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Abstract The lack of fine-grained 3D shape

segmentation data is the main obstacle to developing

learning-based 3D segmentation techniques. We propose

an effective semi-supervised method for learning 3D

segmentations from a few labeled 3D shapes and a large

amount of unlabeled 3D data. For the unlabeled data,

we present a novel multilevel consistency loss to enforce

consistency of network predictions between perturbed

copies of a 3D shape at multiple levels: point-level, part-

level, and hierarchical level. For the labeled data, we

develop a simple yet effective part substitution scheme

to augment the labeled 3D shapes with more structural

variations to enhance training. Our method has been

extensively validated on the task of 3D object semantic

segmentation on PartNet and ShapeNetPart, and indoor

scene semantic segmentation on ScanNet. It exhibits

superior performance to existing semi-supervised and

unsupervised pre-training 3D approaches.

Keywords shape segmentation, semi-supervised

learning, multilevel consistency.

1 Introduction

Recognizing semantic parts of man-made 3D shapes is

an essential task in computer vision and graphics. Man-

made shapes often consist of fine-grained and semantic

parts, many of which are small and hard to distinguish.

Moreover, for 3D shapes within a shape category, the

existence, geometry, and layout of semantic parts can
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often have large variations. As a result, obtaining

accurate and consistent fine-grained segmentation for a

shape category is challenging, even for human workers.

Recently, supervised learning approaches have been

widely used in shape segmentation; they need sufficient

labeled data. However, as there are not many large

well-annotated 3D datasets, and the 3D data labeling

process is costly and tedious, it is difficult to apply

these methods to shape categories with limited labeled

data. In this paper, we propose a novel semi-supervised

approach for fine-grained 3D shape segmentation. Our

method learns a deep neural network from a small set

of segmented 3D point clouds and a large number of

unlabeled 3D point clouds within a shape category, thus

greatly reducing the workload of 3D data labeling.

We propose two novel schemes to efficiently utilize

both unlabeled and labeled data for network training.

For unlabeled data, inspired by the pixel-level

consistency scheme used in semi-supervised image

segmentation [30, 40], we propose a set of multilevel

consistency losses for measuring the consistency of

network predictions between two perturbed copies of

a 3D point cloud at the point-level, part-level, and

hierarchical level. Via the multilevel consistency, the

data priors hidden in the unlabeled data can be learned

by the network to good effect. For the available labeled

shapes, we present a simple yet effective multilevel part-

substitution algorithm to enrich the labeled data set

by replacing parts with semantically similar parts of

other labeled data. The algorithm is specially designed

for 3D structured shapes, like chairs and tables, and

it enhances the geometry and structural variation of

the labeled data in a simple way, leading to a boost in

network performance.

We evaluate the efficacy of our method on the

task of 3D shape segmentation including object

segmentation and indoor scene segmentation, by

training the networks with different amounts of
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labeled data and unlabeled data. An ablation study

further validates the significance of each type of

consistency loss. Extensive experiments demonstrate

the superiority of our method over state-of-the-art

semi-supervised and unsupervised 3D pretraining

approaches. Our code and trained models are publicly

available at https://isunchy.github.io/projects/

semi_supervised_3d_segmentation.html.

2 Related Work

In this section, we briefly review related 3D

shape segmentation approaches and shape synthesis

techniques.

2.1 Unsupervised 3D segmentation

Early attempts at unsupervised segmentation focused

on decomposing a single shape into meaningful

geometric parts using clustering, graph cuts, or

primitive fitting (see surveys in [45, 46]). To obtain

consistent segmentation within a shape category, a series

of unsupervised co-segmentation works (see surveys

in [45, 67]) proposed exploiting geometrically similar

parts across over-segmented shapes, via feature co-

analysis or co-clustering. Learning a set of primitives

to represent shape is another approach to shape

decomposition and segmentation, e.g. using cuboids [50,

54], superquadrics [41], convex polyhedra [13], or

implicit functions [19]. Chen et al. [9] trained a branched

autoencoder network, Bae-Net for shape segmentation,

in which each branch learns an implicit representation

for a meaningful shape part. All the above methods rely

on geometric features for segmentation and do not take

semantic information into consideration, which may lead

to results inconsistent with human-defined semantics.

2.2 Supervised 3D segmentation

Various supervised methods perform 3D segmentation

using deep neural networks trained on a large number

of labeled 3D shapes or scenes [22]. Xie et al. [66]

project a 3D shape into multiview images and use

2D CNNs to enhance the segmentation. Kalogerakis

et al. [28] combine CRF with multiview images to

boost segmentation performance. Dai et al. [12] back-

project the feature learned by multiview images to 3D

to conduct scene segmentation. Qi et al. [43] use a

point-based network to predict per-point semantic labels

by combining global and pointwise features. Other

works [35, 44, 53] enhance feature propagation by

using per-point local information. Wang et al. [62]

and Hanocka et al. [23] build graphs from point sets

and conduct message passing on graph edges while

further methods [29, 36, 42, 70] directly perform CNN

computation on mesh surfaces. Song et al. [49] conduct

scene semantic segmentation with the help of the

scene completion task. For efficiency, many works

[10, 20, 27, 58, 73] use sparse voxels or supervoxels

to reduce the computational and memory costs while

achieving better segmentation results. Unlike these

supervised methods that require a large amount labeled

data, we leverage a few labeled data items and a large

amount of unlabeled data for effective segmentation.

2.3 Weakly-supervised 3D segmentation

3D shapes in many shape repositories are modeled

by artists and often come with rich metadata, like

part annotations and part hierarchies. Although part-

related information may be inconsistent with the ground

truth, it can be used to weakly supervise the training

of shape segmentation networks. Yi et al. [71] learn

hierarchical shape segmentations and labeling from noisy

scene graphs from online shape repositories and transfer

the learned knowledge to new geometry. Muralikrishnan

et al. [39] discover semantic regions from shape tags.

Wang et al. [61] learn to group existing fine-grained

and meaningful shape segments into semantic parts.

