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Abstract While a popular representation of 3D data,

point clouds may contain noise and need filtering before

use. Existing point cloud filtering methods either

cannot preserve sharp features or result in uneven

point distributions in the filtered output. To address

this problem, this paper introduces a point cloud

filtering method that considers both point distribution

and feature preservation during filtering. The key

idea is to incorporate a repulsion term with a data

term in energy minimization. The repulsion term is

responsible for the point distribution, while the data

term aims to approximate the noisy surfaces while

preserving geometric features. This method is capable

of handling models with fine-scale features and sharp

features. Extensive experiments show that our method

quickly yields good results with relatively uniform point

distribution.

Keywords point cloud filtering; point distribution;
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1 Introduction

Researchers have made remarkable progress in point

cloud filtering in recent years. Recent methods

typically aim to maintain sharp features in the original

point cloud while projecting the noisy points to

the underlying surfaces. The filtered point cloud

data can then be used for upsampling [12], surface

reconstruction [13, 26], skeleton learning [21, 22],

computer animation [24, 27], etc.

Existing point cloud filtering methods can be divided

into traditional and deep learning techniques. In the

traditional class, position-based methods [11, 17, 28]

obtain good smoothing results, while normal-based

methods [25, 26] better maintain sharp edges of models

(e.g. CAD models). Some of these methods incorporate

repulsion terms to prevent points from aggregating but

still leave gaps near the edges of geometric features,

which affects reconstruction quality. Deep learning-

based approaches [30, 31, 36] require a number of noisy

point clouds with ground-truth models for training

and often achieve good denoising results through a

proper number of iterations. These methods are usually

based on local information, and lead to uneven point

distribution in the filtered results even in the presence

of a repulsion loss term. It is difficult for such methods

to handle unevenly distributed and sparsely sampled

point clouds since it is difficult to automatically adjust

the patch size. Different patch sizes in the point

cloud also pose a significant challenge to the learning

procedure.

The above analysis motivates us to produce filtered

point clouds which preserve sharp features yet have a

relatively uniform point distribution. Given a noisy

point cloud with normals as input, we first smooth the

input normals using bilateral filtering [12]. Principal

component analysis (PCA) [10] is used for the initial

estimation of normals. Secondly, we update the
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point positions in a local manner by reformulating an

objective function consisting of an edge-aware data

term and a repulsion term inspired by [23, 25]. The

two aim to preserve geometric features and provide

uniform point distribution, respectively. Output with

these properties is obtained after a few iterations.

We have conducted extensive experiments to compare

our approach to various other approaches, including

position- and normal-based approaches, both learning

and traditional. The results demonstrate that our

method outperforms state-of-the-art methods in most

cases, both visually and quantitatively.

2 Related Work

In this paper, we only review the most relevant

work to our research, including traditional point cloud

filtering and deep learning-based point cloud filtering.

2.1 Traditional Point Cloud Filtering

2.1.1 Position-based methods

LOP was first proposed in [17]. It is a

parameterization-free method and does not rely on

normal estimation. Besides fitting the original model,

a density repulsion term was added to evenly control

the point cloud distribution. WLOP [11] provided a

novel repulsion term to solve the problem that the

original repulsion function in LOP drops too quickly

as the support radius increases. The filtered points are

distributed more evenly by WLOP. EAR [12] added

an anisotropic weighting function to WLOP to smooth

the model while preserving sharp features. CLOP [28]

is another LOP-based approach; it redefines the data

term as a continuous representation of a set of input

points.

Although only based on point positions, these

approaches achieve reasonable smoothing results.

However, as they disregard normal information, these

approaches tend to smear sharp features such as sharp

edges and corners.

2.1.2 Normal-based methods

FLOP [16] adds normal information to the novel

feature-preserving projection operator and preserves

features well. Meanwhile, a new kernel density estimate

(KDE)-based random sampling method was proposed

for accelerating FLOP. MLS-based approaches [14,

15] have also been applied to point cloud filtering;

they rely upon the assumption that the given set of

points implicitly define a surface. In [1], the authors

presented an algorithm that allocated an MLS local

reference domain for each point that most suited its

adjacent points and further projected the points to the

underlying plane. This approach uses the eigenvectors

of a weighted covariance matrix to obtain normals

when the input point cloud has no normal information.

