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Abstract Existing deep unfolding methods unroll an opti-
mization algorithm with a fixed number of steps, and utilize
convolutional neural networks (CNNs) to learn data-driven
priors. However, their performance is limited for two main
reasons. Firstly, priors learned in deep feature space need
to be converted to the image space at each iteration step,
which limits the depth of CNNs and prevents CNNs from
exploiting contextual information. Secondly, existing methods
only learn deep priors at the single full-resolution scale, so
ignore the benefits of multi-scale context in dealing with high
level noise. To address these issues, we explicitly consider
the image denoising process in the deep feature space and
propose the deep unfolding multi-scale regularizer network
(DUMRN) for image denoising. The core of DUMRN is the
feature-based denoising module (FDM) that directly removes
noise in the deep feature space. In each FDM, we construct a
multi-scale regularizer block to learn deep prior information
from multi-resolution features. We build the DUMRN by
stacking a sequence of FDMs and train it in an end-to-end
manner. Experimental results on synthetic and real-world
benchmarks demonstrate that DUMRN performs favorably
compared to state-of-the-art methods.

Keywords image denoising; deep unfolding network;
multi-scale regularizer; deep learning

1 Introduction
Image denoising is a fundamental problem in low-level vision
since corruption by noise is inevitable during the image
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acquisition process. Image denoising aims to recover the latent
clean image x from the corresponding noisy observation y.
Mathematically, the degradation model for the denoising
problem can be formulated as

y = x+ n, (1)

where n is generally assumed to be additive white Gaussian
noise (AWGN) with standard deviation σ. Due to the ill-posed
nature of the image denoising problem, many conventional
methods use various image prior terms based on the statistics
of natural images, including sparse models [1–3], non-local
self-similarity models [4–8], low-rank models [9, 10] and
Markov randomfieldmodels [11, 12]. Despite their significant
progress, these model-based methods usually reconstruct
latent clean images by solving complicated optimization
problems, which limits their practical application. Other
methods [9, 10, 13] sacrifice flexibility and efficiency to
achieve high performance.
With the development of deep convolutional neural net-

works (CNNs), many learning-based methods [14–18] have
been proposed for image denoising. With the powerful repre-
sentation ability of deep CNNs, these methods outperform
traditional model-based methods by a large margin. How-
ever, most learning-based methods directly learn the mapping
between noisy and clean image pairs without considering a
physical model of the noise process, which makes them more
efficient but less interpretable than model-based methods.
Taking advantages of model-based and learning-based

methods, many deep unfolding methods incorporate standard
optimization methods into deep CNNs. They unfold the image
denoising problem through various optimization algorithms
(e.g. gradient descent [19, 20], alternating direction method
of multipliers [21], and primal-dual [22]), and implement the
regularization term using deep CNNs, which can implicitly
learn deep priors in the feature space. By integrating the image
degradation constraint into CNNs, deep unfolding methods
maintain the efficiency and improve the interpretability of deep
learning. However, the performance of current deep unfolding
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methods is still limited for two main reasons. Firstly, in each
iteration step of deep unfolding methods, noise is removed
in the standard image space, but deep priors are learned in
feature space. The transformation from deep feature space to
image space limits the depth and receptive field of CNNs,
which prevents CNNs from extracting non-local dependencies
within images. Secondly, existing deep unfolding methods
only learn deep priors at the original full-resolution, and
thus cannot effectively capture spatial contextual information
and restore clear edges for images that suffer from heavy
noise [23].
In this paper, we propose the deep unfolding multi-scale

regularizer network (DUMRN) to more closely integrate
model-based and learning-based methods. To reduce the
number of space transformations and improve information
flow within the network, we explicitly consider the image
denoising process in the deep feature space, and propose a
feature-based denoising module (FDM) based on the image
degradation model. By mimicking the gradient descent op-
timization process, a sequence of FDMs is stacked to build
the DUMRN, so that we can obtain a deep CNN with a large
receptive field and train it in an end-to-end manner. In each
FDM, we construct a multi-scale regularizer block (MSRB)
to learn deep prior information frommulti-resolution features,
which is able to capture local details at high resolution and
large-scale contextual information at low resolution.
To summarize, the main contributions of this paper are

three-fold:
• explicit consideration of the image denoising process in
deep feature space, leading to a feature-based denoising
module (FDM) based on the iterative optimization steps
of the image degradation model, and a deep unfolding
multi-scale regularizer network (DUMRN) produced
by stacking a series of FDMs, which can effectively
leverage deep features and learn deep prior information,

• a multi-scale regularizer block (MSRB) to learn deep
prior information from features of different resolutions,
which can capture fine-scale detail information as well
as long-range contextual information, and

• comprehensive experiments to demonstrate DUMRN
achieves competitive performance for synthetic and real-
world image denoising; DUMRN is still effective and
robust on the challenging blind Gaussian denoising task.

2 Related work
Image denoising methods can be roughly categorized as tra-
ditional model-based methods, deep learning-based methods,
or deep unfolding methods. In this section, we briefly review
these methods.