Sharma et al. [47] embed 3D points into a feature space

based on the annotated part tag and group hierarchy

and then fine-tune the point features with a few labeled

3D data items for shape segmentation. Zhu et al. [76]

utilize part information from a 3D repository to train

a part prior network for proposing per-shape parts for

an unsegmented shape, then train a co-segmentation

network to optimize part labelings across the input

dataset. Xu et al. [69] learn shape segmentation with

an assumption that each shape in the large training

dataset has at least one labeled point per semantic part.

Unlike these weakly supervised methods, our method

requires no additional weak supervision on unlabeled

data.

2.4 Unsupervised 3D pretraining

Unsupervised pretraining [4] has demonstrated its

advantage in many computer vision and natural

language processing tasks, where a feature encoding

network is pretrained on a large amount of unlabeled

data and then is fine-tuned for downstream tasks using

a small amount of labeled data. For 3D analysis tasks,

Hassani and Haley [24] pretrain a multi-scale graph-

based encoder with the ShapeNet dataset [6] using a

multi-task loss. Wang et al. [60] use multiresolution

instance discrimination loss for pre-training, while Hou

et al. [25] and Xie et al. [64] employ contrastive loss.
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Instead of using this two-step training: pretraining and

fine-tuning, our network is trained with both labeled

and unlabeled data from the beginning. Given the same

amount of labeled data, our semi-supervised method

is superior to a fine-tuned pretrained network on 3D

object segmentation and indoor scene segmentation.

2.5 Semi-supervised segmentation

Semi-supervised learning tries to employ unlabeled

data to facilitate supervised learning, thus reducing the

amount of labeled data needed for training; see [55] for

a detailed survey. Many approaches were first developed

for image classification, like temporal ensembling [31]

that aggregates the prediction of multiple previous

network evaluations, Mean-Teacher [51] that averages

model weights instead of predictions, FixMatch [48]

that uses confidence-aware pseudo-labels of weakly-

augmented data to guide the strongly-augmented data

prediction, and MixMatch [5] that guesses low-entropy

labels for data-augmented unlabeled data and mixes

labeled and unlabeled data using MixUp. For image

segmentation, Ouali et al. [40] utilizes cross-consistency

to train image segmentation networks, where pixel

features extracted by the encoder are perturbed and

enforced to be consistent with network predictions after

decoding. Ke et al. [30] use two networks with different

initializations and dynamically penalize inconsistent

pixel-wise predictions for the same image input. French

et al. [15] improve image segmentation accuracy by

imposing strong augmentation on unlabeled training

images via region masking and replacement. Wang et

al. [56] employ the Mean-Teacher model with improved

uncertainty computation and use auxiliary tasks with

task-level consistency for medical image segmentation.

Unlike the above semi-supervised image segmentation

methods that leverage pixel-level consistency only, or

use task-level consistency, our approach utilizes 3D

shape part hierarchy and maximizes 3D segmentation

consistency at multiple levels, including point-level, part-

level and hierarchical level.

For 3D segmentation, Bae-Net [9] can learn a

branched network from labeled data and unlabeled data

for shape segmentation. Although this approach works

well for segmenting 3D shapes into a few large parts, it

is nontrivial to extend it to many fine-grained semantic

3D segments due to its large network size, and it is

unclear whether it can handle the large variety of part

structures well. Wang et al. [57] propose to retrieve a

similar 3D shape with part annotations from a mini-pool

of shape templates for a given input 3D shape, and learn

a transformation to morph the template shape towards

the input shape. From the transformed template, a

part-specific probability space is learned to predict point

part labels, and part consistency within the training

batch is utilized. However, its prediction accuracy can

be severely affected by the chosen template and the

deformation quality.

2.6 Structure-aware shape synthesis

A set of geometric operations has been developed for

generating 3D shapes from shape parts, such as part

assembly [7, 17, 65], structural blending [2], and set

evolution [68]. Although these methods are effective

for generating high-quality 3D shapes, some require

special pre-processing and interactive editing. Recent

methods composite [26, 63, 77] or edit shapes by learning

structural variations within a large set of segmented

3D shapes [37]. Another set of methods [16, 21, 75]

utilizes the functionality of shape structures to guide

3D shape synthesis. In our work, we develop a

simple and automatic part substitution scheme for

generating shapes with proper structural and geometric

variations from a small number of labeled 3D shapes,

whose quality is sufficient to improve network training.

We also notice that recent point cloud augmentation

techniques [8, 32, 34] that mix points of different shapes

randomly to generate more varied shapes can enhance

point cloud classification, and can be extended to shape

segmentation [72]. However, random augmentation

does not respect shape structure and can lead to

limited improvements only, as our experiments show.

Instead, our part substitution scheme enriches structural

variations of the labeled dataset and improves the

network performance.

3 Method Overview

3.1 Input and output

We assume a set of fine-grained 3D semantic part

labels probably with a structural hierarchy is pre-defined

for a 3D shape category. For instance, at a coarse level

the structure of a chair includes the back, the seat, and

the support; the chair support can be decomposed at

a finer level into vertical legs, horizontal supports, and

other small parts. We denote the number of hierarchical

levels by K; the K-th level is the finest level.

Our goal is to predict hierarchical part labels for each

point of the input point cloud and hence determine

its shape part structure. The training data includes a

small set of labeled point clouds and a large number of

unlabeled point clouds. All point clouds are sampled

from shapes within the same shape category, so their

part structures are implicitly coherent but nevertheless

3
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Fig. 1 General neural network setup for 3D semantic

segmentation. The network takes a point cloud S as input and

feeds two perturbed copies of S: S′ and S′′, to the network,

separately. The output point features f(x) of point x are

transformed to probability vectors p(k)(xi) for determining the

segmentation part label at the k-th level. Multilevel consistency

is built upon the probability vectors of points of S′ and S′′.

have topological and geometric variations.

3.2 Base network

Our semi-supervised learning relies on a 3D network

that takes a 3D point cloud as input and outputs the

point features. Each point feature is transformed to

probability vectors via two fully-connected (FC) layers

and a softmax function for determining the segmentation

labels at each granularity level. We defer the exact

choice of our network structure to Section 6.