APSS [7], RMLS [32], and RIMLS [26] use this idea.

RIMLS is based on robust local kernel regression and

gives better results when noise is high. GPF [25]

incorporates normal information in a Gaussian mixture

model (GMM) with two terms, and preserves sharp

features well. A robust normal estimation method was

proposed in [23] for both point clouds and meshes using

a low-rank matrix approximation algorithm, where an

application of point cloud filtering was demonstrated.

To keep the geometric features, [19] first filters the

normals using discrete operators defined on point

clouds, and uses a bi-tensor voting scheme for the

feature detection step.

Inspired by image denoising, researchers have also

investigated use of non-local data in point cloud

denoising. Non-local-based point cloud filtering

methods [2–4, 35] often incorporate normal information

and use various similarity definitions to update point

positions in a non-local manner. Thus, [3] proposed

a similarity descriptor for point cloud patches based

on MLS surfaces. [4] designed a height vector field

to describe the difference between the neighborhood

of the point with neighborhoods of other points on

the surface. Inspired by the low-dimensional manifold

model, [35] extends it from image patches to point cloud

surface patches, which serves as a similarity descriptor

for non-local patches. [2] presented a new multi-patch

collaborative method that regards denoising as a low-

rank matrix recovery problem. They define the given

patch as a rotation-invariant height-map patch and

denoise the points by imposing a graph constraint.

Filtering methods that rely on normal information

usually yield good results, especially for point clouds

with sharp features. However, these methods strongly

depend on the quality of the input normals, and poor

normal estimates may lead to poor filtering results.

Our proposed approach falls in the normal-based

category. Inspired by GPF, we estimate normals of

the input point cloud using bilateral filtering [12] to

get high-quality normal information. Note that if the

input point cloud only contains positional information,

PCA is used to compute the initial normals. The point

positions are then updated in a local manner using the

bilaterally filtered normals [23]. We also add a repulsion

term [23] to ensure a more uniform distribution of the

filtered points.
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(a) Noisy input (b) Normal filtering (c) Position update (d) Result

Data term

Repulsion term

1 iteration 5 iterations 15 iterations

(e) Reconstruction

Fig. 1 Approach. (a) Noisy input. Red points are corrupted with noise. (b) Filtered normals. Blue lines are filtered results of the

initial normals. (c) Position update method, using a data term for feature preservation and a repulsion term for uniform distribution.

Multiple iterations are performed to achieve a better filtered result. (d) Filtered point cloud. (e) Mesh reconstructed from (d).

2.2 Deep Learning Point Cloud Filtering

A variety of deep learning-based methods have

emerged for dealing with noisy point clouds [5,

6, 18, 20, 30, 33, 36]. For point cloud filtering,

PointProNets [31] introduced a novel generative neural

network architecture that encodes geometric features

in a local way and efficiently obtains an underlying

surface. However, the generated underlying surface

suffers from holes due to the input shapes. NPD [5]

redesigned the framework on the basis of PointNet [29]

to estimate normals from noisy shapes and then

projected the noisy points to the predicted reference

planes. Another PointNet-inspired method is called

Pointfilter [36]. It starts from points and learns the

displacement between the predicted points and the

raw input points. Moreover, this approach requires

normals only in the training phase. In the testing

phase, only point positions are taken as input to obtain

filtered shapes with feature-preserving effects. EC-

NET [33] presented an edge-aware network (similar

to PU-NET [34]) for connecting edges of the original

points. This method retains sharp edges of 3D shapes

well, but the training stage requires manual labeling

of edges. Inspired by PCPNet [8], PointCleanNet [30]

developed a data-driven method for both classifying

outliers and reducing noise in raw point clouds. A

novel feature-preserving normal estimation method was

designed in [20] for point cloud filtering while preserving

geometric features. Deep learning-based filtering

methods usually yield good results more automatically,

for point clouds with high density. However, low-

density input may lead to poor filtering outcomes. Also,

such methods require sufficient suitable samples for

training.