2.1 Traditional methods

Since image denoising is an ill-posed problem, various reg-
ularization or prior terms have been proposed to constrain
the solution space. For example, Elad and Aharon [1] en-
forced sparsity on image patches by constructing highly
over-complete dictionaries. Dabov et al. [6] proposed the
well-known block-matching and 3D filter (BM3D) method
to combine non-local self-similarity with sparsity for image
denoising. Chen et al. [13] learned a Gaussian mixture model
prior from external image patches and utilized it to find sim-
ilar patches in input noisy images for denoising. However,
hand-crafted priors are not strong enough to characterize
complex image structures and usually involve non-convex and
time-consuming optimization problems.

2.2 Deep learning methods

Motivated by the great success of CNNs in high-level vision
tasks, various learning-based methods have been proposed for
image denoising. Zhang et al. [14] proposed DnCNN which
incorporates residual learning [24] and batch normaliza-
tion [25] in a CNN to learn residuals between the noisy input
and the corresponding clean image. To increase the flexibility
of the network to deal with noise of different levels, Zhang
et al. [15] utilized a noise level map as input and performed
denoising in the down-sampled sub-image space. Inspired
by DenseNet [26], Zhang et al. [17] utilized dense connec-
tions to construct a residual dense network (RDN) for image
restoration and achieved state-of-the-art results. For real-world
image denoising, Guo et al. [27] proposed the convolutional
blind denoising network (CBDNet) with a noise estimation
subnetwork, while Kim et al. [28] constructed the adaptive
instance normalization network (AINDNet) to transfer the
Gaussian denoiser to various real noisy scenes. To decrease
the computational cost on low-noise images, Yu et al. [29]
proposed a multi-path CNN with a dynamic path selection
module to adaptively select appropriate routes for different
image regions. Recently, several methods [16, 30–32] have
employed multi-scale strategies to enlarge the receptive field
and improve the performance of deep networks. For example,
Chang et al. [16] incorporated multi-size dilated convolutions
into a U-Net [33] structure to capture multi-scale contextual
information, which helps to restore rich details in complex
scenes.
In order to increase the modeling capacity of deep priors,

we utilize deep CNNs to learn deep prior information at
different scales, which helps to enlarge the receptive field and
capture long-range contextual information.
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2.3 Deep unfolding methods

Deep unfolding methods integrate the advantages of model-
based methods (e.g. good interpretability) and learning-based
methods (e.g. efficiency and strong representation capability).
They usually unfold iterative optimization algorithms as a
cascade scheme with a fixed number of steps. Deep CNNs
are utilized as regularizers in each step, which implicitly
learn deep image priors. Many unfolding methods have been
proposed for various image restoration tasks, including im-
age denoising [34–36], image deblurring [19, 20, 37], and
image super-resolution [38]. Schmidt and Roth [37] unrolled
the half-quadratic optimization procedure into an end-to-end
learning framework and proposed a random field-based ar-
chitecture to learn an image restoration regularizer. Chen
et al. [19] proposed a trainable nonlinear reaction diffusion
(TNRD) model by unfolding the gradient descent procedure
to a fixed number of iterations. To integrate sparsity regu-
larization with deep CNNs, Simon et al. [36] unfolded the
convolutional sparse coding model by the learned iterative
shrinkage threshold algorithm. By incorporating deep CNNs
into a fully parameterized gradient descent scheme, Gong
et al. [20] proposed to learn a universal gradient descent
optimizer and construct a recurrent gradient descent network
(RGDN) for image restoration. Recently, Ren et al. [39] in-
corporated the adaptive consistency prior into the maximum
a posterior framework, and proposed DeamNet based on un-
folding the optimization problem. Driven by a large training
set, deep unfolding methods optimize the parameters in an
end-to-end manner and surpass model-based methods.
Existing deep unfolding methods utilize CNNs to learn

data-driven priors in deep feature space, but they remove
noise in image space. Thus deep features are transformed into
image space at each iteration step, which limits the depth of
CNNs and makes it difficult from them to exploit contextual
information within images. In order to make full use of deep
CNNs, we explicitly consider the image denoising problem
in deep feature space and construct a deep network for image
denoising.

3 Proposed method
In this section, we first propose the feature-based denoising
module (FDM) which performs image denoising in deep
feature space. Then we introduce the multi-scale regularizer
block (MSRB) which learns deep prior information from
features at different resolutions. Finally, we stack several
FDMs using an unfolding strategy to build the DUMRN for
image denoising.

3.1 Feature-based denoising module

From aBayesian perspective, themaximum a posterior (MAP)
model for denoising can be formulated as:

x̂ = arg minx

1

2
‖y − x‖22 + λφ(x), (2)

where the first, fidelity, term guarantees the solution x̂ is in
accordance with the degradation process in Eq. (1), φ(x) is the
regularization term associated with prior information, and λ is
the regularization parameter that controls the tradeoff between
these terms. Eq. (2) can be solved by various optimization
algorithms, such as gradient descent [19, 20], alternating
direction of multipliers [21], and the primal-dual method [22].
Here we utilize the momentum gradient descent method due
to its simplicity and effectiveness [40, 41]. Thus, x̂ can be
obtained through the following iteration:

xt+1 = xt − αt
(
(xt − y)− λ∇φt(xt)

