender (44

female, 43 male). We evaluated pastel-stroke paintings

generated by our painter and NP [25]. For each

reference image (numbered from 1 to 20 in Fig. 12),

we obtained a pair of images painted by our painter

12

Stroke-GAN Painter: Learning to Paint Artworks Using Stroke-Style Generative Adversarial Networks 13

Input MDRLP SNP OursPaintTF

Fig. 11 Comparison results: Oil-painting-stroke paintings generated by our painter, MDRLP [16], SNP [39] and PaintTF [22].

and NP. We evaluated the user preference for and

stylization of generated images: we asked participants

to choose which image better represented a pastel-

stroke painting and which they preferred in each pair

of images. Fig. 12(a) depicts the results. Most users

picked the results created by Stroke-GAN Painter as

their preference, for all pairs of paintings; our paintings

gained 77% of all votes on average. These high votes

imply that paintings from Stroke-GAN Painter present

pastel-painting style better than the compared ones.

Similarly, the second questionnaire evaluated the oil-

painting effect, comparing our painter, MDRLP [16],

SNP [39] and PaintTF [22]. The second group

of participants was also chosen to have diverse

backgrounds, age, and gender (40 females, 32 males).

We also select 20 images from CelebA, ImageNet,

and real-world photos to cover different content types

(images numbered 21 to 40 in Fig. 12). We asked

participants to choose which image is closer to an oil

painting and which they preferred in each set of images.

Again, more participants (31% among four methods)

voted paintings generated by our method presenting

better oil-painting style than those from other methods.

User Study II. We used the second user study

to compare paintings generated by our Stroke-GAN

Painter and other methods in terms of content detail

and stroke textures. We again used two questionnaires

(on a Likert scale [21]) for pastel paintings and oil

paintings, separately. The participants were divided

into two groups: users with and without an artistic

background. All participants were chosen from various

age groups (17–50) and gender (20 female, 5 male) for

each questionnaire. We compared the average score

(µ), variance (σ), and the 95% confidence interval for

paintings generated by each method. Tabs. 1 and 2 give

results for the two user groups, respectively.

In Tab. 1 (users without an artistic background), the

content details of paintings generated by MDRLP [16],

PaintTF [22] and SNP [39] gained low scores (lower

than 3). One reason lies in the fact that their

paintings lose too many details, and the stroke textures

generated by MDRLP [16] are also difficult to recognize

for most users. In contrast, the paintings generated

by Stroke-GAN Painter have better scores for both

content details and stroke textures. Similarly, in Tab. 2

(users with an artistic background), our method again

gained higher evaluation scores than the other methods.

Comparing Tab. 1 to Tab. 2, users lacking an artistic

background gave higher scores than users with an

artistic background in most cases. Nevertheless, both

users with and without artistic backgrounds evaluated

13

14 Q. Wang et al.

0

0.15

0.3

0.45

0.6

0.75

0.9

1 3 5 7 9 11 13 15 17 19

Ours (a) NP

(a) (b)

0

0.1

0.2

0.3

21 23 25 27 29 31 33 35 37 39

Ours (b) MDRLP SNP PaintTF

Fig. 12 User Study I. (a) Pastel-stroke-painting results generated by Stroke-GAN Painter and NP [25]. (b) Oil-painting results

created by Stroke-GAN Painter, MDRLP [16], SNP [39] and PaintTF [22]. Vertical axis: percentage of users’ preferences for an

image. Horizontal axis: numbered image pairs.

Tab. 1 User Study II. Scores of paintings generated by

our method and other methods for content details and stroke

textures without artistic background. CI= confidence interval.

LB = lower bound. UB = upper bound.

Item Method µ σ
95% CI

LB UB

Content

NP 3.626 0.181 3.530 3.723

Ours 3.940 0.227 3.820 4.060

MDRLP 2.839 0.308 2.683 2.996

PaintTF 2.471 0.386 2.274 2.668

SNP 2.374 0.298 2.153 2.595

Ours 3.361 0.214 3.251 3.611

Stroke

NP 3.605 0.265 3.465 3.746

Ours 3.722 0.258 3.585 3.859

MDRLP 2.816 0.286 2.670 2.962

PaintTF 2.582 0.368 2.394 2.769

SNP 2.576 0.294 2.358 2.794

Ours 3.468 0.201 3.366 3.571

Tab. 2 User Study II. Scores of paintings generated by

our methods and other methods for content details and stroke

textures with artistic background. CI= confidence interval. LB

= lower bound. UB = upper bound.