3 Method

3.1 Overview

Our approach has two phases. In phase one, we

smooth the initial normals using bilateral filtering,

following [12], to ensure the quality of normals.

In phase two, we update point positions with the

smoothed normals to obtain a uniformly distributed

point cloud preserving geometric features. Figure 1

overviews the proposed approach. We now explain the

second phase in detail.

3.2 Position Update

We define the noisy input with M points to be P =

{pi}Mi=1, pi ∈ R3, with corresponding filtered normals

N = {ni}Mi=1, ni ∈ R3. To obtain local information

from a given point pi, we define a local structure si
for each point in the point cloud, consisting of the k

nearest points to the current point. We employ an edge-

aware recovery algorithm [23] to obtain filtered points

by minimizing

D(P,N) =
∑
i

∑
j∈si

| (pi − pj) nTj |2+

| (pi − pj) nTi |2,
(1)

where pi is the point to be updated and pj is some

neighboring point in the corresponding set si. Eq. (1)

essentially adjusts the angles between the tangent
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Fig. 2 Left: original points. Right: updated points. pi and pj

are the current point and a neighboring point. ni, and nj are

the normals of pi and pj , respectively. A local plane surface is

assumed.

Fig. 3 Movement of the filtered points around sharp edges.

Blue points: underlying surface. Yellow, green points: two

neighboring points that need to be moved. (a, b) movement

of pj with fixed pi. (c, d) movement of pi with fixed pj . Note

how point move towards the sharp edges and concentrate there,

leading to gaps around the sharp edges.

vector formed by pi and pj and the corresponding

normal vectors ni, nj .

Figure 2 demonstrates how the points are updated on

an assumed local plane by this edge-aware technique.

It can be seen that the quality of the filtered points

depends heavily on the quality of the estimated

normals. Our normals are generated by bilaterally

filtering the original input normals, given the simplicity

and effectiveness of this approach.

3.3 Repulsive Force

From Figure 3, it can be seen that points move

towards sharp edges during the position update step,

resulting in gaps near sharp edges. It is demonstrated

in [23] that minimizing D(P,N) inevitably yields gaps

near sharp edges; the gaps in the filtered points

can greatly impact downstream applications such as

upsampling and surface reconstruction. Thus, we

introduce a repulsion force R(P,N) based on both

point coordinates and normals [25] to better control

Algorithm 1 Point cloud filtering algorithm

Input: Noisy point set P , with corresponding filtered

normals N , neighborhood size k, number of iterations t,

repulsion strength µ

Output: Uniformly distributed set of filtered points P ′

for t iterations do

for each point pi do

construct a local patch si from k nearest neighbors

update point position via Eq. (6)

end for

end for

the distribution of points:

R(P,N) =
∑
i

λi

M∑
j∈si

η (rij) θ (rij) , (2)

where rij =
∥∥(pi − pj)− (pi − pj) nTj nj

∥∥, η(r) = −r,
and θ(r) = exp

(
−r2/(h/2)2

)
is a smoothly decaying

weight function.

3.4 Minimization

Combining Eq. (1) and Eq. (2), our final position

update optimization problem is to find:

A = argmin
P

D(P,N) +R(P,N) (3)

We employ the gradient descent method to do so and

obtain each updated point p′i. The partial derivative of

Eq. (3) with respect to pi is:

∂A

∂pi
=
∑
j∈si

(
njp

T
i − njp

T
j

) (
pin

T
j − pjnj

T
)

∂pi
+

λiβij (pi − pj) (I− nTj nj)

∂pi
,

(4)

where I is a 3× 3 identity matrix, and

βij =
θ (rij)

rij

∣∣∣∣∂η (rij)

∂r

∣∣∣∣ . (5)

The updated point p′i can thus be calculated by:

p′i = pi + γi
∑
j∈si

(pj − pi)
(
nTj nj + nTi ni

)
+

µ

∑
j∈si wjβij (pi − pj) (I− nTj nj)∑

j∈si wjβij
,

(6)

where γi is set to 1/(3 |si|) following [23], wj =

1 +
∑
j∈si θ (‖pi − pj‖), and µ is a parameter which

controls the relative magnitude of the repulsive force.