)
+ βt(xt − xt−1),

(3)

y = x0, (4)

where t denotes the step index, αt is the step size, ∇φt(·)
denotes the gradient of φ(·), βt is the momentum parameter at
step t and (xt−xt−1) is the momentum term. In order to learn
deep image priors, deep unfolding methods employ CNNs
to calculate the gradient of the regularizer ∇φ(·), which
implicitly provides a deep image prior. Then the iterative
procedure in Eq. (3) is unrolled with a fixed number of steps
T . However, in each iteration step, noise in xt is removed
in the standard image space while the prior∇φ(·) is learned
in deep feature space. The mapping from deep feature space
to image space limits the depth and receptive field size of
CNNs, making it difficult for unfolding methods to capture
non-local dependencies inside images.
In order to make full use of deep CNNs and improve

the information flow in the network, we explicitly consider
removing noise in deep feature space. Specifically, we first
utilize a feature extractor f(·) to map image x to the feature
space. Then we can use Eq. (3) to iteratively denoise f(x)

without mapping it into image space. In order to scale the
gradient and momentum terms adaptively, we replace the
step size αt and momentum parameter βt by At(·) and
Bt(·) respectively. We let S(·) replace ∇φ(·) to supplant the
gradient of the regularizer; S(·) absorbs the trade-off weight
λ. S(·) implicitly performs the role of the deep prior. Overall,
the t-th feature-based denoising module (FDM) is formulated
as:

Xt+1 = Xt−At(Xt−Y +St(Xt)) +Bt(Xt−Xt−1), (5)

Y = f(y) = f(x0) = X0. (6)
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(a) Residual block (ResBlock). (b) Structure of {Gi}3i=1.

(c) Architecture of the back-projection feature fusion (BPFF) block.

Fig. 1 (a) Structure of the residual block (ResBlock). (b)
{Gi(·)}3i=1 in FDM share a common architecture of a CNN with
different parameters to be learned. (c) Structure of the BPFF block.
Conv2 and Deconv2 represent a convolutional layer and deconvo-
lutional layer with stride of 2 respectively.

After T iterations, we utilize an image reconstructor g(·)
to reconstruct the final denoised image from XT :

x̂ = g(XT ). (7)

Considering the effectiveness of the residual block (Res-
Block) in low-level vision tasks [42, 43], we use a single
ResBlock to implement At(·) and Bt(·) respectively. The
structure of the ResBlock is shown in Fig. 1(a): each Res-
Block contains two 3× 3 convolutional layers and a ReLU
activation function [44]. For flexibility, we implement the
feature extractor f and image reconstructor g using two
convolutional layers with 3× 3 learnable kernels.

3.2 Multi-scale regularizer block

Many unfolding methods [19, 20, 38] implement S(·) using
deep CNNs due to their strong learning capability. However,
limited by the size of the convolution kernel, CNNs fail to
capture diverse contextual information, and most existing
deep unfolding methods (e.g. TNRD [19] and CSCNet [36])
perform poorly when the noise level is high. To overcome this
problem, we adopt a multi-scale strategy by down-sampling
features to different scales. On one hand, down-sampling can
effectively enlarge the receptive field and enable models to
exploit more spatial contextual information, which is helpful
in denoising images that suffer from heavy noise [23]. On
the other hand, as observed in [45], noise decreases while
strong edges are less affected by down-sampling. To gain
the advantages of a multi-scale strategy, we implement S(·)
using a multi-scale regularizer block (MSRB) to extract useful
feature information at multiple resolutions:

S(X) = fMSRB(X) = F(G1(X),G2(X ↓2),G3(X ↓4)), (8)

where fMSRB(·) represents the proposed MSRB function,
↓k represents the down-sampling operator with a scaling
factor of k, {Gi(·)}3i=1 denotes a set of deep CNNs that
learn useful prior information from the features of different
scales, and F(·) denotes the multi-scale feature fusion block
utilized to aggregate features frommultiple scales. In practice,
we use three CNNs with the same structure but different
channel dimensions to implement {Gi(·)}3i=1. The numbers
of channels are set to 64, 128, 256 at resolutions 1, 1/2, 1/4

respectively. As shown in Fig. 1(b), each Gi(·) consists of two
convolutional layers with ReLU activation functions and a
ResBlock, and all kernel sizes are set to 3.
Summation and concatenation are the most commonly-

used strategies for feature fusion, but directly applying them
to multi-scale feature fusion is not effective [46]. Moti-
vated by the success of back-projection technique in im-
age super-resolution [47–49], we implement F(·) using a
back-projection feature fusion (BPFF) block [46] to aggre-
gate multi-scale features. As shown in Fig. 1(c), we first
down-sample G1(X) to the same resolution as G3(X ↓4), and
compute their difference:

e1 = G1(X) ↓4 −G3(X ↓4), (9)

then we enhance the prior information G1(X) using the back-
projected difference:

s = G1(X) + (e1) ↑4 . (10)

We obtain the final S(X) by applying a similar update
procedure to integrate s and G3(X ↓4):

e2 = (s) ↓2 −G2(X ↓2), (11)

S(X) = s+ (e2) ↑2 . (12)

In MSRB, we use convolutional layers and deconvolu-
tional layers to implement down-sampling and up-sampling
operators respectively; the strides of both convolutional lay-
ers and deconvolutional layers are set to 2. By utilizing the
BPFF block in MSRB, we can effectively aggregate prior
information at different resolutions into a stronger prior.