Item Method µ σ
95% CI

LB UB

Contents

NP 3.446 0.225 3.258 3.635

Ours 3.775 0.229 3.584 3.967

MDRLP 2.717 0.446 2.459 2.974

PaintTF 2.397 0.559 2.074 2.719

SNP 2.237 0.567 1.909 2.564

Ours 3.803 0.313 3.623 3.984

Strokes

NP 3.594 0.286 3.355 3.833

Ours 3.956 0.221 3.772 4.141

MDRLP 2.583 0.398 2.353 2.813

PaintTF 3.668 0.214 3.544 3.791

SNP 3.682 0.153 3.594 3.770

Ours 3.604 0.239 3.466 3.742

our paintings higher than those of other methods.

In particular, the average score (µ) for the content

details reaches 3.940 and the upper bound is 4.060 (in

the 95% confidence interval) in Tab. 1. In Tab. 2,

the average score of the stroke texture reaches 3.956

with upper bound 4.141. Interestingly, for stroke

textures, users without artistic background gave a

higher score (2.816) for MDRLP [16] than users with

an artistic background (2.583), and the highest score

given by users without artistic background is 3.468 (our

method). However, opposite scores are given by users

with artistic background. The scores given for SNP [39]

and PaintTF [22] are higher than those for our method

although our score is 3.604, close to these two methods.

In summary, both pastel and oil paintings from our

method contain more detailed contents than do the

compared methods. For non-artistic users, the stroke

textures are not well presented by most methods, while

artistic users think that PaintTF [22], SNP [39] and our

methods (both pastel and oil-painting) present stroke

textures well.

User Study III. In order to evaluate the aesthetics

of the results, we further conducted User Study III to

evaluate color tone and aesthetic beauty of the output

paintings. We again used two user-study questionnaires

(using a Likert scale [21]) for pastel-stroke paintings

and oil-painting-stroke paintings, separately. The

input images were those used in User Study II. The

participants were divided into two groups: users with

14

Stroke-GAN Painter: Learning to Paint Artworks Using Stroke-Style Generative Adversarial Networks 15

Style 1

Style 2

Style 3

Style 4

FEN-GoogleNet FEN-GoogleNet+ResNet FEN-ResNet

Fig. 13 Paintings by various feature-extracting networks (FENs) and different stroke styles. Each row contains images created by

models with one style of strokes and a FEN (GoogleNet, GoogleNet+ResNet, or ResNet), with input images in the first column.

an artistic background (15) and users without an

artistic background (19). The participants came from

various age groups (21–40), with 18 female and 16 male,

for each questionnaire. We compare the average score

(µ), variance (σ), and the 95% confidence interval for

paintings generated by each method. Tabs. 3 and 4 give

results for the two user groups respectively.

In Tab. 3, scores for color tone and aesthetic beauty

given by users without artistic background for pastel

paintings (NP [25] and our method) are higher than 3.

On the other hand, oil-paintings obtained lower scores.

In particular, paintings generated by PaintTF [22] and

SNP [39] gained much lower scores than our method

and MDRLP [16] for aesthetic beauty. As the scores

for content in Tab. 1 (given by users without artistic

background) are also lower than 3, we see that the

paintings generated by PaintTF [22] and SNP [39]lose

too much content detail, so users without an artistic

background give low scores for beauty . Although users

without artistic background did not give high scores,

the ranking of the compared methods for aesthetic

beauty item and color-tone remain the same.

On the other hand, users with an artistic background

gave higher scores than users without an artistic

background. In Tab. 4, paintings generated by all

compared methods obtain scores higher than 3. In

particular, our paintings score 4.217 for color tone and

3.937 for aesthetic beauty. Comparing Tabs. 4 and 3,

our method, MDRLP [16], PaintTF [22] and SNP [39]

achieve much higher scores than NP [25]. Evaluation

15

16 Q. Wang et al.

Tab. 3 User Study III. Scores of paintings generated by our

methods and SOTA methods for color tone and aesthetic beauty

without artistic background. CI= confidence interval. LB =

lower bound. UB = upper bound.

