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Abstract 3D Morphable Models (3DMMs) are generative
models for face shape and appearance. Recent works
impose face recognition constraints on 3DMM shape
parameters so that the face shapes of the same person remain
consistent. However, the shape parameters of traditional
3DMMs satisfy the multivariate Gaussian distribution. In
contrast, the identity embeddings meet the hypersphere
distribution, and this conflict makes it challenging for face
reconstruction models to preserve the faithfulness and the
shape consistency simultaneously. In other words, recognition
loss and reconstruction loss can’t decrease jointly due to their
conflict distribution. To address this issue, we propose the
Sphere Face Model(SFM), a novel 3DMM for monocular face
reconstruction, preserving both shape fidelity and identity
consistency. The core of our SFM is the basis matrix which
can be used to reconstruct 3D face shapes, and the basic
matrix is learned by adopting a two-stage training approach
where 3D and 2D training data are used in the first and second
stages, respectively. We design a novel loss to resolve the
distribution mismatch,enforcing the shape parameters have
the hyperspherical distribution. Our model accepts 2D and
3D data for constructing the sphere face models. Extensive
experiments show that SFM has high representation ability
and clustering performance in its shape parameter space.
Moreover, it produces high-fidelity face shapes consistently
in challenging conditions in monocular face reconstruction.
The code will be released at https://github.com/a686432/SIR.

Keywords Facial modeling, Deep learning, Face
reconstruction, 3D Morphable Model

1 Introduction
The problem of face reconstruction from images and videos
has been attracting considerable attention in the computer
vision and computer graphics community. It has a broad
range of applications, including AR/VR [1], animation [2, 3],

computer games [4], etc. In recent years, there is a growing
demand for customizing 3D virtual faces to create game
characters [4, 5] or personalized 3D facial editing [6]. In such
applications, images from common users usually come from a
large diversity of conditions, including occlusion, resolution,
pose, expression, illumination, etc. It is thus challenging to
reconstruct a face from only a single image requiring both
shape faithfulness and identity preservation.
Although previous works [7, 8] claimed to have achieved

face reconstruction from a single image, their reconstructed
face shapes suffer from inconsistent identity properties when
the input images have varying conditions.To address this
problem, the follow-up works [9–11] propose to aggregate
shape parameters of the same identity while separate those of
different subjects to produce 3D face shapes containing good
identity-related features. However, the conflict between the
shape loss and the identity loss in their reconstruction pipeline
prevents them from achieving both shape fidelity and identity
consistency. That conflict comes from the mismatch between
the distribution of identity embeddings of face recognition
and shape parameters of the previous 3DMMs [12–15], which
maximize their model expression ability while neglecting
some distinguishable information of categories.
Therefore, this paper focuses on identity-consistent

face reconstruction in a linear model. To resolve the
aforementioned distribution mismatch problem, we propose
a novel face generation model called the Sphere Face Model
(SFM). We add category information while building the basis
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Fig. 1 The overview of the sphere face model. (a) The identity parameter of the sphere face model distributed on the hypersphere represents
the identity information. The meshes are uniformly sampled from on the hypersphere using the first two dimensions of identity parameters.
(b)The scale parameter of the sphere face model is scalar, which controls the distinctiveness to the mean face. (c)The distribution of the
parameter. The shape parameter of the PCA-based model has an anisotropic multivariate Gaussian distribution. Our identity parameters are
distributed isotropically on the hypersphere and separated between different classes.

of SFM and constrain identity parameters over a hypersphere
by normalizing the shape parameters to make the shape
parameter space of SFM consistent with identity latent space
(the detailed definition of geometric space, shape, parameter
space, and identity latent space are in Section 3). In this way,
we resolve the conflict between the two losses and further
improve the identifiability of 3D face models. Moreover,
SFM has an essential property that the discrimination of the
parameters is transferable to the geometry, which means the
Euclidean distance between two sets of 3DMM parameters
in shape parameter space and between corresponding mesh
vertices in geometric space have a positive correlation. One
notable challenge is when the identity parameters are forced
to be distributed over a hyperspherical surface, the L2 norm
of the parameter vectors become the same. In other words, the
reconstructed faces would have the same root mean square
errors from the mean face, leading to reduced varieties of
generated faces. We use two approaches to address that issue.
Algorithmically we add a parameter to control the scale of the
shape parameters of each face. While previous approaches
mainly use 3D training data, which are limited, we propose a
two-stage training approach where we use 3D data only for
pre-training and adopt an unsupervised learning approach
that can leverage a sufficient amount of 2D face data. Figure
1 highlights the differences between our face model and the
previous 3DMMs. The parameter of SFM is composed of a

shape parameter and a scale parameter. The identity parameter
is the normalized shape parameter, which controls the face’s
identity attribute. It is distributed on the hypersphere with
good separation properties. The scale parameter controls the
distance to the average face.
The main contributions of this paper lie in the following

three aspects:
• We propose Sphere Face Model (SFM) for 3D face
reconstruction from single images with both shape
faithfulness and identity consistency.

• We propose a new structure of 3DMMs, where the shape
parameter space follows a hyperspherical distribution
and the discrimination of shape parameter space is
transferable to the geometric space.

• To enable SFMs to reconstruct high-quality 3D face
models from single images, we present a learning scheme
to train SFMs with both 2D and 3D data.