3.3 Overall architecture

The overall architecture of our proposed deep unfoldingmulti-
scale regularizer network (DUMRN) is shown in Fig. 2. Let
y and x denote the input noisy image and the corresponding
ground-truth image. The feature extractor f first extracts
features from y. The extracted features Y are set as the initial
value X0 for the feature denoising process. T FDMs are
stacked to remove noise in feature space: we update Xt via T
steps using Eq. (5). Finally, we utilize the image reconstructor
g to reconstruct the final image from the denoised feature XT .
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Fig. 2 Architecture of DUMRN. The first convolutional layer extracts feature X0 from the noisy input, then T feature-based denoising
modules (FDMs) are stacked to remove noise in deep feature space; the structure of FDM is based on the momentum gradient descent
algorithm. Benefiting from FDM, there is no need to transform deep features into image space at each step. The last convolutional layer
converts the denoised feature XT to a clean image. A multi-scale regularizer block S(·) learns deep prior information from features at
different resolutions; ↓k represents down-sampling with a scaling factor of k.

The DUMRN is optimized by minimizing the difference
between the input noisy images and the corresponding ground-
truth counterparts. To assess the effectiveness of the proposed
network, we adopt the same L2 loss function as previous
works [14–16, 18]. Given a training dataset {yi, xi}Ni=1,
where N is the number of the training patch pairs, we obtain
the optimal parameters by minimizing the following objective
function:

L(Θ) =
1

N

N∑
i=1

‖fDUMRN(yi)− xi‖2, (13)

where fDUMRN(·) represents the DUMRN function, and Θ

represents all learnable parameters in DUMRN.

4 Experimental results
In this section, we first provide the training and implementa-
tion details of the proposed network. Then, we compare our
proposed DUMRN with several state-of-the-art methods on
synthetic and real-world image denoising tasks. Our source
code is available at https://github.com/Xujz19/DUMRN.

4.1 Datasets and implementation
4.1.1 Datasets

Following RDN [17] and SADNet [16], we adopt 800 high-
resolution training images from the DIV2K dataset [50] to
train our models for Gaussian denoising at four different noise

levels (σ = 10, 30, 50, 70). In addition, we use noisy images
with varying noise levels σ ∈ [0, 75] to train a single model
for blind Gaussian denoising; it is referred as DUMRN-B.
All synthetic Gaussian noisy images were obtained by adding
Gaussian noise of different levels to clean images. For real-
world image denoising, , following DeamNet [39], we trained
our model on the SIDD medium dataset [51] and RENOIR
dataset [52].
To evaluate DUMRN for gray-scale image denoising, we

used three benchmark datasets: Set12[14], BSD68 [53], and
Urban100 [54]. For color image denoising, we chose Ko-
dak24 [55], CBSD68, and Urban100 as test datasets. For
real image denoising, we evaluated our model on the SIDD
Benchmark dataset [51] and Darmstadt Noise Dataset (DnD)
[56]. We used peak signal-to-noise ratio (PSNR) and struc-
tural similarity (SSIM) [57] as the metrics for quantitative
evaluation.

4.1.2 Implementation details
We implemented our proposed model in the PyTorch envi-
ronment and adopted the ADAM optimizer [62] with default
parameters to optimize the network parameters. We trained
our network on an NVIDIA TITAN Xp GPU for a total of
15,000 epochs. For each iteration, we set the batch size to
16 and randomly cropped the noisy and sharp images to
size 96× 96. Like other denoising methods [14–18, 59], we

https://github.com/Xujz19/DUMRN
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Table 1 Average PSNR (dB) and SSIM results for different methods on the gray-scale datasets for noise levels σ =10, 30, 50 and 70. Best
results are highlighted in bold. ‘-’ means that a result is unavailable.

Method Set12 BSD68 Urban100
10 30 50 70 10 30 50 70 10 30 50 70

BM3D [6] 34.38 29.13 26.72 25.22 33.23 27.74 25.61 24.42 34.47 28.75 25.94 24.27
0.9233 0.8315 0.7676 0.7174 0.9148 0.7721 0.6855 0.6318 0.9459 0.8567 0.7791 0.7163

TNRD [19] - - 26.88 - - - 26.01 - - - 25.71 -
- - 0.7717 - - - 0.7057 - - - 0.7757 -

CSCNet [36] - - 27.15 - - - 26.23 - - - 26.21 -
- - 0.7823 - - - 0.7199 - - - 0.7957 -

DnCNN [14] 34.78 29.52 27.18 25.52 33.88 28.36 26.23 24.90 34.73 28.88 26.28 24.36
0.9270 0.8420 0.7827 0.7273 0.9270 0.7999 0.7189 0.6567 0.9486 0.8566 0.7869 0.7178

FFDNet [15] 34.64 29.61 27.32 25.81 33.76 28.39 26.29 25.04 34.45 29.03 26.52 24.86
0.9271 0.8465 0.7903 0.7451 0.9266 0.8032 0.7245 0.6700 0.9489 0.8707 0.8057 0.7495