Item Method µ σ
95% CI

LB UB

Color tone

NP 3.703 0.316 3.535 3.870

Ours 3.688 0.306 3.526 3.851

MDRLP 3.211 0.274 3.071 3.350

PaintTF 2.934 0.363 2.749 3.119

SNP 2.845 0.346 2.588 3.101

Ours 3.708 0.190 3.611 3.805

Beauty

NP 3.782 0.386 3.577 3.986

Ours 3.833 0.293 3.678 3.988

MDRLP 2.963 0.327 2.796 3.130

PaintTF 2.537 0.380 2.343 2.731

SNP 2.484 0.356 2.220 2.748

Ours 3.508 0.188 3.412 3.604

Tab. 4 User Study III. Scores of paintings generated by our

methods and SOTA methods for color tone and aesthetic beauty

with artistic background. CI= confidence interval. LB = lower

bound. UB = upper bound.

Item Method µ σ
95% CI

LB UB

Color tone

NP 3.857 0.243 3.654 4.060

Ours 3.913 0.250 3.704 4.121

MDRLP 3.823 0.238 3.686 3.961

PaintTF 3.607 0.290 3.439 3.774

SNP 3.743 0.237 3.606 3.880

Ours 4.217 0.357 4.010 4.423

Beauty

NP 3.707 0.346 3.418 3.996

Ours 3.753 0.218 3.571 3.935

MDRL 3.550 0.327 3.361 3.739

PaintTF 3.267 0.555 2.946 3.587

SNP 3.470 0.454 3.208 3.732

Ours 3.937 0.400 3.706 4.167

of pastel-stroke paintings generated by NP differ little

between users with and without artistic backgrounds.

However, the difference between these two kinds of

users is obvious when evaluating the oil-painting style

paintings. For example, for aesthetic beauty, users

without artistic background give higher scores for

paintings by PaintTF than by SNP while users with

artistic background give lower scores. However, all

users give consistent evaluations. In particular, for

both color tone and aesthetic beauty, our method is

better than the others, while PaintTF [22] and SNP [39]

rank lowest. Considering Tab. 1–4 overall, our method

scores highest among the state-of-the-art methods. NP

performs well for both content and color tone. MDRLP

performs well for color tone. PaintTF and SNP perform

well for stroke texture.

4.4 Alternatives

In this section, we investigate how our painter

generates different styles of paintings when using

alternative FENs and strokes.

4.4.1 Feature-extraction network

Recall that we chose GoogleNet as the FEN for

watercolor and pastel-stroke images, and ResNet as

the FEN for oil-painting images. We consider a new

FEN with a combination of GoogleNet and ResNet,

namely (G+R) to generate paintings. We denote the `1-

distance of features extracted by GoogleNet and the `1-

distance of features extracted by ResNet by LG(U0, Cn)

and LR(U0, Cn), respectively: see Eq. (13). The loss

function of the G+R network can be written as

L(U0, Cn) = 0.5LG(U0, Cn) + 0.5LR(U0, Cn). (14)

We only perform backpropagation for the final

L(U0, Cn). Fig. 13 compares results generated by

the three different FENs and four stroke styles,

Styles 1–4. Style 4 is a new stroke designed

with a hollow circle and a cubic Bézier curve; its

stroke dataset is generated using a similar method

to that for Style 1. We see from Fig. 13 that

the model using GoogleNet+ResNet as the FEN can

generate a style of artwork combining the characters

of pastel and oil-painting styles. Interestingly, the

FEN essentially affects the artistic style of a painting,

and the stroke style affects the painting style of the

painting. Therefore, we confidently infer that various

combinations of FENs and stroke styles can create a

diversity of artistic styles of paintings.

4.4.2 Number of Strokes

We next investigate the impact of the number of

strokes. In particular, the canvas is divided into h× w
cells. We then generate images with various number of

strokes in each cell. Fig. 14 depicts paintings generated

using different numbers of strokes with the same FEN.