2 Related Work
3D morphable models map the high-dimensional face
geometry space to the low-dimensional manifold space.
Based on 3DMMs, the previous works optimize the
low-dimensional 3DMM parameters from the input image to
reconstruct high-dimensional face geometries in monocular
face reconstruction. Meanwhile, many works introduce
identity loss in the face reconstruction pipeline to keep the
face shape stable from the various input images. This section
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introduces the relatedworks from three aspects: 3Dmorphable
model, shape-consistent face reconstruction from monocular
images, and deep face recognition.

3D morphable models 3D morphable model is a statistical
model of the distribution of the faces, which maps the low
dimensional parameter vector to the high dimensional graphic
vertices. The groundbreaking work of 3DMMs traces back
to Blanz, and Vetter [16], who propose the 3D morphable
model using principal component analysis from an example
of 200 3D faces. Based on this idea, Paysan et al. [12]
provide the first public 3DMM model, BFM 2009 and others
[17–22] extend the model to introduction emotive facial
shapes information by adopting an additional expression
basis or using bilinear and multilinear. [13] provides the
whole head model, FLAME, which introduces an articulated
jaw, neck, and eyeballs in linear shape space and global
expression to make the model more expressive. Yang et
al. [23] present a large-scale detailed 3D face dataset and
models the variation of detailed geometry with it. Unlike
the previous work, we consider identity information while
constructing the 3DMM model, and the shape parameter
can be inherently separated among each identity. Blanz and
Vetter [16] only use facial meshes of 200 subjects of similar
ethnicity and age, which cannot represent the great diversity
of the human faces. [15] train the 3DMM with the large scale
of 3d data to overcome this limitation, but the 3D data is
also limited. [24–26] use sufficient 2D data to training the
3DMM. However, training with 2D data without 3D prior
needs strong regular terms, which leads to a lack of geometric
details and diversity. Our method training the model make
full of 2D and 3D data. In recent years, with the development
of deep learning, [24, 26, 27] propose nonlinear models
with encoder-decoder structure. Those nonlinear models do
not consider the parameter separation and the property of
propagating the discrimination from shape parameter space
to geometric space when training the models.

Shape consistence monocular face reconstruction Early
works [28–32], reconstruct 3d face from monocular RGB
using the analysis-by-synthesis approach with the prior
knowledge of the 3DMM. They often apply the photometric
and landmark consistency between the input and the rendered
image. In recent years, many researches [9, 33–36] have
proposed the deep network to regress the 3DMM parameters.
Applying face recognition loss to the rendered image mainly
affects the recognizability of the texture, which has a relatively
small impact on shape consistency reconstruction. Adversarial
loss, perceptual loss, and identity loss on the rendered image
[26, 37–40] are proposed to generate the high fidelity texture.

However, applying face recognition loss to the rendered image
mainly affects the recognizability of the texture, which has a
relatively small impact on shape consistency reconstruction.
Feng et al. [41] replace the shape parameter of the same
person and employ the photometric and identity loss on
the rendered images. However, it fails to distinguish shape
parameters of different people. To reconstruct the stable face
shape geometry, Tran et al. [10] label a large number of face
images with 3DMM shape parameters using the optimization
method, and utilize the deep CNN to learn the mapping from
images to shape parameters. But its performance depends
on the accuracy of the optimization method. Liu et al. [11],
and Sanyal et al. [9] use a face recognition loss to push away
the shape parameters of different people while aggregating
those of the same person. Jiang et al. [42] propose that
simply applying the face recognition loss function to the
shape parameter does not guarantee shape consistency. They
explore the relationship of shape parameter discrimination
and geometric visual discrimination and propose the SIR loss,
which increases discriminability in both the shape parameter
and shape geometry domain. Since they use the PCA-based
face model, it is challenging to preserve faithfulness and
shape consistency simultaneously.

Deep face recognition In recent years, many works
have achieved incredible face recognition accuracy with
the powerful deep convolutions neural network. Most of
them focus on cleaning and mining the training data or
designing the loss function to maximize the intra-class
distance and minimize the inter-class distance, which boosts
the discrimination of deep feature identity embedding. There
are mainly three types of loss functions for face recognition.
One utilizes pair or triple training strategy, such as contrastive
loss [43] and the Triplet loss [44]. Another type of loss, like
the center loss [45], plays as the auxiliary loss to augment
the other loss functions. The aim of these loss functions is
aggregating features to minimize the inner-class distance. The
auxiliary loss can be directly added to the classifier network
and learn the discriminative features. The last type of loss is
modified softmax [46–51]. Normface [47] and Cocoloss [48]
normalized the weights and features and directly optimize
the cosine similarity instead of the inner product. L-softmax
[46] and sphereface [49] introduce the multiplicative cosine
margin. Cosface [51] and Am-softmax [52] introduce the
additive cosine margin, and arcface [50] introduces the
additive angular margin. [53–55] adapt the margin during the
training. Current SOTA deep face recognition methods mostly
adopt the last type of loss and softmax-based classification
loss. Their identity latent space is the hypersphere.
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Fig. 2 The framework of our method. The normalization of x generates the identity parameters distributing on a hypersphere. The
normalized identity parameter is multiplied by the scale parameter to get the shape parameter and goes through the basis to get the
corresponding mesh. When training on 3D data, we directly optimize s and x. When training on 2D data, we use encoder-decoder because it
requires other parameters to render the image.