3.3 Data perturbation for semi-supervised

training

For an input point cloud S which is scaled uniformly

to fit within a unit sphere, we generate two randomly-

perturbed copies of S, denoted S′ and S′′, and pass

them to the network during the training stage. In

our implementation, the perturbation is composed of a

uniform scaling within the interval [0.75, 1.25], a random

rotation whose pitch, yaw, and roll rotation angles

are less than 10°, and random translations along each

coordinate axis within the interval [−0.25, 0.25]. The

perturbed point cloud is clipped by the unit box before

input to the network. This perturbation strategy follows

the approach of [60] for unsupervised pre-training. Data

perturbation makes the trained network more robust

and helps build our multilevel consistency between the

perturbed shape copies. x′
i and x′′

i are the perturbed

copies in S′ and S′′ respectively of xi in S. The network

with perturbed data is illustrated in Fig. 1.

3.4 Notation

We use the following notation in the paper:

S : the input point cloud, {x1, . . . ,xn ∈ R3}.

(a) (b) (c)

L1

L2

L̂2

Fig. 2 Multilevel consistency on two perturbed copies of a

chair model having a 2-level hierarchy. L1 and L2 are the

fine and coarse levels, respectively. Point color corresponds to

predicted part label at each level. The segmentation of L̂2 is the

pseudo-part prediction at L2 inferred from L1 according to the

predefined shape hierarchy. (a) Point-level consistency built on

the corresponding point pairs between two copies at each level.

(b) Part-level consistency built on parts with the same semantics

between two copies at each level. (c) hierarchical consistency

built on the corresponding points between the shape copies on

L̂2 and L2.

L(k) ∈ N+ : The number of semantic labels at the k-th

level.

p(k)(xi) ∈ RL(k)

: probability vector of xi at the k-th

level.

q(k)(xi) ∈ RL(k)

: one-hot vector for xi at the k-th level,

corresponding to the ground-truth semantic label of xi.

3.5 Loss design

For the labeled point cloud S, we use the cross-entropy

loss to penalize dissimilarity of point semantic labels of

S′ and S′′ to the ground truth labels at multiple levels,

as follows:

Lseg(S
′, S′′) =

1

2n

n∑
i=1

K∑
k=1

[
gce

(
q(k)(xi),p

(k)(x′
i)
)
+

gce

(
q(k)(xi),p

(k)(x′′
i )
)]

,

(1)

where gce(·, ·) is the standard cross-entropy loss.

For both unlabeled and labeled inputs, we use the

multilevel consistency loss introduced in Section 4 to

ensure the network outputs of S′ and S′′ are consistent

with each other.

3.6 Labeled data augmentation

The structure of labeled 3D shapes offers a great

possibility for synthesizing new shapes with semantics.

In Section 5, we propose a simple part-substitution

method to enrich the labeled shape set, which can

improve the performance of both supervised and semi-

supervised approaches.
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4 Multilevel consistency

We now introduce our multilevel consistency

for utilizing unlabeled data for network training.

The multilevel consistency builds on point-level

(Section 4.1), part-level (Section 4.2), and hierarchical

level (Section 4.3) consistency, and is illustrated in

Fig. 2.

4.1 Point-level consistency

A pair of points, x′
i ∈ S′ and x′′

i ∈ S′′, should have

probability vectors as similar as possible due to self-

consistency (see Fig. 2(a)). Based on this property, we

build a point-level consistency loss Lpoint upon their

probability vectors using the symmetric KL-divergence

loss DKL:

Lpoint =
1

2n

n∑
i=1

K∑
k=1

[
DKL

(
p(k)(x′

i) ∥ p(k)(x′′
i )
)
+

DKL

(
p(k)(x′′

i ) ∥ p(k)(x′
i)
)]

.

(2)

Point-level consistency is a simple extension of pixel-level

consistency which has been extensively used in semi-

supervised image segmentation. The KL-divergence loss

can be replaced with the MSE loss; the latter has a better

performance on semi-supervised image classification in

[31, 51]. However, we found that they have similar

performance on 3D segmentation, and indeed the former

is slightly better.

4.2 Part-level consistency

Due to data perturbation, the predicted part

distributions of S′ and S′′ at the same part level can be

different. We impose a novel part-level consistency to

minimize this difference.

For a point x′ ∈ S′, its predicted part label at the

k-th level is determined by argmaxm{p(k)m (x′
i),m =

1, . . . , L(k)}, where p
(k)
m (x′

i) is the m-th component of

p(k)(x′
i). Using the predicted part labels of all points

at the k-th level, we can partition S′ into a set of parts,

denoted {P(k)
1 , · · · ,P(k)

L(k)}, where some sub-partitions

can be empty. We call these parts a pseudo-partition.

On S′′, we also compute a pseudo-partition, denoted

{Q(k)
1 , · · · ,Q(k)

L(k)}.
For a pseudo-part P(k)

l , we define two statistical

quantities: belonging-confidence and outlier-confidence,

denoted by BC(P(k)
l ) and OC(P(k)

l ), respectively. The

belonging-confidence measures the confidence with

which points in P(k)
l belong to P(k)

l and the outlier-

confidence measures the confidence with which the

remaining points outside P(k)
l do not belong to P(k)

l .

They are defined as follows.

BC(P(k)
l , S′) =MEAN{p(k)l (y), ∀y ∈ S′ ∩ P(k)

l };

OC(P(k)
l , S′) =MEAN{p(k)l (y), ∀y ∈ S′\P(k)

l }.
(3)

As the pseudo-partitions of S′ and S′′ should be

consistent with each other, we can impose the pseudo-

partition of S′ onto S′′, i.e. , partition S′′ according to

the point assignment of {P(k)
1 , · · · ,P(k)

L(k)}, and compute

the corresponding belonging-confidence and the outlier-

confidence values on S′′. Because of self-consistency,

we expect these values to be as close as possible to the

corresponding values computed on S′. Similarly, we

can also impose the pseudo-partition of S′′ onto S′ in a

similar way. We call this type of consistency part-level

consistency, and define the loss function as follows:

Lpart =
K∑

k=1

L(k)∑
j=1

[α∥BC(P(k)
j , S′)− BC(P(k)

j , S′′)∥2+

β∥OC(P(k)
j , S′)−OC(P(k)

j , S′′)∥2+

α∥BC(Q(k)
j , S′′)− BC(Q(k)

j , S′)∥2+

β∥OC(Q(k)
j , S′′)−OC(Q(k)

j , S′)∥2 ] .