The image generated using 2 strokes looks colorful and

artistically creative although it also loses much content

detail. Larger numbers of strokes (8 or 10) lead to

an exquisite image, much closer to the reference image

than images generated by fewer strokes (2 or 5). Having

an adjustable number of strokes provides the users with

artistic choices.

16

Stroke-GAN Painter: Learning to Paint Artworks Using Stroke-Style Generative Adversarial Networks 17

2 Strokes 5 Strokes

8 Strokes 10 Strokes

Fig. 14 Paintings generated using 2, 5, 8, or 10 strokes in each cell. Center: reference image.

5 Conclusions and future work

In this paper, we have presented a stroke-based

image rendering approach to mimic the human painting

process and generate different styles of paintings. In

particular, we designed Stroke-GAN to generate various

styles of strokes. We model the painting process

as a stroke-state-optimization process, which can be

optimized by a deep convolutional neural network. Our

artistic painter can generate different styles of paintings

in a coarse-to-fine fashion, like a human painter.

User studies of the paintings generated by Stroke-

GAN Painter and competing methods demonstrate that

our painter gained most votes for the closeness to

pastel paintings and oil paintings. Moreover, images

generated by our painter also preserve more content

detail than existing methods.

A deep learning algorithm and Stroke-GAN are used

to decompose the reference image into a grid of cells

to allow rendering of a sequence of strokes to achieve

the stroke-by-stroke effect. We designed Stroke-GAN to

generate style strokes by learning from stroke datasets.

Our Stroke-GAN can learn any stroke style, providing

the painting agent with creativity and flexibility.

Although our generated paintings do not compare with

masters’ artworks, we have made an important step for

learning-based AI painting with creative and flexible

artistic styles. Meanwhile, there is much that can be

done to improve the quality of the output, and other

artistic styles not mentioned in this paper could also be

emulated. In future, we can combine the advantages of

conventional stroke-based methods with learning-based

methods to improve painting quality. On the other

hand, we hope to develop new style transfer methods in

a stroke-by-stroke manner to enrich the artistic styles

of AI painting.

Declarations

Availability of data and materials: The data and

materials generated during the study are available from

the corresponding authors on reasonable request.

Conflict of Interest: The authors declare that they

have no conflict of interest.

Authors’ contributions: Q. Wang designed

the study, performed experiments and wrote the

manuscript. P. Li and H.-N. Dai helped to design the

study and experiments and supervised the project. C.

Guo provided comments and feedback on the study and

the results. All authors reviewed the manuscript.

17

18 Q. Wang et al.

Acknowledgements

The authors would like to thank the anonymous

reviewers for their helpful suggestions and comments.

This work was supported in part by the Hong Kong

Institute of Business Studies (HKIBS) Research Seed

Fund under Grant HKIBS RSF-212-004, and in part by

The Hong Kong Polytechnic University under Grant

P0030419, Grant P0030929, and Grant P0035358.

Open Access This article is distributed under the

terms of the Creative Commons Attribution License which

permits any use, distribution, and reproduction in any

medium, provided the original author(s) and the source are

credited.

References

[1] W. Chu and Y. Wu. Image style classification based

on learnt deep correlation features. IEEE Transactions

on Multimedia, 20(9):2491–2502, 2018.
[2] O. Deussen, S. Hiller, C. V. Overveld, and

T. Strothotte. Floating points: A method for

computing stipple drawings. Computer Graphics

Forum, 19, 2000.
[3] O. Deussen and T. Isenberg. Halftoning and

stippling. In Image and Video-Based Artistic

Stylisation, volume 42, pages 45–61, 2013.
[4] O. Deussen and T. Strothotte. Computer-generated

pen-and-ink illustration of trees. In ACM SIGGRAPH,

page 1318, 2000.
[5] D. L. Donoho. De-noising by soft-thresholding. IEEE

Transactions on Information Theory, 41(3):613–627,

1995.
[6] T. Dutta, A. Singh, and S. Biswas. StyleGuide: Zero-

shot sketch-based image retrieval using style-guided

image generation. IEEE Transactions on Multimedia,

pages 1–10, 2020.
[7] Y. Ganin, T. Kulkarni, I. Babuschkin, S. M. A.