3.5 Algorithm

The proposed method is described in Algorithm 1.

We first filter the normals using bilateral filtering. By

feeding the filtered normals and raw point positions into

Algorithm 1, we obtain the updated point positions.

Depending on the number of points in the model

and the noise level, we accordingly choose k used to
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Tab. 1 Parameter settings for various models.

Parameter k µ t

Figure 4 30 0.3 5

Figure 5 30 0.3 5

Figure 6 30 0.3 5

Figure 7 30 0.3 3

Figure 8 30 0.3 5

Figure 9 30 0.3 5

Figure 10 30 0.3 10

Figure 11 30 0.3 5

Figure 12 30 0.3 5

generate the local patches and the number of iterations

to perform. Table 1 lists the parameter settings used

for various models in the experiments.

4 Experiments

4.1 Settings

The proposed method was implemented in Visual

Studio 2017 and executed on a PC with an Intel i9-

9750h CPU and NVidia RTX2070 GPU.

4.2 Parameter Settings

The parameters to be chosen are the local

neighborhood size k, the coefficient of repulsion force

µ, and the number of iterations t. As the number of

points affects the range of neighbors significantly, in

order to find the appropriate k for different models, we

determined the value of k in the range [15, 45] (k = 30

by default) according to the number of points in each

model. To make the distribution of points more even

while preserving features, we use the parameter µ to

balance the magnitude of the repulsive force between

points and t to control the number of iterations.

Usually, for models with relatively smooth surfaces, we

set a relatively larger µ and a lower t, and for models

with sharp surfaces, we set a relatively smaller µ with

a higher number of iterations to obtain the filtered

points. Table 1 gives the parameters used for each

model considered in the experiments.

4.3 Methods Compared and Approach

The proposed method was compared to state-

of-the-art techniques including a non-deep learning

position-based method CLOP [28], non-deep learning

normal-based methods GPF [25] and RIMLS [26], and

deep learning-based methods TotalDenoising (TD) [9],

PointCleanNet (PCN) [30] and Pointfilter (PF) [36].

We employ the following approach to ensure a fair

comparison. (a) We first normalized and centralized

the noisy input. (b) As GPF and RIMLS require

high-quality normals, we used the same bilateral

filter [12] in each case to provide the same input

normals for each model. (c) We tuned the main

parameters of each method as well as we could, to

produce the best final visual results. (d) For the deep

learning-based methods, we used the results of the

6th iteration for TD and iterate three times for both

PCN and PF. (e) For visual comparisons, we used

EAR [12] for upsampling to provide a similar number

of points for each method when visualizing a given

model. For surface reconstruction, we adopted the

same parameters for each given model.

4.4 Evaluation Metrics

We used two common evaluation metrics to

quantitatively analyze the results. Let the ground-

truth point cloud and the filtered point cloud be

respectively defined as: S1 = {xi}|S1|
i=1 , S2 = {yi}|S2|

i=1 .

Note that the numbers of ground-truth points |S1| and

filtered points |S2| may differ slightly. The metrics are:

chamfer distance:

eCD (S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

‖x− y‖22+

1

|S2|
∑
y∈S2

min
x∈S1

‖y − x‖22,
(7)

and mean square error :

eMSE(S1, S2) =
1

|S1||NN(y)|
∑
x∈S1

∑
y∈NN(y)

‖x− y‖22,

(8)

where NN(y) denotes the nearest neighbors in S1 to

point y in S2. Here we set |NN(y)| = 10 following [36],

i.e. we search for 10 nearest neighbors for each point y

in the predicted point set S2.