3 Space Distribution
This section elaborates the characteristics the identity latent
space needs to have for effective face representation and
reconstruction. Before introducing our method, we first
introduce the terminologies as well as several key concepts:
geometric space, shape parameter space, and identity latent
space. Geometric space Ψ is a set of face meshes, which
is formulated as Ψ ∈ RNv . Nv is the number of vertices
of a face mesh. Shape parameter space Φ is a set of shape
parameters of 3DMM,which is formulated asΦ ∈ RNp .Np is
the dimension of shape parameters. Identity latent space Ω is
a set of identity embedding which is formulated as Ω ∈ RNi .
Ni is the dimension of identity embedding.
In recent years, the shape basis of 3DMM models for

face reconstruction is mostly based on PCA decomposition
[34, 41], such as FLAME [13], bfm09 [12], bfm17 [14].
These PCA-based 3DMM suffer from the conflict between
the losses for face recognition and reconstruction in the
shape-consistent face reconstruction pipeline. Specifically,
the shape parameters for face reconstruction satisfy the
anisotropic multivariate Gaussian distribution [16].

p(α) ∼ N(0,Σ) (1)

whereα is shape parameter,Σ = {e1, e2, ..., en}, and the ei is

the ith eigenvalue of shape basis. However, these eigenvalues
are significantly variance (e1 : e199 ≈ 400), making the
distribution a hyper-ellipsoid with a high eccentricity as
shown in Figure 1.
In contrast, the identity embeddings for face recognition

are distributed isotropically on the hypersphere, which is first
introduced in [47]. And modern face recognition methods
[50, 53, 54] follow this identity embedding distribution.

p(β) ∼ x/‖x‖2;x ∼ N(0, 1) (2)

where β is identity embedding. The distribution mismatch in
the shape parameter space of face reconstruction and identity
latent space of face recognition makes the co-convergence
of these two loss functions (face recognition loss and face
reconstruction loss) very difficult to achieve.More specifically,
when conducting the intense face recognition loss, the latent
vectors are forced to distribute on a hyper-spherical surface
which do not follow the actual distribution of shape parameters
and make the reconstruction results inaccurate. On the
contrary, employing an intense reconstruction loss would
probably make the distribution of latent vector to be no
longer hyperspherical, resulting in less identity-consistent
reconstruction results. Note that nonlinear face models
[24, 26, 27], which also belongs to the family of 3DMMs,
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are not guaranteed to transfer the discrimination of the shape
parameter space to the geometric space as explained in
Section 3.2, thus cannot preserve identity information while
constructing face models.
To address the above issue, we propose to keep the shape

parameter space of SFMs consistent with identity latent
space of face recognition. The significant difference between
our method and the previous methods [13, 14] are that the
latent space of our 3DMM model is a hypersphere with an
isotropic distribution. In contrast, the previous 3DMM model
is a hyper-ellipsoid with a large eccentricity. Additionally,
it should meet the requirement that discriminability can
be transferred between the shape parameter space and the
geometric space. Here, we first introduce the identity latent
space distribution of identity embeddings and then describe
how we design the structure of SFMs and the concrete
constraints the SFM should satisfy.

3.1 Hypersphere Manifold of Identity Embedding

Modern face recognition works always adopt the
softmax-based classification loss for metric learning, where
weights w and identity embeddings l are normalized and the
concept of margin [49–51] is adopted to boost discrimination
of deep face features further. In particular, a loss function
with margin can be formulated as Equation 3:
Lm =

− 1

m

m∑
i=1

log
es(cos(αθyi+β)−γ)

es(cos(αθyi+β)−γ) +
∑n
j=1,j 6=yi e

scos(θj)

cos(θj) = wj li cos(θyi) = wyi li li = xi/‖xi‖
(3)

where xi ∈ Rd denotes the d dimensional deep feature of
i-th sample, yi denotes the label of xi. wi is ith column
the normalized weight before Softmax[47]. s re-scales the
cosine embedding. θj is the angle between vector xi and class
vector wj in the identity latent space. m and n denote the
batch size and the class number respectively. The parameter
α, β and γ encode the margins of different kinds (see
SphereFace [49], Cosface [51] and Arcface [50]). The identity
embedding trained with softmax-based classification are
distributed on a hypersphere. Previous works [11, 42] impose
the softmax-based loss on shape parameters. However, the face
parameters constrained by the face recognition loss function
will make the face parameters tend to have a hyperspherical
distribution. On the other hand, these parameters must
meet the distribution of PCA-based basis(the anisotropic
multivariate Gaussian distribution) to have a better result of
face shape reconstruction. Therefore, for the face recognition

function to better affect the geometric separation, we must
reconstruct and establish a reconstruction base with a similar
distribution to identity embedding. However previous works
[13, 26] on conducting the shape basis did not emphasize
this.