(4)

Here α and β are dynamically adjusted: α = β = 1/2

when the sub-partition appearing in the BC term is

nonempty, otherwise we set α = 0, β = 1. Fig. 2(b)

illustrates part consistency on a chair model.

4.3 Hierarchical consistency

For a shape category possessing a part structure

hierarchy, the semantic segmentation labels at different

levels are strongly correlated. We propose hierarchical

consistency to utilize this structure prior.

For a point x ∈ S, we can use its probability vector

at level (k+1) to infer its part label probability at level

k, i.e. , its parent level, just by merging the probability

values of p(k+1)(x) to form the probability vector at

level k, according to the predefined shape hierarchy.

For instance, in the chair structure, suppose the chair

arm contains two parts: a vertical bar and a horizontal

bar. We add the probability values of the vertical bar

and horizontal bar together and set their sum as the

probability value of the chair arm.

In this way, we can create a pseudo-probability vector

for x at level k, denoted p̂(k)(x). Ideally p̂(k)(x′
i) should

be the same as p(k)(x′′
i ) predicted by the network and

vice versa. We call this relation hierarchical consistency,

and define a loss function on the points of S′ and S′′

5
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(a) (b) (c) (d)

Fig. 3 Multilevel part substitution. The two front legs of the

chair in (a) are selected to replace the four legs in (b). (c):

unsatisfactory substitution by aligning the two regions directly.

(d): good substitution by aligning the common parts (front legs)

first. While the result is not physically plausible, it is suitable

for training.

using KL-divergence as follows:

Lh :=
1

2n

n∑
i=1

K−1∑
k=1

[
DKL

(
p̂(k)(x′

i) ∥ p(k)(x′′
i )
)
+

DKL

(
p̂(k)(x′′

i ) ∥ p(k)(x′
i)
)]

.

(5)

Fig. 2(c) illustrates hierarchical consistency on a chair

model.

Note that the above hierarchical consistency is defined

across two perturbed shapes. In fact, it is possible to

impose hierarchical consistency on a single perturbed

shape using DKL

(
p̂(k)(x′

i) ∥ p(k)(x′
i)
)
, but in practice

we find that these consistency terms are easily satisfied

as the multilevel probability vectors of the same shape

are highly correlated, so do not give much assistance in

semi-supervised training.

5 Multilevel part substitution

We propose a simple multilevel part-substitution

algorithm to enrich the labeled 3D shapes for training.

Given a randomly sampled labeled shape S, our

algorithm executes the following steps to synthesize

new shapes with geometry and structural variation.

Part selection is carried out first. We treat the

hierarchical structure of shape S as a tree, where each

shape part is a tree node. We visit each node from the

coarsest level to the finest level. For a node at level k,

a uniform random number in [0, 1] is generated. If the

number is smaller than a predefined threshold θk, we set

the subtree under this node as a replacement candidate

and stop visiting its children. Finally, we collect a set

of subtrees to be replaced.

Next, part substitution is performed. For a part

subtree P in the candidate list, we randomly select a

subtree Q from those other shapes in which the root

node of Q has the same semantic label as P ’s root node.

Note that simple substitution of P by Q may result

in strange-looking and partly-overlapping results (see

Fig. 4 Randomly generated shapes from three labeled chairs.

Point colors correspond to semantic IDs at the finest level.

Fig. 3(c)), so we replace P by Q as follows, to avoid

unpleasant results as much as possible. We consider two

cases.

If the leaf nodes of P and Q have no common parts

sharing the same semantics, we simply compute the

affine transformation from the bounding box of Q to the

bounding box of P and apply it to Q when replacing P .

However, if P and Q share some common semantic

parts, denoted Ps ∈ P , Qs ∈ Q, we align Qs and Ps

first to avoid odd results. The alignment transformation

matrix is applied to Q directly. We also rescale the

transformed Q to ensure that it is inside the original

bounding box of S, to make the result visually plausible:

see Fig. 3(d).

The θk values affect the degree of structure variation:

frequent substitutions at the coarse level bring more

structural variations. In our experiments, we set all θks

to 0.5. Fig. 4 shows a set of novel chairs synthesized

from three chairs. More synthesized shapes used in our

experiments are illustrated in Appendix C.

After generation, as all parts of the synthesized shapes

inherit their original semantics, these shapes can be used

as labeled data. Note that after part substitution, two

different shape parts in a shape may overlap. We detect

points inside these overlapping regions using a simple

nearest neighbor search and do not use their labels

during training, to avoid contradictions.

6 Network Design, Loss and Training

Data

In this section, we present details of our network

structure, loss function and training batches.

6.1 Network structure

We use an octree-based U-Net structure as our base

network. The network is built upon the efficient

open-source octree-based CNN [58, 59]. The U-Net

structure has five and four levels of domain resolution,

as illustrated in Fig. 5 and Appendix A, for object

segmentation and scene segmentation, respectively.
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Fig. 5 Octree-based U-Net structure for shape segmentation.

Conv(C, S, K) and Deconv(C, S, K) represent octree-based

convolution and deconvolution. C, S, K are the number of output

channels, stride, and kernel size. The network structure for indoor

scene segmentation is provided in the appendix.

The maximum depths of the octree for 3D object

segmentation and scene segmentation are 6 and 9,

respectively. The input point cloud is converted to

an octree first, whose nonempty finest octants store

the average of the normals of the points within them.

The point feature for a given point is found by trilinear

interpolation within the octree. The numbers of network

parameters for 3D object segmentation and 3D scene

segmentation are 5.3× 106 and 39.2× 106, respectively.

We call our network MCNet, for multi-consistency 3D

deep learning network. In Section 7 we also demonstrate

the efficiency of our approach based on other point-based

backbones.