4.5 Visual Comparisons

4.5.1 Point clouds with synthetic noise

To show the denoising effects of our method,

we conducted experiments on models with synthetic

Gaussian noise at levels of 0.5% and 1.0%. Compared

to other state-of-the-art methods, our visual results

outperform them both in terms of smoothing and

feature preservation. The results benefit from the fact

that the position update considers normal information

and distributes the filtered points more evenly.

We may also observe the traits of other methods in

the experiments. CLOP always obtains good results in

terms of smoothing. However, since it is a position-

based method, it may blur sharp features. While

GPF adds a gap-filling step after projecting the points
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(a) Noisy input (b) CLOP (c) GPF (d) RIMLS (e) TD (f) PCN (g) PF (h) Ours

Fig. 4 Above: results on the Bunnyhi model corrupted with 0.5% synthetic noise. Below: surface reconstruction results.

(a) Noisy input (b) CLOP (c) GPF (d) RIMLS (e) TD (f) PCN (g) PF (h) Ours

Fig. 5 Above: results on Rockerarm corrupted with 0.5% synthetic noise. Below: corresponding upsampling results.

(a) Noisy input (b) CLOP (c) GPF (d) RIMLS (e) TD (f) PCN (g) PF (h) Ours

Fig. 6 Above: results on Icosahedron corrupted with 1.0% synthetic noise. Below: corresponding upsampling results.

6
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(a) Noisy input (b) CLOP (c) GPF (d) RIMLS (e) TD (f) PCN (g) PF (h) Ours

Fig. 7 Results on Dodecahedron corrupted with 0.5% synthetic noise. Above: corresponding upsampling results. Below:

reconstructed meshes.

(a) Noisy input (d) RIMLS

(e) TD (f) PCN (g) PF (h) Ours

(b) CLOP (c) GPF

Fig. 8 Upsampling results on kitten corrupted with 1.0% synthetic noise.

onto the underlying surface, it still finds it difficult to

maintain a uniform distribution, especially for points

near sharp edges. This method may also sharpen less

sharp features. RIMLS yields promising results in both

noise removal and feature preservation. However, its

filtered points are often unevenly distributed, which

affects the performance of downstream applications

such as upsampling and surface reconstruction.

The learning-based method TD also yields good

smoothing results, but it does not seem to maintain

the fine features of the model well. PCN typically

produces less sharp features, while PCN does not

provide good smoothing given a relatively high level

of noise. PF does not need normal information at

run time, and achieves good feature-preserving effects

while denoising. However, when the noisy points are

sparse, this method cannot extract needed information

from the sparse point cloud, leading to distortion of the

filtered points.

Since normal information is taken into account

in our method, it can keep sharp features well.

Importantly, the greater uniformity of its point

distribution makes it stand out in point cloud filtering

and downstream applications like upsampling and

surface reconstruction.

The top rows of Figures 4–6, readily show that our

method provides the most uniform point distribution.

Figures 5, 6 and 8 give upsampling results for three

different models after filtering. As shown below in

Figures 5 and 6, sharp edges are maintained well during

7
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(a) Noisy input (b) CLOP (c) GPF (d) RIMLS (e) TD (f) PCN (g) PF (h) Ours

Fig. 9 Upsampling results on the Nefertiti raw scanned model.

(a) Noisy input

(b) CLOP (c) GPF (d) RIMLS (e) TD (f) PCN (g) PF (h) Ours

Fig. 10 Results on BuddhaStele raw scanned model. Above: corresponding upsampling results. Below: reconstructed meshes.

denoising. The enlargement in Figure 8 also shows the

effect of our filtering method, where the shapes of the

kitten’s ears are well maintained . Results of surface

reconstruction are presented in Figures 4 and 7. As

the enlargement shows, the bunny’s mouth and nose

in Figure 4 are well maintained. Figure 7 also shows

filtered results for our method on a simple geometric

model with sharp edges. Our method is best in terms

of maintaining details and sharp edges.

4.5.2 Point clouds with raw scanner noise

In addition to using synthetic noise, we also

performed experiments on raw scanned point clouds.