3.2 Shape Parameter Space of Sphere Face Models

As mentioned above, the established SFM should meet
the following criteria: (1) the discriminability of the shape
parameter space can be transferred to the discriminability
of the geometric space; (2) the distribution of the SFM
parameters is consistent with the distribution of the face
recognition identity embeddings, that is, the isotropic
hyperspherical distribution. For the first criteria, SFM shape
parameter space have to meet the following conditions:
∀x1, x2, x3;if ‖x1 − x2‖ 6 ‖x1 − x3‖

then ‖f(x1)− f(x2)‖ 6 ‖f(x1)− f(x3)‖
(4)

If f(x) is a linear function and the basis (mentioned later in
Section 4) is orthonormal, the above condition can be met
(The property is proved in [42]). Thus we use orthonormal
basis in SFM.
To meet the second criteria, we normalize the shape

parameters in SFM. As a consequence, the vector of shape
parameters will be constrained on the hypersphere, leading
to the cosine angle between two vectors proportional to their
distance in the geometric space. This also brings up a problem
that the distance between the result of all human faces and the
average face become the same, since all human faces would
have the same distance from the origin of the coordinates.
Our solution is to add a scalar to control the norm of the
face parameters. Similar as [56], we use scale-normalized
shape parameters, namely identity parameters, since they are
related to identity information. The scale parameter represents
the difference with the mean face. Previous work [57] also
proposes decomposition networks, but their model did not
consider the above situations, making it impossible to use face
recognition loss on shape parameters to improve the degree
of parameter separation further.
To summarize, our SFM consists of a scale parameter s

and a vector of shape parameters x to describe a face model.

4 Sphere Face Model
Given the shape parameters x and the scale parameter s, our
Sphere Face Model is able to reconstruct the 3D face shape
by:

M = M̄ + A(s ∗ x
‖x‖ ) (5)
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where M ∈ R3n is a reconstructed 3D face shape with n
vertices and M̄ ∈ R3n is themean face shape. The normalized
term x/‖x‖ represents the identity parameters. The orthogonal
matrix A represents the basis of SFM, which is obtained by
a joint 2D-3D learning framework based on deep neural
networks. This structure guarantees s ∗ x

‖x‖ located on the
hypersphere.

The previous works for constructing parameterized models
mainly rely on 2D or 3D datasets. However, only training the
model with 3D models would lack face variants because there
is no publicly available large 3D face datasets. Training only
with a two-dimensional dataset is also difficult to get satisfying
results since the large diversity of expressions and poses
will affect the identity-related features in the reconstructed
face models without 3D shape guidance. The regularization
constraint used in these methods [24, 26] also makes the
generated mesh similar to with the average face. Tran et al.
[26] used the proxy strategy to alleviate that issue but did
not fully solve it. Therefore, we propose an effective learning
scheme to utilize 2D and 3D data to learn face models with
the aforementioned properties.
In the following sub-sections, we introduce the overall

framework and then describe how the deep model is trained
using 3D and 2D face data.

4.1 Learning Framework

Given the model defined in Equation 5, our goal is to learn
the basis matrix A from face datasets. To achieve so, we
adopt a two-stage training strategy as illustrated in Figure
2. In the first stage, we feed the model with scale and shape
parameters and force the model to reconstruct the 3D face.
We optimize the basis matrix, scale parameters, and shape
parameters by minimizing the objective function as shown in
Equation 9. After this step, we obtain a basis matrix, which
is rough due to the scarcity of the 3D training data. In the
second stage, we make use of the large 2D face datasets and
train an encoder-decoder style model similar to [25, 26, 58].
The pre-trained SFM can be regarded as a decoder module
that can reconstruct the 2D face image along with other
decoder modules using the latent vector from the encoder. By
optimizing the encoder and decoder, our SFM is finetuned.
More specifically, the encoder regresses the scale, shape,

expression, and other rendering parameters, such as albedo,
illumination, pose, and camera parameters. In the decoder
part, we have four components, each of which is to be trained
in this stage: (1) The trained shape basis of SFM, (2) The
expression basis Dexp from bfm2017 [14], (3) the albedo
basis Dalbedo from [59], (4) the rendering layer takes the

geometric, albedo, illumination, pose parameter, and camera
parameter and renders 224×224 RGB images, which is based
on Pytorch3d [60]. The illumination model is a spherical
harmonic illumination model.
In previous works, [26] does not use 3d prior when

constructing face models from 2D data; [25] creates a
new basis besides the 3DMM to correct face shape; [58]
directly regresses the residual displacement in geometric
space to correct the face shape. In contrast, our work directly
corrects the 3d prior basis by decoupling the expression and
appearance information in 2D data, which is able to learn
better identity-related features for face reconstruction.

4.2 Data Preparation

3D data. FRGC v2.0 database [61] contains 4007 3D
face scans of 466 subjects and is acquired by a Minolta
Vivid 900/910 series sensor under controlled illumination
conditions. In the preprocessing, we use a non-rigid iterative
closest point algorithm [62] to register the 3D face raw scans
to the topology of BFM2017 [14] and remove the sample
with radical expressions. The registered 3D models face the
positive direction of the z-axis, and their centers are coincident
with the origin. Note that the unit of the registered 3D model
is the millimeter.

2D data. The second stage is trained with 300W-LP [63]
and VGGFace2 [64]. VGGface2 contains 3.31 million images
of 9131 subjects covering a large range of poses, ages, and
ethnicities. 300W-LP is a synthetically generated dataset
based on the 300-W database [65] containing 61,255 samples
across various poses. In our preprocessing stage, the faces
are aligned using similarity transformation and cropped to
224×224 in the RGB format with its landmark of 300W-LP.