6.2 Loss function

Given a point cloud S in a training batch, the loss

defined on its two randomly-perturbed copies S′ and

S′′ is:

Ltc = γLseg(S
′, S′′) + λptsLpoint + λpartLpart + λhLh;

(6)

γ = 0 if S is an unlabeled point cloud.

6.3 Training batch construction

Half of the batch data is randomly selected from

the labeled data, and the rest is randomly selected

from the unlabeled dataset. If synthetic labeled data

(Section 5) are available, half of the labeled data in

the batch is selected from them, and the remainder is

selected from the original labeled data. The labeled

data in a batch may be duplicated if the labeled dataset

is quite small. The network is trained from scratch with

random initialization.

Airplane Chair2

fine level

coarse level

Fig. 6 The two-level fine-grained and hierarchical structures

for our Airplane and Chair2 datasets. Unique colors at the fine

level correspond to distinguishable shape parts, as a segmentation

label. Several parts at the fine level are merged to form a unique

segmentation label at the coarse level, and assigned the same

color. Both Chair2 and Airplane have 8 different part labels at

the coarse level, while at fine levels they have 36 and 20 part

labels, respectively.

7 Experiments and Analysis

In this section, we demonstrate the efficacy and

superiority of our semi-supervised approach on shape

segmentation and scene segmentation, and an ablation

study to validate our design.

Our experiments were conducted on a Linux server

with a 3.6GHz Intel Core I7-6850K CPU and a Tesla

V100 GPU with 16GB memory for experiments on

shape objects, and a Tesla V100 with 32GB memory

for indoor scenes. We implemented our network using

the TensorFlow framework [1].

7.1 Shape segmentation

7.1.1 Datasets

Our semi-supervised 3D segmentation approach was

evaluated on the following datasets with different ratios

of labeled data.

PartNet. The PartNet dataset [38] provides fine-

grained, hierarchical segmentation of 26671 models in

24 object categories, and defines three levels (coarse,

medium, fine) of segmentation for the benchmark.

Shape categories with customized hierarchy. We

defined a two-level part hierarchy on two shape

categories: the Chair from PartNet and the Airplane

from ShapeNet [6], to further validate the effectiveness

of our approach on other shape data and structural

hierarchies. At the fine level, our new data provides

finer-grained part labels than PartNet. For instance,

each chair leg is treated as a different object part

while all legs of a chair belong to a single part in

the PartNet level-3 segmentation. The hierarchical

relationship between each level is also differs from

7
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Tab. 1 Segmentation results on PartNet. All metrics are averaged across 24 categories. r is the fraction of labeled data used for

training.

Coarse Level Medium Level Fine Level Avg

r Method p-mIoU s-mIoU p-mIoU s-mIoU p-mIoU s-mIoU p-mIoU s-mIoU

2%
MIDNet 44.7 63.5 29.8 43.9 24.9 40.6 38.2 54.7

MCNet 47.6 68.4 33.4 48.9 27.4 45.8 41.3 60.0

5%
MIDNet 53.2 69.1 35.9 48.4 32.7 46.0 46.7 60.7

MCNet 54.9 71.9 38.5 52.0 34.2 49.3 48.8 63.5

10%
MIDNet 57.5 71.7 39.7 51.9 37.6 50.3 51.6 63.8

MCNet 60.9 75.5 43.9 54.6 40.2 52.0 54.8 67.0

20%
MIDNet 64.2 75.7 44.6 55.4 43.3 54.2 57.7 68.0

MCNet 65.2 78.5 48.7 58.6 45.2 56.4 59.4 70.7

PartNet. The hierarchical fine-grained structures of

these two categories are illustrated in Fig. 6. To avoid

confusion, we call our chair dataset Chair2. The Chair2

dataset contains 3303 models for training and 826

models for testing, and the Airplane dataset contains

1404 models for training and 366 models for testing.

ShapeNetPart. ShapeNetPart [71] contains 16 shape

categories from ShapeNet. Each model is a point cloud

with 2–6 part labels without a structural hierarchy.

ScanNet. The ScanNet dataset [11] contains 1613 3D

indoor scenes with 20 labels for semantic segmentation.

The numbers of scenes for training, validation, and

testing are 1201, 312, and 100, respectively.

For the above datasets, we used a fixed seed to

randomly pick a small fraction of the labeled training

data, around 2%, and set it as the labeled data for semi-

supervised training, and the remaining labeled training

data was treated as unlabeled data in our training: no

label information was utilized during training and part

substitution. The original testing dataset was used as

unseen test data for evaluating the trained network.

Each training batch contained 16 shapes. A maximum

of 80000 iterations was used. We used the SGD

optimizer with a learning rate of 0.1, decayed by a

factor of 0.1 at the 40000-th and 60000-th iterations.

For the loss function, we empirically set λpts = λpart =

λh = 0.01, via a simple grid search on the four

biggest categories of PartNet. To conduct a statically

meaningful evaluation, we ran training on each shape

category three times with different randomly-selected

labeled data, and report average results.

7.1.2 PartNet segmentation

On all 24 shape categories of PartNet, we

experimented with our semi-supervised training scheme

with different ratios of labeled data for our MCNet: 2%,

5%, 10%, and 20%. We generated as many randomly

synthesized labeled shapes by part substitution as the

number of original training data shapes. Following [38],

we used the following metrics to evaluate the results.

p-mIoU. The IoU between the predicted point set

and the ground-truth point set for each semantic part

category is first computed over the test shapes, then

the per-part-category IoUs are averaged. This metric

helps evaluate how an algorithm performs for any

given part category [38], but does not characterize the

segmentation quality at the object level.

s-mIoU The part-wise IoU is first computed for each

shape, then the mean IoU over all parts is computed on

this shape, and finally, these mean IoUs are averaged

over all test shapes. This metric is sensitive to missing

ground-truth parts and the appearance of unwanted

predicted parts in a shape.