NLRN [58] - - 27.64 - - - 26.47 - - - 27.49 -
- - 0.7980 - - - 0.7298 - - - 0.8279 -

SADNet [16] - 29.94 27.67 26.19 - 28.58 26.49 25.23 - 29.83 27.42 25.82
- 0.8551 0.8032 0.7622 - 0.8106 0.7340 0.6819 - 0.8876 0.8347 0.7891

DudeNet [59] 34.65 29.54 27.21 - 33.76 28.37 26.25 - 34.41 29.00 26.46 -
0.9256 0.8430 0.7839 - 0.9251 0.7991 0.7167 - 0.9444 0.8629 0.7945 -

COLANet [18] 34.97 29.81 27.50 25.98 33.93 28.47 26.35 25.10 35.37 30.01 27.47 25.79
0.9310 0.8486 0.7929 0.7490 0.9284 0.8054 0.7269 0.6704 0.9545 0.8864 0.8289 0.7782

RDN [17] 35.06 29.94 27.60 26.05 33.91 28.54 26.40 25.10 35.42 30.04 27.44 25.69
0.9315 0.8537 0.7998 0.7558 0.9281 0.8071 0.7275 0.6723 0.9550 0.8886 0.8314 0.7801

DeamNet [39] - - 27.74 - - - 26.53 - - - 27.51 -
- - 0.8052 - - - 0.7364 - - - 0.8374 -

DUMRN 35.12 30.06 27.83 26.33 34.04 28.65 26.56 25.30 35.44 30.19 27.82 26.11
0.9328 0.8566 0.8068 0.7663 0.9298 0.8120 0.7372 0.6835 0.9555 0.8931 0.8435 0.7976

DUMRN-B 34.94 29.98 27.77 26.32 33.93 28.60 26.52 25.27 35.01 30.00 27.66 26.10
0.9300 0.8549 0.8047 0.7648 0.9284 0.8107 0.7351 0.6816 0.9519 0.8899 0.8397 0.7957

Ground Truth
(PSNR/SSIM)

Noisy
(14.76/0.2062)

BM3D
(27.22/0.7942)

TNRD
(26.01/0.7555)

CSCNet
(25.73/0.7501)

DnCNN
(26.22/0.7693)

SADNet
(27.68/0.8234)

RDN
(27.58/0.8183)

DeamNet
(27.62/0.8279)

DUMRN
(28.09/0.8389)

Fig. 3 Gray-scale image denoising results on image 09 in Set12 with noise level σ = 50.

performed data augmentation on the training images, using
random flipping and rotation. We set the initial learning rate
to 10−4 and halved it every 2500 epochs. All trainable pa-
rameters were initialized using the Xavier method [63]. For

the trade-off between efficiency and performance, we set the

number of FDMs T to 6. More details of this choice are

provided in Section 5.1.
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Table 2 Average PSNR (dB) and SSIM results for different methods on the color datasets for noise levels σ =10, 30, 50 and 70. Best
results are highlighted in bold. ‘-’ means the result is unavailable.

Method Kodak24 CBSD68 Urban100
10 30 50 70 10 30 50 70 10 30 50 70

CBM3D [60] 36.57 30.89 28.63 27.27 35.91 29.73 27.38 26.00 36.00 30.36 27.94 26.31
0.9425 0.8450 0.7764 0.7290 0.9507 0.8422 0.7627 0.7073 0.9586 0.8930 0.8404 0.7934

TNRD [19] - - 27.24 - - - 26.01 - - - 25.64 -
- - 0.7210 - - - 0.7013 - - - 0.7696 -

DnCNN [14] 36.99 31.39 29.16 27.64 36.31 30.40 28.01 26.56 36.21 30.28 28.16 26.17
0.9472 0.8611 0.7985 0.7504 0.9552 0.8642 0.7925 0.7404 0.9607 0.8922 0.8490 0.7924

FFDNet [15] 36.81 31.39 29.10 27.68 36.14 30.31 27.96 26.53 35.77 30.53 28.05 26.39
0.9461 0.8595 0.7947 0.7473 0.9540 0.8603 0.7881 0.7332 0.9585 0.8983 0.8476 0.8028

SADNet [16] - 31.80 29.58 28.22 - 30.62 28.31 26.91 - 31.26 28.97 27.45
- 0.8707 0.8140 0.7718 - 0.8697 0.8041 0.7540 - 0.9108 0.8712 0.8368

DudeNet [59] 36.72 31.41 29.10 - 36.06 30.33 27.96 - 35.65 30.63 28.16 -
0.9452 0.8605 0.7952 - 0.9531 0.8616 0.7893 - 0.9545 0.8962 0.8454 -

Neb2Neb [61] 36.17 31.24 28.93 - 35.49 30.22 27.86 - 34.85 30.22 27.82 -
0.9403 0.8594 0.7896 - 0.9492 0.8611 0.7839 - 0.9541 0.8961 0.8423 -

RDN [17] 37.31 31.94 29.65 28.19 36.47 30.67 28.31 26.85 36.69 31.69 29.29 27.64
0.9498 0.8714 0.8132 0.7659 0.9565 0.8695 0.8024 0.7481 0.9635 0.9147 0.8748 0.8377