4.3 Training Sphere Face Model with 3D Data

SFMs are first trained with 3D data to learn the shape basis
using the following loss function:

Loss function. To assemble the identity parameters of
the same identity and separate those of different identities
in cosine distance, we apply the modified-Softmax loss with
normalized shape parameters and normalized weight, which
is introduced by the Normface [47]:

Lm = − 1

m

m∑
i=1

log
e

xyi
‖xyi‖

∗
wyi

‖wyi‖∑n
j=1 e

xj
‖xj‖
∗

wj

‖wj‖
(6)

where n is the number of classes and m is the number of
samples of the batch. yi the groundtruth label. wj represents
the jth row of the basis A. At the same time, we aggregate
the scaled identity parameters s ∗ x

‖x‖ of the same identity to
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its center c and separate the centers of different identities in
Euclidean distance:

Lc =

∥∥∥∥s ∗ xyi
‖xyi‖

− cyi
∥∥∥∥2

1
n

∑
i 6=j ‖ci − cj‖

2 (7)

where ci represents the center of the ith class. Finally, we
minimize the reconstruction error with basis regularization:

Ls =
∥∥∥M − M̂∥∥∥2

+ wa
∥∥ATA− I

∥∥2 (8)

whereM is the ground-truth mesh and M̂ is the reconstructed
mesh. I is the identity matrix and wa is the weight of the
loss function. Finally, we optimize the following objective
function and solve the target basis A:

min
x,s,c,A

wmLm + wcLc + wsLs (9)

Hyperparameter setting. We use the Adam optimizer, where
the initial learning rate of x and s is 0.02 and that of the
learning rate of A is 0.005. The batch size is 512, and the
learning rate is reduced to one-tenth for every 20 epochs.

4.4 Training Sphere Face Model with 2D Data

In the second stage, we train a model to reconstruct the 2D
face image. Here, the decoder is initialized by the first stage
and will be finetuned during this stage. Here, ε denotes the
weight of a loss term.

loss function The loss function consists of three
components: landmark loss, photometric loss, and recognition
loss. The landmark loss and recognition loss would take effect
according to the label of training data as follows:

L =

{
Lpix(Ir, I) + εlLland + εrLreg I ∈ Srecon
Lpix(Ir, I) + εsLid + εrLreg I ∈ Sid

(10)
where Lpix is the photometric loss, Lland is the landmark
loss, and Lid is the recognition loss. Ir is the rendered image
and I is the input image. The set Srecog represents the training
data with landmark annotations and Sid is the the training
data with identity annotations. We explain these losses in
detail below.
The landmark term Lland uses the L1 loss between

projected landmarks V̂2d and ground-truth landmarks V2d:

Lland =
1

N

∥∥∥V2d − V̂2d

∥∥∥
2

(11)

where N is the number of landmarks.
Face recognition loss includes three components as shown

in Equation(12): a softmax-based loss, a centerness loss, and
a Kullback-Leibler loss.

Lid = Lsoft + εcenterLcenter + εklLkl (12)

We use cosloss [51] Lsoft as the softmax-based loss, which
applies to the identity parameters. The Kullback-Leibler loss
[66] Lkl and Lcenter center loss [45] are applied to the scale
parameter.
Photometric loss measures the difference between the

rendered image and the input image using pixel-wise
differences to measure the absolute errors between each
corresponding pixel pair with the weights of a confidence map
[67], which aims to deal with occlusions or other challenging
appearance variations such as beard and hair. The weighted
pixel-wise loss is defined as follows:

Lpix(Ir, I) = − 1

|Ω|
∑
uv∈Ω

ln
1√

2σuv
exp−

√
2`1,uv
σuv

(13)

where `1,uv = |Iuvr − Iuv| is the L1 distance between the
intensity of input image I and the reconstructed image Ir at
location (u, v) and σ ∈ RW×H+ is the confidence map. Ω is
the 2D image space.
As shown in Equation 14, the regularization term Lreg

consists of two parts: parameter-level regularity loss Lpreg
and mesh-level regularity loss Lmreg .

Lreg = Lpreg + εmregLmreg (14)

The regularization term of Lpreg for 3DMM coefficients is
defined as:

Lpreg = εid

mid∑
j=1

α2
idj + εexp

mexp∑
j=1

α2
expj

σ2
expj

+ εalb

malb∑
j=1

α2
albj

σ2
albj

(15)
where σexp is an eigenvalue of the expression basis and σalb
is an eigenvalue of the albedo basis. αid, αexp and αalb are
the 3DMM parameters which are regressed by the encoder
network as shown in Figure 2; mid, mexp and malb are the
dimensions of the shape, expression and albedo parameters
respectively.
The mesh-level regular loss consists of the smooth loss,

the symmetrical loss and the residual loss.