We choose MIDNet [60] as a basis for comparison,

which has unsupervised 3D pretraining with a fine

tuning method and provides state-of-the-art results on

PartNet with a small amount of labeled data. MIDNet

was pretrained on the ShapeNet dataset. We fine

tuned MIDNet with the same limited labeled data as

our method, using the multilevel segmentation loss in

Eq. (5). The results are reported in Table 1. Our MCNet

achieved superior results to MIDNet on all tests at all

segmentation levels.

In Fig. 7, we illustrate segmentation results and error

maps resulting from our approach and MIDNet on a set

of test shapes, trained with 2% labeled data. The results

clearly show that our method has lower segmentation

error.

We also replaced our octree-based CNN backbone

with other popular point-based deep learning

frameworks: PointNet++ [44] and PointCNN [35],

8
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Tab. 2 Segmentation results on PartNet with different backbone networks. All metrics are averaged across 3 levels of the test

dataset for 24 categories. r is the proportion of labeled data used for training. Baseline is the supervised approach with multilevel

segmentation loss. Ours is the backbone with our semi-supervised approach.

PointNet++ PointCNN OCNN

r Method p-mIoU s-mIoU p-mIoU s-mIoU p-mIoU s-mIoU

2%
Baseline 34.6 47.6 35.3 50.6 35.8 51.2

Ours 39.7 57.7 40.7 58.3 41.3 60.0

5%
Baseline 42.3 53.6 42.9 55.2 42.8 54.7

Ours 47.8 62.6 49.2 62.2 48.8 63.5

10%
Baseline 48.0 59.2 49.1 61.0 49.4 60.9

Ours 51.5 65.1 52.3 65.7 54.8 67.0

20%
Baseline 53.5 63.9 54.0 63.8 56.2 66.4

Ours 56.2 68.6 56.5 68.3 59.4 70.7

Tab. 3 Segmentation results on the test dataset containing Chair2 and Airplane. r is the proportion of labeled data used for training.

Fine Level Coarse Level

r Method p-mIoU s-mIoU p-mIoU s-mIoU

2%
MIDNet 75.7 85.6 87.9 87.4

MCNet 82.4 89.0 91.4 91.4

5%
MIDNet 81.0 87.5 90.1 89.0

MCNet 84.5 90.2 92.1 92.1

10%
MIDNet 82.8 88.0 90.4 89.9

MCNet 85.7 90.5 92.3 92.2

20%
MIDNet 83.5 89.4 90.9 90.8

MCNet 86.0 91.1 92.2 92.7

and tested their segmentation performance. Table 2

reports the significant improvements brought by our

multilevel consistency and part substitution, compared

to their purely-supervised baseline. We also found that

these backbones did not yield better results than the

octree-based CNN backbone.

7.1.3 Segmentation on shape categories with

customized hierarchy

Like the experiments on PartNet, the experiments on

Chair2 and Airplane also showed that our approach is

significantly better than MIDNet (see Table 3). Several

segmentation results are also illustrated in Fig. 7.

7.1.4 ShapeNetPart segmentation

As there is no structural hierarchy in ShapeNetPart,

hierarchy consistency loss was dropped from our

loss function. We report the mean IoU across

all categories (c-mIoU) and across all instances (i-

mIoU), commonly used metrics in the ShapeNetPart

segmentation benchmark. Table 4 compares results from

Tab. 4 Segmentation results for different methods on

ShapeNetPart, with 5% labeled training data.

Method c-mIoU i-mIoU

SO-Net [33] - 69.0

PointCapsNet [74] - 70.0

MortonNet [52] - 77.1

JointSSL [3] - 77.4

Multi-task [24] 72.1 77.7

ACD [18] - 79.7

MIDNet [60] 77.7 80.7

MCNet 79.8 82.2

various methods using 5% labeled data for training. It

is clear that our method is superior to others, while

MIDNet is second best. We also made a more thorough

comparison to MIDNet using other ratios of labeled

training data. The results in Table 5 show that MCNet

always performed much better than MIDNet.

We also conducted a few-shot experiment by

9
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GroundTruth

MIDNet

MCNet

GroundTruth

MIDNet

MCNet

GroundTruth

MIDNet

MCNet

GroundTruth

MIDNet

MCNet

Fig. 7 Fine-level segmentation results from our MCNet and MIDNet. 2% labeled data were used in training. Point colors in

the segmentation results correspond to part ID. In the error maps alongside the segmentation results, red points indicate wrongly

predicted labels. The top three sets of examples came from the PartNet test set; those at the bottom came from the Chair2 and

Airplane test data.

following the setting in the state-of-the-art few-shot

3D segmentation method [57]: eight categories of

ShapeNetPart were tested and 10 labeled shapes used for

training. We trained our network 5 times and sampled

10 labeled shapes randomly from the original dataset

each time, reporting average results in Table 6. It shows

that our method is superior to that of [57] for most of

the tested categories.

7.2 ScanNet segmentation

7.2.1 Setting

We have also applied our semi-supervised method to

indoor semantic scene segmentation. We choose the

ScanNet dataset [11] as a testbed, and used 1%, 5%,

10%, and 20% labeled scenes from the original training

dataset, with the remainder of the training dataset

regarded as unlabeled data. For a fair comparison,

10
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Tab. 5 Segmentation results for ShapeNetPart. Higher mIoU

values are better. r is the proportion of labeled data used for

training.

r Method c-mIoU i-mIoU

2%
MIDNet 73.9 78.4

MCNet 76.1 81.2

5%
MIDNet 77.7 80.7

MCNet 79.8 82.2

10%
MIDNet 79.2 82.3

MCNet 81.8 84.2

20%
MIDNet 81.7 83.1

MCNet 83.0 84.3

Tab. 6 mIoU results for our method and that of [57], for eight

shape categories selected by [57].

Category [57] Ours

Airplane 67.3 73.9

Bag 74.4 81.7

Cap 86.3 84.4

Chair 83.4 87.2

Lamp 68.7 76.5

Laptop 93.8 95.4

Mug 90.9 95.5

Table 74.2 74.8

Mean 79.8 83.7

we used the labeled scenes from [25]. We measured

mean IoU to evaluate segmentation quality on the

validation set. As the ScanNet dataset does not

provide hierarchical segmentation, we defined a 2-level

segmentation on ScanNet: classes at the fine level are

the original segmentation classes; at the coarse level,

we merged the semantic classes into 6 categories using

semantic affinity according to WordNet [14], calling this

hierarchy HW. Details of these hierarchies are presented

in Appendix B. As our part substitution is not intended

for 3D scenes, we did not synthesize 3D labeled scenes

for training.