DUMRN 37.33 32.02 29.81 28.44 36.50 30.76 28.46 27.06 36.71 31.81 29.53 28.01
0.9504 0.8743 0.8192 0.7779 0.9570 0.8725 0.8086 0.7593 0.9640 0.9174 0.8810 0.8489

DUMRN-B 37.24 31.99 29.79 28.44 36.42 30.73 28.45 27.06 36.44 31.71 29.49 28.01
0.9500 0.8740 0.8191 0.7777 0.9565 0.8722 0.8084 0.7593 0.9626 0.9164 0.8804 0.8487

Ground Truth
(PSNR/SSIM)

Noisy
(14.77/0.0997)

CBM3D
(29.92/0.7718)

DnCNN
(30.12/0.7837)

FFDNet
(30.09/0.7790)

DudeNet
(29.88/0.7707)

SADNet
(30.75/0.8040)

RDN
(30.69/0.7973)

DUMRN-B
(30.94/0.8078)

DUMRN
(30.95/0.8081)

Fig. 4 Color image denoising results on image kodim04 from Kodak24 with noise level σ = 50.

4.2 Synthetic noise removal

To evaluate denoising performance on synthetic noisy images,
we compared our proposed DUMRN with several state-of-
the-art denoising methods including classical model-based
methods (BM3D [6] and CBM3D [60]), deep unfolding
methods (TNRD[19], CSCNet [36] and DeamNet [39]), and
deep-learning based methods (DnCNN [14], FFDNet [15],
NLRN[58], SADNet [16], DudeNet [59], COLANet [18],
Neb2Neb [61], and RDN [17]).

Tables 1 and 2 summarize quantitative results for dif-
ferent methods on gray-scale and color image denoising,
respectively. Our proposed DUMRN achieves the best PSNR
under all experiment settings, demonstrating the superior-
ity of our model. Specifically, DUMRN outperforms the
most representative traditional method BM3D by 0.74dB
to 1.84dB in different settings. For gray-scale image de-
noising on the Urban100 dataset with noise level σ = 50,
DUMRN achieves 2.11dB/0.0678 and 0.31dB/0.0061 im-
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Ground Truth
(PSNR/SSIM)

Noisy
(15.24/0.2886)

CBM3D
(27.07/0.8212)

DnCNN
(27.81/0.8487)

FFDNet
(27.69/0.8448)

DudeNet
(27.80/0.8474)

SADNet
(28.26/0.8644)

RDN
(28.33/0.8655)

DUMRN-B
(28.54/0.8720)

DUMRN
(28.56/0.8723)

Fig. 5 Color image denoising results on image 119082 from CBSD68 with noise level σ = 50.

Ground Truth
(PSNR/SSIM)

Noisy
(15.29/0.1858)

CBM3D
(27.08/0.8133)

DnCNN
(27.80/0.8398)

FFDNet
(27.71/0.8370)

DudeNet
(27.86/0.8413)

SADNet
(28.21/0.8573)

RDN
(28.27/0.8592)

DUMRN-B
(28.47/0.8655)

DUMRN
(28.48/0.8657)

Fig. 6 Color image denoising results on image img_022 from Urban100 with noise level σ = 50.

provements over the previous deep unfolding methods TNRD
and DeamNet, respectively. Benefiting from the incorpo-
ration of the physical model and deep CNNs, our model
also outperforms state-of-the-art deep learning-based meth-
ods DnCNN, SADNet, COLANet, and RDN. Taking color
image denoising with noise level σ = 50 as an example,
our DUMRN obtains 0.65dB/0.0207, 0.45dB/0.0161, and
1.37dB/0.0320 improvements over DnCNN on Kodak24,
CBSD68, and Urban100 respectively. Due to the proposed
FDM and multi-scale strategy that enlarge the receptive field
to exploit more spatial contextual information, DUMRN is
especially effective when the noise level is high (σ = 50, 70).
Specifically, on the challenging Urban100 dataset, DUMRN
outperforms RDN by 0.42dB/0.0175 on gray-scale image
denoising and 0.37dB/0.0112 on color image denoising when
the noise level is σ = 70.

Fig. 3 shows a visual comparison of results from different
methods on gray-scale image denoising. We can observe that
TNRD and CSCNet generate results with severe distortion

and noticeable artifacts, and no competing methods recover a
clear edge of the chin in the photo, while DUMRN produces
more faithful results. Visual comparisons for color images
are shown in Figures 4–6. It can be seen that our DUMRN
produces sharper edges and recovers more details while
other methods suffer from over-smoothing, demonstrating the
powerful representation ability of our DUMRN model.

Quantitative results for our blind denoising model are also
given in Tables 1 and 2. The performance of DUMRN-B
slightly decreases due to the unknown noise level, but it is
still higher than most deep learning-based methods which
are trained for a known specific noise level, indicating that
our model is robust in blind image denoising. Taking a
noise level σ = 50 as an example, DUMRN-B outperforms
the non-blind RDN by 0.14dB/0.0026, 0.14dB/0.0020, and
0.20dB/0.0056 on the Kodak24, CBSD68, and Urban100
datasets, respectively. As shown in Figures 4–6, DUMRN-B
also generates more faithful results than the other competing
methods, further demonstrating that our model can effective



Deep unfolding multi-scale regularizer network for image denoising 9

Table 3 Quantitative results for different methods on the SIDD
and DnD datasets. Best results are highlighted in bold.