Results for our method and existing methods are given

in Figures 9–12. The filtered results in Figure 9 show

that our method performs best in terms of smoothing

and preserving details. As can be seen from the

enlargement, most methods blur the mouth of the

model or even lose it after denoising. Note that

although the model we use here has the same shape

as one used in [36], the filtered results may differ since

our sample points were sparser than theirs.

Figure 10 shows the filtered results on the

BuddhaStele raw scanned model. Results after

upsampling are shown above; below are results after

surface reconstruction using the screened Poisson

method [13]. From details such as the steps in

the model, it can be seen that our method again

outperforms the other methods. In Figure 11, our

method again maintains sharp edges well. As the

enlargement shows, other state-of-the-art methods

either distort sharp edges or smooth them. Figure 12

shows filtered results on the David raw scanned model.

8
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(a) Noisy input (b) CLOP (c) GPF (d) RIMLS (e) TD (f) PCN (g) PF (h) Ours

Fig. 11 Upsampling results on the Realscan raw scanned model.

(a) Noisy input (d) RIMLS

(e) TD (f) PCN (g) PF (h) Ours

(b) CLOP (c) GPF

Fig. 12 Upsampling results on the David raw scanned model.

Our method preserves features better during filtering,

and as the enlargement shows, our approach maintains

facial features better than other methods.

4.6 Quantitative Comparisons

We also make a quantitative comparison using the

two evaluation metrics given earlier. As there is no

corresponding ground-truth model for the raw scanned

point clouds, we used the models with synthetic noise

for evaluation. Results using the Chamfer Distance

metric are given in Table 2. Despite the fact that deep

learning-based methods are trained on a large number

of point clouds, our method still outperforms all deep

learning-based methods and indeed achieves the best

quantitative result in most cases. In terms of the other

evaluation metric MSE, our method still outperforms

most deep learning methods and again provides the

lowest quantitative error in most cases, as shown in

Table 3.

These quantitative results are consistent with the

visual results, demonstrating that our method generally

outperforms existing methods both visually and

quantitatively. We believe this is because our method

provides a more uniform distribution of the filtered

points and can handle both sparsely and densely

sampled point clouds. In the case of sparse sampling,

some deep learning-based methods are unable to obtain

meaningful local geometric information from the sparse

local neighboring points. It is also worth noting that

although RIMLS achieves comparable visual results to

our method in some cases, its numerical errors are

greater than those for our method in most cases due

9
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Tab. 2 Quantitative evaluation of methods on the synthetic point clouds in Figures 4–8. Deep learning methods are indicated by

*. Metric used is chamfer distance (×10−5), The best method for each model is highlighted in bold.

Method Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Avg.

CLOP [28] 7.84 25.35 26.46 23.83 6.73 16.70

GPF [25] 16.19 31.85 21.52 18.35 15.54 17.58

RIMLS [26] 3.72 5.22 15.70 10.98 4.16 7.12

TD* [9] 23.88 13.20 24.43 19.22 11.86 16.15

PCN* [30] 4.76 6.38 29.87 14.96 6.24 11.18

PF* [36] 4.01 6.63 33.38 30.60 3.68 14.93

Ours 3.11 5.48 12.26 8.14 3.18 5.80

Tab. 3 Quantitative evaluation of methods on the synthetic point clouds in Figures 4–8. Deep learning methods are indicated by

*. Metric used is mean square error (×10−3). The best method for each model is highlighted in bold.

Method Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Avg.

CLOP [28] 10.32 13.91 21.86 23.31 9.88 15.86

GPF [25] 11.64 17.07 22.43 23.88 11.97 17.40

RIMLS [26] 10.05 14.02 21.68 23.30 10.02 15.81

TD* [9] 13.22 14.78 22.44 23.36 11.45 17.05

PCN* [30] 10.30 14.28 23.68 23.79 10.59 16.53

PF* [36] 10.02 14.17 23.71 25.28 9.82 16.60

Ours 9.92 14.01 21.46 23.15 9.92 15.69

(a) Noisy input (b) k = 1 (c) k = 5

(d) k = 15 (e) k = 30 (f) k = 45

Fig. 13 Filtered results for different k. Noise level: 1.0%. t =

30, µ = 0.3.

to its uneven point cloud distribution.