7.2.2 Data perturbation

We used the same augmentation configuration as [25]:

a random rotation with pitch, yaw, and roll angles less

than 3°, 180°, 3°, respectively, a uniform scaling in the

range [0.9, 1.1], random translations along x-, y- axes

within the range [0.8, 1.2], and a color transformation

including auto contrast, color translation and color jitter.

We randomly sampled 20% points from a scene in each

training iteration.

Tab. 7 Fine level segmentation results for ScanNet. r is the

proportion of labeled data used for training. −H means without

hierarchy, +H means with hierarchy. The model from [25] was

used to generate its segmentation results.

r Method mIoU

1%

[25] 29.3

Our supervised baseline 27.0

MCNet−H (λpts = λpart = 0.005) 28.7

MCNet+H (λpts = λpart = λh = 0.005) 29.4

5%

[25] 45.4

Our supervised baseline 47.9

MCNet−H (λpts = λpart = 0.05) 48.2

MCNet+H (λpts = λpart = λh = 0.05) 48.3

10%

[25] 59.5

Our supervised baseline 58.1

MCNet−H (λpts = λpart = 0.1) 59.1

MCNet+H (λpts = λpart = λh = 0.1) 60.3

20%

[25] 64.1

Our supervised baseline 62.8

MCNet−H (λpts = λpart = 0.1) 63.9

MCNet+H (λpts = λpart = λh = 0.1) 64.9

Tab. 8 Fine level segmentation results for ScanNet using a

different customized hierarchy. r is the proportion of labeled data

used for training.

r HW HA HB HC

1% 29.4 29.2 29.7 29.5

5% 48.3 48.9 48.6 48.4

10% 60.3 60.2 60.2 60.0

20% 64.9 64.8 64.4 64.7

7.2.3 Parameters and training protocol

Each batch contained 4 shapes, with two from the

labeled scenes and two from the unlabeled scenes. A

maximum of 60000 iterations was used. We used the

SGD optimizer with a learning rate of 0.1, decayed at

the 30000-th and 45000-th iterations by a factor of 0.1.

We tried different multilevel consistency weights, and

found that smaller weights improve results when the

proportion of labeled data is low. The optimal settings

we found are reported alongside the network results in

Table 7.

7.2.4 Results

We compared our supervised baseline, i.e. , using the

segmentation loss and labeled data only, our method

with and without structural hierarchy loss, and the state-

of-the-art unsupervised pretraining with fine-tuning

method proposed by [25]. As Table 7 shows, our
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Tab. 9 Numbers of shapes in the four shape categories from

PartNet used in our ablation study.

Chair Lamp Storage Table

Labeled 90 31 32 114

Unlabeled 4399 1523 1556 5593

Test 1217 419 451 1668

supervised baseline and our method without using the

hierarchy loss worked less well than [25] except in the

test with 5% labeled data. With the additional hierarchy

loss, our method performed best in all tests.

7.2.5 Sensitivity to customized hierarchy

To study whether our method on ScanNet is sensitive

to the customized hierarchy, we randomly grouped fine

level parts into 6 categories three times, and created

three different 2-level hierarchies, HA, HB, HC. Table 8

reports the segmentation results using these customized

hierarchies. We find that MCNet achieves similar results

using HW, HA, HB, and HC, so conclude that while

our approach benefits from hierarchical relationships, it

is insensitive to the hierarchy construction.

7.3 Ablation study

We next evaluate the efficacy of our consistency

loss, part substitution, and hyper-parameter selection

approaches, using the four biggest categories from

PartNet: Chair, Table, Storage, and Lamp, as our

testbed. We used 2% labeled data here only. Results

are reported in Table 9. The network was trained for

each shape category individually.

7.3.1 Multilevel consistency loss and part

substitution

We designed a series of ablation studies to validate the

advantage of our multilevel consistency losses and part

substitution, using as baseline our network trained with

the multilevel segmentation loss on the limited labeled

data only. Table 10 reports results for the baseline

(ID-(1)) and the baseline with different combinations of

our multilevel consistency losses with semi-supervised

training. We state how many labeled shapes were

synthesized via multilevel part substitution from the

2% labeled data used for training; N indicates the total

number of labeled and unlabeled data items.

Experiments (2)–(4) clearly show that utilization

of any consistency loss can improve segmentation

accuracy. Experiment (5) indicates that synthesizing

labeled shapes by part substitution can significantly

improve the network results even when used in a purely

supervised training manner. Combinations of different

types of consistency losses (6)–(9) further boost network

performance; combining all consistency losses in (9)

works best. Adding synthesized labeled shapes (10)–(12)

further helps the network to reach its highest accuracy.

The configuration in (12) is the default and optimal

setting of MCNet used in Section 7.1.

Concurrent work to this work, PointCutMix [72]

proposes a data augmentation method which finds the

optimal assignment between two labeled point clouds

and generates new training data by replacing points

in one sample with their optimally assigned pairs. We

implemented their approach and used the generated

shapes to enhance training. A few synthesized shapes

are illustrated in Appendix C. Experiments (13) and

(14) show that their data augmentation method can

enhance the network accuracy to a certain degree, but

does not bring as significant an improvement as our

approach, due to its lack of awareness of part structures

during data synthesis.

7.3.2 Data perturbation

We also examined how data perturbation affects the

performance of MCNet. The experimental setup was as

in Section 7.3.1; we only varied the ranges of rotation,

scaling, and translation data perturbation parameters,

with results shown in Table 11. Configuration (1) is our

default configuration.

By varying the range of the random rotation angle, we

found that when using a smaller or larger angle range,

the network performance slightly decreases: see (1)–(3).

Tests (1), (4), and (5) reveal that an appropriate

shape scaling is important. Note that any part outside

the unit sphere caused by a large scaling is removed

by our perturbation, so there are fewer corresponding

points between the two perturbed shape copies used in

our consistency loss computation.