Lmreg = Lsmooth + Lsym + Lres (16)

Lsmooth(G) =
1

N

N∑
i=1

∥∥∥∥∥∥Gi −
1

|Ni|
∑

Gj∈Ni

Gj

∥∥∥∥∥∥
2

(17)

where G is the reconstructed face shape, Ni denotes a set of
a neighboring vertices Gi and N is the number of vertices.
We assume that the human faces in natural expressions

are symmetric about the center axis and add the face shape
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geometry symmetrical loss:

Lsym(G) = ‖G− filp(G)‖1 (18)

where flip() is the operation to flip the face shape geometry.
The residual loss is:

Lres(G) =
∥∥G− Ḡ

∥∥
1

(19)

where Ḡ is the mean face geometry.
More Training Details Currently, there are no large

public databases that contain both face identity labels and
landmark labels. Moreover, since the results of existing face
detectors are unsatisfactory in challenging conditions, we do
not automatically generate landmarks in the face recognition
dataset. Therefore, we use the mixed data from 300W-LP [63]
and VGGFace2 [64]. To successfully train our model with
the mixed dataset, we use the following strategy to achieve
convergence:
(1)Switch the loss function: Because the labels in the

mixed database are deficient, we determine which loss terms
take effect according to the labels of the training samples. For
example, if the training sample is from VGGface2, we enable
face recognition loss and photometric loss. Otherwise, the
landmark loss and photometric loss take effect as shown in
Equation 10.

(2)Warm up the network: To warm up the network, we train
our network on the 300W-LP [63] database only using Srecon,
then train the mixed database with the full loss function shown
in 10.
(3) Balance the data from different datasets: Because the

VGGface2 contains 3.31 million images while 300W-LP [65]
contains 61,255 samples, which are extremely unbalanced, we
design a sampling scheme where the probability of selecting
samples from the VGGFace2 is given by:

P =
Nrecon

Nrecog +Nrecon
(20)

Here, Nrecon is the number of samples in 300W-LP dataset
and Nrecog is that in VGGFace2 dataset. The probability of
selecting samples from 300W-LP database is 1− P .

5 Experiment
Comparing with the previous methods, SFMs have the
following properties: (1) The shape parameter space of
SFMs has inherent separation property between the various
classes; (2) The shape parameter space distribution of SFM
is similar to that of identity embeddings, so that the losses
for face recognition and face reconstruction can be easily
optimized together in the pipeline of shape-consistent face
reconstruction; (3) SFM has better capabilities for face
representation. Therefore, in this section, we evaluate SFMs

Model PCA Linear Sphere-Linear SFM
RMSE 0.2777 0.2916 0.2808 0.2827
SCE -0.0490 -0.0492 -0.0490 0.1193
SCC -0.1068 -0.1073 -0.1068 0.2038
CH 15.86 15.89 15.86 25.81

Table 1 The results of model representation ability and its shape
parameter separability in FRGCv2 database.

Model PCA Linear Sphere-Linear SFM
RMSE 0.3747 0.3924 0.3790 0.3863
SCE 0.1061 0.1059 0.1061 0.2236
SCC 0.1474 0.1470 0.1473 0.3513
CH 9.01 9.03 9.01 10.28

Table 2 The results of model representation ability and its shape
parameter separability in Bosphorus database.

from the following three aspects: model representation ability,
shape parameter space separability, and shape-consistent
monocular reconstruction performance.

5.1 Model Representation Ability

To validate the expressive ability of face representation
models, we reconstruct 3D meshes on the training and testing
database, respectively, with the same dimension of the latent
vector(all of 199 dimensions in this paper). Evaluation of the
training database shows the ability of the models to recover the
meshes of the training data. We also verify the generalizability
of our model by fitting meshes for the testing database. We
also present the result of the parameter interpolation.

Our training dataset is FRGCv2 [61], and the testing dataset
is the Bosphorus Database [68], which contains 4666 3D
face models of 105 people. The models for each person have
various expressions, poses, and occlusions. In our experiment,
we select the face with a frontal natural expression for each
person, and register all the data on the BFM 2017 [27]
template. We first use rigid registration [69] to align the
template with the point cloud roughly and then use non-rigid
ICP [62]. When performing non-rigid registration, we first
register with strong, rigid regular parameters and then use
smaller regular parameters to perform more delicate meshes
registration.

In our experiment, we select the face with a natural frontal
expression for each person and register all the data on the

Model BFM17 FLAME SFM SFM*
RMSE 0.6137 0.4820 0.3501 0.4355
SCE 0.1674 0.0928 0.2247 0.2953
SCC 0.2451 0.1700 0.3616 0.4514
CH 6.87 3.85 9.50 11.04

Table 3 Compare the model representation ability and its shape pa-
rameter separability with BFM17 [14] and FLAME [13] in Bospho-
rus database.The SFM* is the SFM finetuned with 2d data.
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Flame BFM2017 SFM
Ground 

truth 0mm

2mm

SFM*

Fig. 3 The fitting results of BFM17 [14], FLAME [13] and ours.
The first row is the fitted mesh and the second row is the error map
with ground truth. SFM* is the SFM fine-tuned with 2d data.