4.7 Parameter Values

We now consider settings for the various parameters.

We performed experiments on a point cloud containing

7682 points using different values of k. Figure 13

shows the best value of k is 30, which we use as the

default value for this parameter. It is clear that the

best k depends strongly on the density of the point

cloud. Using a fixed value of k, when the model has

(a) Noisy input (b) µ = 0.1 (c) µ = 0.2

(d) µ = 0.3 (e) µ = 0.4 (f) µ = 0.5

Fig. 14 Filtered results for different µ. Noise level: 1.0%,

t = 30, k = 30.

sparse points, the locality determined by k is larger,

which may lead to an excessive range that should

not be treated as local information, resulting in poor

outcome. For point clouds with denser distribution,

the size of the neighborhood for the same k becomes

smaller, meaning that the k neighborhood contains only

a smaller amount of very local information, leading to

an uneven distribution of the point cloud. Generally,

we use a larger k for denser point clouds to ensure an

appropriate number of local neighbors.

10
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(a) Noisy input (b) 5 iterations (c) 15 iterations (d) 30 iterations

Fig. 15 Filtered results for different number of iterations. Noise

level: 1.0%, k = 30, µ = 0.3.

(a) Without (b) With

Fig. 16 Filtered results without and with the repulsion term.

As µ is related to the number of iterations t, we

give filtered results for different values of µ for various

numbers of iterations. Figure 14 demonstrates the

filtered point clouds obtained for different µ values

when t = 30 and k = 30. We can see from this figure

that as µ increases, the distribution of the point cloud

becomes more uniform, but making µ too large makes

the model chaotic again. Figure 14(b) shows the filtered

results using a low value of µ when i = 30 and k = 30.

As we can see, a smaller µ better maintains the edges

of the model.

We also conducted experiments using different

numbers of iterations. Figure 15 shows that with

increasing iterations, the distribution of the filtered

point cloud becomes more uniform. However,

Figure 15(d) shows that if too many iterations are used,

the boundary of the model becomes unclear again.

4.8 Repulsion term

Local-based filtering approaches tend to converge in

certain places when updating the positions. Obviously,

this will make downstream applications such as surface

reconstruction very difficult. Our method adopts

the repulsion term mentioned in Section 3 to evenly

distribute the points while filtering, thus improving the

quality of the filtered point cloud. As Figure 16(a)

shows, without the repulsion term, it is clear that

some points are concentrated at edges, whereas the

distribution in Figure 16(b) is more even.

4.9 Point density

Results under different point densities were also

tested. Figure 17 shows that our method yields

promising results for both sparse and dense point

clouds. As our method requires only local information,

for point clouds with greater point density, a desired

filtered result can be obtained by setting a larger k.

Noisy

input

Ours

7682 points 30722 points 67938 points

Fig. 17 Filtered results for models with different numbers of

sample points.

4.10 Noise level

Different noise levels were applied to the same model

to verify the robustness of our approach. Figure 18

gives the filtered results by our method under noise

levels of 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0%. It can

be seen that our method is capable of handling models

with different levels of noise but may work less well

given excessively high noise. As our method relies on

the quality of normals, it is difficult to accurately keep

geometric features if the model has inaccurate normals

caused by high noise levels.

4.11 Irregular sampling

We conducted further experiments on models with

irregular sampling. Figure 19 provides a visual

comparisons of results on an unevenly sampled model

for PCN [30], PF [36], and our method. It can be seen

that the filtered point cloud from PCN still contains

obvious noise while PF blurs the detail features. Our

method smooths the model better while preserving

features.