Dataset SIDD DnD
Metric PSNR SSIM PSNR SSIM
Noisy 23.70 0.480 29.84 0.7018
CBM3D [6] 25.65 0.685 34.51 0.8507
DnCNN [14] 23.66 0.583 37.90 0.9430
FFDNet [15] 29.30 0.694 37.61 0.9415
CBDNet [27] 33.28 0.868 38.06 0.9421
AINDNet(TF) [28] 38.95 0.952 39.37 0.9505
PathRestore[29] 38.21 0.946 39.00 0.9542
COLANet [18] 38.99 0.951 39.45 0.9626
R2Net [64] 37.87 0.943 39.25 0.9528
DeamNet [39] 39.35 0.955 39.63 0.9531
DUMRN 39.44 0.956 39.66 0.9529

tackle the challenging blind Gaussian denoising task.

4.3 Real-world noise removal

Actually, it is hard to model real-world noise precisely. Since
investigating the degradation processes of real noise is not
our main goal, we simply assume it is a kind of addi-
tive noise that can be removed by Eq. (2). We compare
the DUMRN to several state-of-the-art methods, including
CBM3D [60], DnCNN[14], FFDNet [15], CBDNet [27],
AINDNet(TF) [28], PathRestore [29], COLANet [18],
R2Net [64], and DeamNet [39].
Quantitative results for different methods on the SIDD

benchmark and DnD dataset are provided in Table 3. All
PSNR and SSIM results were obtained from public bench-
mark websites. It can be seen that our DUMRN achieves
comparable performance to these competing methods. Visual
comparisons of results of different methods on an image
from the DnD dataset are shown in Fig. 7. The conventional
CBM3D cannot effectively remove real-world noise, and most
competing methods (e.g. DnCNN and CBDNet) over-smooth
structures while removing noise. In contrast, DUMRN effec-
tively removes noise in constant regions and recovers clear
edges with few artifacts.

5 Model analysis
In this section, we conduct ablation studies to analyze the
effects of different components, including the FDM, MSRB,
and consider the unrolling length T . In addition, we also
compare the computational requirements of our DUMRN
network and competing methods.

5.1 Analysis on FDM

The structure of the proposed DUMRN is similar to
TNRD [19] and RGDN [20]; all are based on the gradi-
ent descent method. The main difference is that our DUMRN

Noisy
(18.77/0.3015)

CBM3D
(23.95/0.5078)

DnCNN
(32.26/0.8906)

CBDNet
(31.40/0.8364)

COLANet
(33.93/0.9176)

PathRestore
(34.16/0.9009)

AINDNet
(33.39/0.8981)

DeamNet
(34.16/0.9263)

DUMRN
(34.54/0.9215)

Fig. 7 Real image denoising results of different methods on the
image from DnD dataset.

Noisy DUMRN-I

Ground Truth DUMRN

Fig. 8 Effectiveness of the FDM on image denoising. Visual
comparison on image 223061 fromCBSD68with noise levelσ = 50.

learns a data-driven prior from deep features, but TNRD
and RGDN learn priors from the original images. The per-
formance improvement shown in Table 4 of DUMRN over
TNRD and RGDN illustrates the superiority of the proposed
feature-based denoising framework. To further demonstrate
the effect of the deep feature space, we set the feature extrac-
tor f(·) and image reconstructor g(·) as identity functions
(DUMRN-I for short) to learn deep prior information from the
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Noisy X2 X4 X6 Denoised Results

Fig. 9 Visualizations of intermediate features in DUMRN.

Table 4 Analysis of the proposed MSRB. PSNR (dB) results of
color image denoising are evaluated on the CBSD68 dataset with
noise level σ = 50.
Method TNRD [19] RGDN [20] DUMRN-I DUMRN
PSNR (dB) 25.96 27.66 28.27 28.46

raw image space. Table 4 shows that the PSNR of our whole
model is 0.19dB higher than DUMRN-I, which illustrates
the importance of the feature-based denoising module. A
visual comparison of results in Fig. 8 further demonstrates
the effectiveness of the FDM. It can be seen that the proposed
DUMRN with FDM generates fewer artifacts and sharper
edges than DUMRN-I: FDM can learn more useful features
for high-quality image denoising.
To better demonstrate the effect of the proposed FDM

intuitively, we visualize some intermediate features Xt. Using
the visualization method in [65], we compute the top three
principal components of the intermediate features and map
them to the principal components of RGB space. The visual-
ized features are shown in Fig. 9. It can be seen that noise is
removed progressively from X2 to X6. Feature X6 contains
the least noise and has the sharpest texture: the proposed
FDM effectively removes noise and reconstructs details.

The number of FDMs determines the depth of the DUMRN.
In Fig. 10, we show the variation in PSNR performance
and inference time with increasing numbers of steps T .
PSNR values and inference time both increase as T rises.
As T increases from 5 to 6, an obvious PSNR improvement
is still obtained. However, when T becomes bigger than
6, the curve in Fig. 10 becomes flatter, and PSNR gains
become minor. Thus, we conclude that DUMRN has almost
converged when T = 6. Although DUMRN achieves the best
PSNR performance when T = 8, it takes the most inference
time. Considering the trade-off between the performance and
inference time, we adopt T = 6 in our experiments.