Tests (1), (6), and (7) also show that an appropriate

translation helps our training. Making translation too

large also results in missing shape geometry, degrading

the efficacy of our consistency loss.

8 Conclusions

We have presented an effective semi-supervised

approach for 3D shape segmentation. Our novel

multilevel consistency and part substitution scheme

harnesses the structural consistency hidden in both

unlabeled data and labeled data, for our network

training, leading to superior performance on 3D

segmentation tasks with few labeled data items. We

believe that our multilevel consistency will find more

applications, potentially being useful for semi-supervised

12
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Tab. 10 Ablation study for MCNet trained on four categories from PartNet using different loss combinations and synthesized shapes,

and 2% labeled data. ✓ indicates that the corresponding loss was employed during training. Aug is the number of synthesized shapes

used. N is the total number of labeled and unlabeled data items. In (13), (14), we used the method of [72] to generate augmented

labeled shapes for training. Quality metrics were measured on the test dataset.

Experimental configuration Coarse Level Medium Level Fine Level Avg

ID Lseg Lpoint Lpart Lh Aug p-mIoU s-mIoU p-mIoU s-mIoU p-mIoU s-mIoU p-mIoU s-mIoU

(1) ✓ 0 37.7 56.2 25.6 34.0 21.8 30.3 28.3 40.2

(2) ✓ ✓ 0 40.3 59.8 27.6 37.1 23.4 33.6 30.4 43.5

(3) ✓ ✓ 0 40.5 57.9 26.4 35.3 22.5 31.1 29.8 41.4

(4) ✓ ✓ 0 39.9 59.1 27.1 37.7 23.3 33.6 30.1 43.5

(5) ✓ N 41.2 62.1 28.7 40.4 24.2 36.2 31.3 46.2

(6) ✓ ✓ ✓ 0 41.3 61.3 27.7 39.8 23.6 35.9 30.9 45.6

(7) ✓ ✓ ✓ 0 40.5 62.4 27.7 40.9 23.5 36.9 30.6 46.7

(8) ✓ ✓ ✓ 0 41.3 60.6 27.6 38.6 23.5 34.6 30.8 44.6

(9) ✓ ✓ ✓ ✓ 0 42.7 62.7 28.4 41.5 24.2 37.5 31.7 47.2

(10) ✓ ✓ ✓ ✓ N/4 42.8 64.7 29.7 43.7 26.0 39.5 32.8 49.3

(11) ✓ ✓ ✓ ✓ N/2 42.8 65.3 30.3 44.1 26.1 39.9 33.1 49.8

(12) ✓ ✓ ✓ ✓ N 43.1 65.6 30.5 44.2 26.3 39.9 33.3 49.9

(13) ✓ N [72] 38.2 54.6 27.7 35.0 23.4 31.6 29.8 40.4

(14) ✓ ✓ ✓ ✓ N [72] 40.4 59.8 30.1 39.9 24.9 36.2 31.8 45.3

Tab. 11 Ablation study for MCNet trained on four categories from PartNet under different data perturbation configurations, with

2% labeled data. Quality metrics were measured on the test dataset.

Perturbation configuration Coarse Level Medium Level Fine Level Avg

ID rotation scaling translation p-mIoU s-mIoU p-mIoU s-mIoU p-mIoU s-mIoU p-mIoU s-mIoU

(1) [-10°, 10°] [0.75, 1.25] [-0.25, 0.25] 43.1 65.6 30.5 44.2 26.3 39.9 33.3 49.9

(2) [ -5°, 5°] [0.75, 1.25] [-0.25, 0.25] 43.0 65.4 30.4 43.8 25.9 39.6 33.1 49.6

(3) [-20°, 20°] [0.75, 1.25] [-0.25, 0.25] 41.6 65.6 30.5 43.6 26.1 39.8 32.7 49.7

(4) [-10°, 10°] [0.90, 1.10] [-0.25, 0.25] 42.7 64.5 29.9 43.1 25.7 39.1 32.7 48.9

(5) [-10°, 10°] [0.60, 1.40] [-0.25, 0.25] 43.3 64.8 30.3 43.4 26.0 39.5 33.2 49.2

(6) [-10°, 10°] [0.75, 1.25] [-0.10, 0.10] 41.5 64.8 29.7 43.4 25.5 39.3 32.2 49.2

(7) [-10°, 10°] [0.75, 1.25] [-0.40, 0.40] 41.7 64.6 29.8 43.1 25.6 39.2 32.3 49.0

image segmentation.

There are still a few unexplored directions. Firstly,

it is possible to extend the hierarchical consistency

from points to parts and involve more structural

levels (> 3) to improve the training, which may be

especially beneficial for more complicated datasets and

part structures. Secondly, it would be helpful to

synthesize novel shapes and scenes from both labeled

and unlabeled data with more diverse structural and

geometry variations for semi-supervised learning.
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Fig. 8 Octree-based U-Net structure for scene segmentation.

Conv(C, S, K) and Deconv(C, S, K) represent octree-based

convolution and deconvolution. C, S, K are the number of output

channels, stride, and kernel size.
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Appendices

A. Network structure for scene segmentation

An octree-based U-Net structure is used as our base

network. It has four levels of domain resolution: see

Fig. 8. The maximum octree depth is 9.

B. ScanNet hierarchy

The coarse levels of HW, HA, HB, and HC are shown

in Table 12. Fine classes are merged to the coarse level.

Numbers in the table give the coarse label ID.

C. Data augmentation by part substitution

In Figs. 9 to 11, we illustrate a sample set of shapes

augmented by part substitution on 2% labeled data.

The majority of the augmented shapes are plausible

and would help to enrich the labeled data for network

training. In Fig. 12, we render the augmented shapes

generated by the approach of [72]. We can observe many

implausible shape parts which do not assist training.
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Fig. 10 Augmented shapes based on 2% labeled data from Chair2 and Airplane.
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Fig. 12 Augmented shapes based on 2% labeled data from PartNet using PointCutMix [72].
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