BFM 2017 [27] template using non-rigid ICPs [62]. We use
the Adam optimizer to optimize the face parameters of the
model. The initial learning rate is 0.02 and reduced by a
factor of 0.5 for every 128th iteration. The total optimization
iteration number is 1000.
The Root Mean Square Error(RMSE) between the

reconstructed meshes and the ground truth for the training
dataset is shown in Table 1, and that for the testing dataset
is in Table 2. We use the face model trained with FRGCv2
but use different methods when generating the above results.
“PCA” means the face model is directly established by the
PCA method. “Linear” means the face model is established
by optimizing an orthogonal linear basis. “Sphere-Linear”
refers to using the structure of SFM without the loss of face
recognition when constructing the face shape. The expression
ability of our SFM basis is slightly better than that of the linear
basis but worse than PCA. Because when the face model has
a linear orthogonal basis, the basis solved by PCA has the
smallest reconstruction error, which is the optimal solution.
Our reconstruction accuracy is slightly lower than PCA’s, but
has a better separation in the shape parameter space.
Table 3 shows the comparison between SFMs with the

shape models of BFM2017 and FLAME on the Bosphorus
database. We crop the face area for fitting because other areas
(ears, neck) are irrelevant to our task and can largely influence
theRMSE.We use the point-to-plane error to calculate RMSE.
The results show that our face model has fewer reconstruction
errors than others. Figure 3 shows some fitting results on the
Bosphorus database. SFMs are competitive among all the
validated 3DMMs in terms of expressive ability, with the best
visual quality of the generated reconstruction results.
Figure 4 shows that the parameters of our basis have an

excellent interpolation performance. We use the geodesic
distance to interpolate the identity parameters and directly
interpolate the scale parameters linearly.

Scan A Scan BInterpolation

Fig. 4 On the left and right are two different scanning models.
We first find their identity parameters and scale parameters. Then
we perform the interpolation of the identity parameters on the
hypersphere and perform linear interpolation on the scale parameter.
Columns 2-5 are the result of interpolation.

5.2 Separability of Shape Parameter Space

After fitting all the 3D scans of a database, we get the
parameters of the corresponding 3DMM model in this
database. We can evaluate the clustering properties of
these parameters to estimate the degree of separation of
shape parameter space. The performance of clustering
can be evaluated with the following metrics: the
Silhouette Coefficient score with Euclidean distance(SCE),
Silhouette Coefficient with Cosine distance(SCC), and
Calinski-Harabasz score indicators(CH). The Silhouette
Coefficients are given as:

s =

n∑
i=1

ai − bi
max(ai, bi)

(21)

where ai is the mean distance between ith sample and all
other points of the same class and bi is the mean distance
between ith sample and all other points of the nearest cluster.
n is the number of the sample. The score is the ratio of
the sum of between-cluster dispersion and of within-cluster
dispersion for all clusters (where dispersion is defined as the
sum of squared distances ). The Calinski-Harabasz score(CH)
is defined as the ratio of the between-clusters dispersion mean
and the within-cluster dispersion:

s =
tr(Bk)

tr(Wk)
× nE − k

k − 1
(22)

whereBk is the trace of the between-cluster dispersion matrix
and Wk is the trace of the within-cluster dispersion matrix
defined by:

Wk =

k∑
q=1

∑
x∈Cq

(x− cq)(x− cq)T

Bk =

k∑
q=1

(nq)(cq − ce)(cq − cE)T

(23)
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Linear Sphere-Linear

SFM

PCA

BFM2017 SFM*

Fig. 5 The latent vector distributions of different methods. We
select 20 people on FRGCv2, fitting the shape parameter, and
then use t-SNE to reduce the shape parameter to two dimensions
and display it on this figure. Different colors represent different
people.The SFM* is the SFM fine-tuned with 2d data.

with Cq the set of points in cluster q, cq the center of cluster
q, cE the center of E, and nq the number of points in cluster
q.
Table 1 and Table 2 show the results of shape parameter

space separation of SFMs and the shape basis constructed
by other methods. We add the face recognition loss while
establishing the SFM basis, significantly improving shape
parameter space separation. Table 3 shows the comparison
between our basis and other basis. The separability of our
shape parameter space is also higher than other models. In
order to present the distribution of shape parameter space
more intuitively, we use t-SNE [70] to project the shape
parameters of different bases to two dimensions. As shown
in Figure 5, the intra-class distance of the shape parameter
space of SFM is small, and the inter-class distance is large.
Compared with other methods, the shape parameter space of
our basis shows a much better separation.

5.3 Monocular Reconstruction

To test the face monocular reconstruction, we use the same
encoder-decoder network in the second training stage as
the shape-consistent face reconstruction pipeline. Unlike
the training phase, when performing inference for monocular
reconstruction, we fix the weight of the shape basis and retrain
the encoder to regress the parameters. In this section, we
evaluate the faithfulness and shape consistency of monocular
face reconstruction results using SFM. In terms of faithfulness,
we compared the visual results with other face reconstruction
methods. Moreover, we compare the accuracy of 3D face
alignment. In terms of shape consistency, we compare the
accuracy of the face recognition using the shape parameters

Input
Image

SFM

SFM*

PCA

Fig. 6 Ablation experimentation samples from MICC [71] dataset.
PCA is the PCA-based model using the same 3D face dataset as
SFM. SFM* is the SFM fine-tuned with 2D data.

Lui et al. D3FR OursDECARingnet

Fig. 7 Comparison with liu et al. [11], Ringnet [9], D3FR[34] and
DECA [41] on three MICC [71] subjects. Our reconstruction results
capture more face details.

and the visual results of the same person reconstructed in
different environments. In this subsection, when comparing
with methods, “ours” means that we use the SFM finetuned
with 2D data.