0.1 0.2 0.3 0.4

29.1

29.2

29.3

29.4

29.5

29.6

P
S

N
R

 (
d
B

)

T=2

T=4

T=5

T=6
T=7 T=8

Fig. 10 Varying the number T of FDMs. PSNR (dB) results for
color image denoising are evaluated on the Urban100 dataset with
noise level σ = 50.

Table 5 Analysis of the proposed MSRB. PSNR (dB) and SSIM
results of color image denoising are evaluated on the Urban100
dataset with noise level σ = 50.

Method PSNR SSIM
DUMRN-1 28.81 0.8646
DUMRN-2 29.22 0.8747
DUMRN-3 29.07 0.8710
DUMRN-C 29.41 0.8779
DUMRN-S 29.38 0.8778
DUMRN 29.53 0.8810

5.2 Analysis on MSRB

To investigate the effect of the proposed multi-scale strategy
and the adopted BPFF block, we designed several baseline
models. Specifically, we trained the following alternatives of
our model: (i) removing G2(·) and G3(·) in MSRB (DUMRN-
1 for short), (ii) removing G3(·) in MSRB (DUMRN-2 for
short), (iii) changing the number of filters in G2(·) and G3(·)
to 64 and letting them learn deep prior information at the
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Ground Truth Noisy DUMRN-1 DUMRN-2 DUMRN

Fig. 11 Effectiveness of the MSRB on image denoising. Visual comparison on image img_044 from Urban100 with noise level σ = 50.

original full-resolution (DUMRN-3 for short), (iv) replacing
BPFF block with concatenation (DUMRN-C for short), (v)
replacing the BPFF block with summation (DUMRN-S for
short). Quantitative results are shown in Table 5. Compared to
DUMRN-1, DUMRN-2 has one more branch that learns deep
prior information at the coarse resolution, and DUMRN-3
has two more branches that learn deep prior information at
the original full-resolution. It can be seen that DUMRN-2
achieves better denoising performance than DUMRN-3, in-
dicating that using features at different scales can provide
more effective prior information. In addition, DUMRN out-
performs DUMRN-1, DUMRN-2, and DUMRN-3, which
further demonstrates that multi-scale information facilitates
image denoising. Visual comparisons are given in Fig. 11;
we can observe that a learning deep prior at the original
full-resolution (DUMRN-1) is insufficient to recover fine
texture details. Taking advantage of the multi-scale prior
information, the denoised result of DUMRN contains fewer
artifacts and much more detail than the results of DUMRN-1
and DUMRN-2.

From Table 5, it can also be observed that DUMRN gener-
ates better results than DUMRN-C and DUMRN-S: simply
using concatenation or summation can not effectively integrate
multi-scale information.

5.3 Speed

We further evaluated the inference time for different methods
for processing a 512× 512 gray-scale image. All inference
times were tested on an NVIDIA TITAN Xp GPU. Fig. 12
shows that our DUMRN achieves better PSNR performance
with a lower inference time than the state-of-the-art meth-
ods RDN [17], COLANet [18], and NLRN [58]. Although
DUMRN is a little slower than DnCNN [14], DudeNet [59],
and SADNet [16], it achieves much better denoising perfor-
mance. Overall, DUMRN performs well in terms of both
effectiveness and efficiency.

6 Limitations
Like other denoising methods, DUMRN may fail to recon-
struct proper details in some challenging cases. As Fig. 13
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DnCNN

DudeNet

SADNet RDN

DeamNet

COLANet

CSCNet

DUMRN

NLRN

Fig. 12 Inference time versus PSNR for different methods. PSNR
(dB) results for gray-scale image denoising were evaluated on the
Urban100 dataset with noise level σ = 50.

Ground Truth Noisy

RDN DUMRN

Fig. 13 Unsatisfactory results. Visual comparison on image
img_076 from Urban100 with noise level σ = 50.

shows, strong noise may make vertical textures imperceptible
in the noisy input, and as a result DUMRN and the state-of-
the-art RDN cannot correctly recover the vertical textures
shown in the close-up. Severe corruption makes it difficult to
restore the textures, and DUMRN generates the most likely
texture patterns learned from the training dataset.
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7 Conclusions
In this paper, we proposed the deep unfolding multi-scale
regularizer network (DUMRN) to better integrate the tra-
ditional image denoising model with deep neural networks.
We explicitly consider the image denoising process in deep
feature space, and propose a feature-based denoising mod-
ule (FDM) following the iterative optimization steps of the
image degradation model. Benefiting from the FDM, we
can construct a deep network with a large receptive field
to effectively learn deep prior information. In addition, we
proposed the multi-scale regularizer block (MSRB) to extract
more spatial contextual information from features of different
scales, which is beneficial for images that suffer from heavy
noise. We also analyzed the effect of each component in the
proposed DUMRN. Extensive experiments demonstrate that
our proposed DUMRN can effectively and robustly denoise
images, assessed both by quantitative metrics and visual qual-
ity. In future, we will investigate real noise models and modify
DUMRN to achieve better results for real image denoising.
We will also extend our model to other image restoration
tasks, such as image deblurring and rain removal.
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