Eslami, and O. Vinyals. Synthesizing programs for

images using reinforced adversarial learning. In J. Dy

and A. Krause, editors, International Conference on

Machine Learning, volume 80, pages 1666–1675, 2018.
[8] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural

algorithm of artistic style. ArXiv, abs/1508.06576,

2015.
[9] L. A. Gatys, A. S. Ecker, and M. Bethge. Image

style transfer using convolutional neural networks. In

IEEE Conference on Computer Vision and Pattern

Recognition, pages 2414–2423, LAS VEGAS, June

2016.
[10] D. Ha and D. Eck. A neural representation of sketch

drawings. In International Conference on Learning

Representations, pages 1–16, 2018.
[11] P. Haeberli. Paint by numbers: Abstract image

representations. ACM SIGGRAPH Computer

Graphics, 24(4):207214, 1990.
[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual

learning for image recognition. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 770–

778, 2016.
[13] A. Hertzmann. Painterly rendering with curved brush

strokes of multiple sizes. In ACM SIGGRAPH, page

453460, 1998.
[14] A. Hertzmann. A survey of stroke-based rendering.

IEEE Computer Graphics and Applications, 23:70–81,

2003.
[15] H.-Z. Huang, S.-H. Zhang, R. R. Martin, and S.-M. Hu.

Learning natural colors for image recoloring. Computer

Graphics Forum, 33(7):299–308, 2014.
[16] Z. Huang, W. Heng, and S. Zhou. Learning to paint

with model-based deep reinforcement learning. In

IEEE International Conference on Computer Vision,

pages 8708–8717, 2019.
[17] B. Jia, C. Fang, J. Brandt, B. Kim, and D. Manocha.

PaintBot: A reinforcement learning approach for

natural media painting. ArXiv, abs/1904.02201, 2019.
[18] Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song.

Neural style transfer: A review. IEEE Transactions

on Visualization and Computer Graphics, 26(11):3365–

3385, 2020.
[19] R. Justin. Elements of Art: Interpreting Meaning

Through the Language of Visual Cues. PhD thesis,

Stony Brook University, 2018. Copyright - Database

copyright ProQuest LLC; ProQuest does not claim

copyright in the individual underlying works; Last

updated - 2020-12-08.
[20] H. Lee, S. Seo, S. Ryoo, K. Ahn, and K. Yoon. A

multi-level depiction method for painterly rendering

based on visual perception cue. Multimedia Tools and

Applications, 64(2):277–292, 2013.
[21] T. M. Liddell and J. K. Kruschke. Analyzing ordinal

data with metric models: What could possibly go

wrong? Journal of Experimental Social Psychology,

79:328–348, 2018.
[22] S. Liu, T. Lin, D. He, F. Li, R. Deng, X. Li, E. Ding,

and H. Wang. Paint transformer: Feed forward neural

painting with stroke prediction. In IEEE International

Conference on Computer Vision, 2021.
[23] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning

face attributes in the wild. In IEEE International

Conference on Computer Vision, pages 3730–3738,

2015.
[24] J. F. J. Mellor, E. Park, Y. Ganin, I. Babuschkin,

T. Kulkarni, D. Rosenbaum, A. Ballard, T. Weber,

O. Vinyals, and S. Eslami. Unsupervised doodling

and painting with improved SPIRAL. In Neural

Information Processing Systems Workshops, 2019.
[25] R. Nakano. Neural painters: A learned differentiable

constraint for generating brushstroke paintings. In

Neural Information Processing Systems Workshops,

2019.
[26] A. Radford, L. Metz, and S. Chintala. Unsupervised

representation learning with deep convolutional

18

Stroke-GAN Painter: Learning to Paint Artworks Using Stroke-Style Generative Adversarial Networks 19

generative adversarial networks. In International

Conference on Learning Representations, pages 1–16,

2016.
[27] O. Russakovsky, J. Deng, H. Su, J. Krause,

S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, A. C. Berg, and F.-F. Li. ImageNet

large scale visual recognition challenge. International

Journal of Computer Vision, 115:211–252, 2015.
[28] J. Song, K. Pang, Y.-Z. Song, T. Xiang, and T. M.