Face shape consistency evaluation. We use the
cosine distance and Euclidean distance as the similarity
measurements between two groups of shape parameters,
when evaluating the face recognition accuracy. The result
of face recognition performance is shown in Table 4. The
accuracy of our face recognition parameters is higher than
other methods. The results get better after SFM is finetuned
with 2D data because finetuning with 2D face data results in
a more robust generalization model. Moreover, thanks to the
similar latent space distribution of SFM and face recognition,
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Fig. 8 The visualization results on ALFW2000 dataset. The first row: images from ALFW2000 dataset. The second row: the result of
3DDFA v2 [33]. The third row: the results of ringnet [9]. The forth row: the results of DECA [41]. The last row: the results of ours.

Fig. 9 Some samples of user study, The first row: samples from ALFW2000 dataset. The second row: our results. The third row: the results
of ringnet [9]. The forth row: the results of D3FR [34]. The fifth row: the results of MGCNet [72]. The last row: the results of DECA [41].
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Method LFW CFP-FP YTF
Cosine similarity

3DMM-CNN 90.53 - 88.28
Lui et al. 94.40 - 88.74
D3FR 88.98 66.58 81.00
TDDFA 64.90 57.57 58.50
MGCNet 82.10 70.87 75.58
RingNet 79.40 71.41 71.02
DECA 81.70 65.98 78.64
Jiang et al 95.36 83.34 89.07
PCA 94.24 81.20 87.64
SFM 97.23 89.12 91.35
SFM* 98.23 91.12 93.86

Euclidean similarity
D3FR 87.63 66.50 81.10
TDDFA 63.45 55.49 58.16
MGCNet 80.87 66.01 72.36
RingNet 80.05 69.46 72.40
DECA 80.32 63.49 76.46
Jiang et al 94.47 80.78 86.40
PCA 93.45 78.68 85.46
SFM 97.07 87.12 90.43
SFM* 98.03 90.79 92.60

Table 4 Face verification accuracy(%) on the LFW, CFP-FP and
YTF datasets. Our results are obtained using the weighted center
loss. We compare our results with 3DMM-CNN [10], Liu et al. [11],
D3FR [34], TDDFA [33], MGCNet [72], Jiang et al [42], RingNet
[9] and DECA [41]. PCA is the PCA-based model using the same
3D face dataset as SFM. SFM* is the SFM fine-tuned with 2d data.

SFMhas a higher degree of separation of parameter space than
the traditional PCA model. Figure 10 shows the visualization
results of the 3D face reconstructed by the same person in
different environments. We have smaller errors among the
meshes reconstructed for the same person.

Face faithfulness evaluation. As shown in Figure 6,
finetuning with 2D data can improve the expression ability of
the model and generate faces with more details. Compared
with PCA, SFM has more features of face identity. Figure 7
shows that our reconstruction results capture more face details
compared to other face reconstruction methods. Figure fig:ced
shows the cumulative errors distribution curve of 3D face
alignment compared with other methods, Figure 8 shows the
visual results of face alignment and Figure 9 shows the visual
results of face shape.Both quantitative and visual evaluations
show that in terms of face faithfulness our method has better
performance than previous methods.

User study. We conducted a user study to compare the
visual diversity and the degree of retention of the reconstructed
face shape on the identity information. We randomly selected
20 face images from ALFW2000 and reconstructed 3D face
models using the followingmethods: RingNet [9], D3FR [34],
MGCNet [72] and our SFM, and in turn asked 5 participants

D3FR MGCNet Ours 4mm

0mm

Fig. 10 Comparison with D3FR [34], MGCNet [72] on LFW
samples The reconstruction results are the same person under differ-
ent conditions. The third and sixth rows are the error between two
meshes in the same column.

to evaluate the reconstructed faces’ diversity and the retention
of identity information of the reconstructed faces from the
input image with a score from 0 to 10. Participants were told
that the reconstruction results with more identity information
maintained or more diversity of different people should be
scored higher. The average scores of the results from different
methods are shown in the Figure 12. The “identity” means
the degree of identity preservation, and the “diversity” means
the diversity among the 3D faces reconstructed from different
people. Results and comparisons vividly show the advantages
of our method.

5.4 Limitation

The defects in our results where eye region is of low quality
are mainly caused by the relatively noisy eyes of the trained
3D dataset (FRGCv2 [61]). This is also a disadvantage of
our method, which requires multiple scans of neutral faces in
many different people. Note that even the latest high-quality
public 3D face datasets have a limited number of individuals,
and each individual has only one neutral scan. In the user
study, the identity scores of the three methods are comparable,



Sphere Face Model: A 3D Morphable Model with Hypersphere Manifold Latent Space using Joint 2D/3D Training 13

Fig. 11 The cumulative errors distribution curve of 3d face align-
ment accuracy on the ALFW2000 Dataset. Compared with PRNet
[73], 3ddfa [7], our method produces better results.

which is also due to the limitation of current 3D face dataset.
Nevertheless, our main goal is to reconstruct the stable face
from the different conditions with SFM, as shown in Figure
10, which outperforms the previous method.

6 Conclusion
We have proposed a novel 3D morphable model with
a hypersphere manifold shape parameter space for face
generation. We have also proposed a two-stage training
framework where both 3D and 2D data were utilized. Our
model outperformed previous models on the consistency and
the fidelity of the reconstructed faces. Experimental results
validated that our method is superior to previous methods
objectively, and user study showed that our model can provide
visually better face reconstruction results.
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