4.12 Hole filling

Taking a cube as an example, we experimented on

a model with holes. Figure 20 shows the filtered

results for different holes. Our method is capable of

filling relatively small holes because we consider the

distribution of the updated points. However, it is

11



12 Shuaijun Chen et al.

Noisy input

Output

0.5% noise 1.0% noise 1.5% noise 2.0% noise 2.5% noise 3.0% noise

Fig. 18 Filtered results for models with different levels of noise.

PCN [30] PF [36] Ours

Fig. 19 Filtered results for an irregularly sampled point cloud.

challenging to fill big holes that severely disrupt the

surfaces of the model.

(a) (b) (c) (d)

Fig. 20 Filtered results with various holes. (a) Input cube with

large holes. (b) Input cube with small holes. (c) Output after

filtering (a). (d) Output after filtering (b).

4.13 Comparison to Lowrank

Figure 21 compares results of our approach to those

of Lowrank [23]. It demonstrates that our method

results in a more uniform point distribution than

Lowrank when removing noise.

4.14 Indoor scenes

We performed an experiment on the more challenging

indoor scene data shown in Figure 22. The result shows

that our method can also deal with point cloud indoor

scenes.

(a) Noisy input (b) Lowrank [23] (c) Ours

Fig. 21 Filtered points of ours and Lowrank [23].

(a) Noisy input (b) Filtered result

Fig. 22 Filtered result on noisy point cloud of an indoor scene.

Tab. 4 Runtime (in seconds) on Dodecahedron for different k

and t.

Iterations t = 5 t = 15 t = 30 t = 60

k = 30 1.41 3.77 7.37 14.69

k = 60 2.33 6.37 12.36 24.36

4.15 Runtime

Most examples in this paper were completed within

7 s. The most time-demanding was the object in

Figure 11, taking 28 s.

Running times for the proposed method were

measured for different k and numbers of iterations;

Table 4 shows that as k and the number of iterations

increase, the runtime increases accordingly.

In each iteration, our method gathers k neighbors

12
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Tab. 5 Runtime (s) for different methods and models.

Method CLOP TD PCN PF Ours

Fig. 4 59.66 16.65 294.00 67.38 6.27

Fig. 5 10.82 6.17 78.04 13.86 1.80

Fig. 6 3.89 4.91 83.69 38.98 1.89

Fig. 7 2.60 5.53 28.24 70.81 0.91

Fig. 8 42.85 16.24 186.30 49.99 4.66

Fig. 9 60.92 155.76 317.67 81.10 7.93

Fig. 10 70.58 102.41 642.01 247.77 6.37

Fig. 11 103.91 40.52 241.05 68.23 28.16

Fig. 12 50.58 30.01 352.99 74.68 6.98

for each point. Thus the larger k is, the longer the

computation takes. The number of iterations also has

a similar effect on the run time. However, since our

method is locally based, the overall speed is not slow.

We also compare the runtime for our method and

other methods. Table 5 shows that our method is

significantly faster than other methods.

5 Limitations

Although our method achieves good results, it still

has room for improvement. Like [25], since it is a

normal-based approach, it is inevitably dependent on

the quality of the input normals. In each iteration of the

position update, each point is estimated with reference

to the direction of the normal. Therefore, inaccurate

input normals may affect the filtered results. Figure 23

shows an example of such a case.

Also, like previous methods, our method may

produce less desirable results when handling a very high

level of noise. For instance, Figure 18 indicates 1.5%

noise is more challenging than the 0.5% and 1.0% noise.

In future, we hope to develop techniques to handle

the above limitations.

6 Conclusion

This paper presents a method to improve point cloud

filtering resulting in a more even point distribution in

filtered point clouds. Built on top of [23], our method

introduces a repulsion term into the objective function.

It not only removes noise while preserving sharp

features but also ensures a more uniform distribution of

the filtered points. Experiments show that our method

obtains promising filtered results under different levels

of noise and for different densities. Both visual

and quantitative comparisons show that it generally

outperforms other existing techniques. Our method is

also quicker than other compared methods.

(a) Noisy input (b) Filtered result

Fig. 23 An example showing poor results.
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