Hospedales. Learning to sketch with shortcut cycle

consistency. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 801–810, 2018.
[29] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich. Going deeper with convolutions. In

IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–9, June 2015.
[30] Z. Tong, X. Chen, B. Ni, and X. Wang. Sketch

generation with drawing process guided by vector flow

and grayscale. In AAAI Conference on Artificial

Intelligence, volume 53, pages 609–616, May 2021.
[31] L. Wang, Z. Wang, X. Yang, S.-M. Hu, and J. Zhang.

Photographic style transfer. The Visual Computer,

36(2):317331, 2020.
[32] Q. Wang, C. Guo, H.-N. Dai, and P. Li. Self-stylized

neural painter. In SIGGRAPH Asia 2021 Posters, SA

’21 Posters, pages 9:1–9:2, 2021.
[33] B. Wilson and K. Ma. Rendering complexity in

computer-generated pen-and-ink illustrations. In

International Symposium on Non-Photorealistic

Animation and Rendering, page 129137, 2004.
[34] N. Xie, H. Hachiya, and M. Sugiyama. Artist

agent: A reinforcement learning approach to

automatic stroke generation in oriental ink painting.

IEICE Transactions on Information and Systems,

E96.D(5):1134–1144, 2013.
[35] M. Xu, H. Su, Y. Li, X. Li, J. Liao, J. Niu, P. Lv,

and B. Zhou. Stylized aesthetic QR code. IEEE

Transactions on Multimedia, 21(8):1960–1970, 2019.
[36] Y. Zhao, B. Deng, J. Huang, H. Lu, and X.-S.

Hua. Stylized adversarial AutoEncoder for image

generation. In ACM International Conference on

Multimedia, pages 244–251, 2017.
[37] N. Zheng, Y. Jiang, and D. jiang Huang. StrokeNet:

A neural painting environment. In International

Conference on Learning Representations, 2019.
[38] W.-Y. Zhou, G.-W. Yang, and S.-M. Hu. Jittor-GAN:

A fast-training generative adversarial network model

zoo based on Jittor. Computational Visual Media,

7(1):153–157, 2021.
[39] Z. Zou, T. Shi, S. Qiu, Y. Yuan, and Z. Shi. Stylized

neural painting. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 15689–15698,

Virtual, June 2021.

Qian Wang received a B.Eng. degree

in electronic information engineering

from Yangtze University, Jingzhou,

China, in 2012, and an M.Eng. degree

in educational technology from Zhejiang

University of Technology, Hangzhou,

China, in 2016. She is currently

pursuing a Ph.D. degree in computer

technology and applications in the School of Computer

Science and Engineering, Macau University of Science and

Technology. She is also a Research Assistant with The Hong

Kong Polytechnic University. Her current research interests

include image and video stylization, and AI drawing.

Cai Guo received an M.Eng. degree in

software engineering from Guangdong

University of Technology, Guangzhou,

China, in 2011. He is currently pursuing

a Ph.D. degree in computer technology

and applications in the School of

Computer Science and Engineering,

Macau University of Science and

Technology. He is also with Hanshan Normal University,

Chaozhou, China. His current research interests include

deep learning, motion deblurring, and AI drawing.

Hong-Ning Dai received a Ph.D.

degree in computer science and

engineering from The Chinese

University of Hong Kong, in 2008.

He is currently an Associate Professor

in the Department of Computing and

Decision Sciences, Lingnan University,

Hong Kong. He was in the Faculty of

Information Technology at Macau University of Science and

Technology as an Assistant/Associate Professor from 2010

to 2021. His current research interests include Internet

of Things, big data analytics, and blockchains. He has

co-authored or co-edited 3 monographs and published more

than 150 papers in top-tier journals and conferences.

Ping Li received a Ph.D. degree

in computer science and engineering

from The Chinese University of Hong

Kong, in 2013. He is currently an

Assistant Professor with The Hong

Kong Polytechnic University. He

has published many top-tier scholarly

research papers and has one excellent

research project reported worldwide by ACM TechNews.

His current research interests include artistic rendering and

synthesis, stylization, colorization, and creative media.

19

