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Abstract The exact shape of intracranial aneurysms

is critical in medical diagnosis and surgical planning.

While voxel-based deep learning frameworks have been

proposed for this segmentation task, their performance

remains limited. In this study, we offer a two-

step surface-based deep learning pipeline that achieves

significantly better results. Our proposed model takes a

surface model of an entire set of principal brain arteries

containing aneurysms as input and returns aneurysm

surfaces as output. A user first generates a surface

model by manually specifying multiple thresholds for

time-of-flight magnetic resonance angiography images.

The system then samples small surface fragments

from the entire set of brain arteries and classifies

the surface fragments according to whether aneurysms

are present using a point-based deep learning network

(PointNet++). Finally, the system applies surface

segmentation (SO-Net) to surface fragments containing

aneurysms. We conduct a direct comparison of the

segmentation performance of our proposed surface-

based framework and an existing voxel-based method

by counting voxels: our framework achieves a much

higher Dice similarity (72%) than the prior approach

(46%).
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Tab. 1 Comparison of related works and our method.

Method Entire image Surface-based

(Practicality) (Effectiveness)

Park et al. [18]
3 7

Sichterman et al. [22]

Yang et al. [28]
7 3

Bizjak et al. [3]

Our method 3 3

1 Introduction

An intracranial aneurysm (IA) is a weakened or

thinned portion of a blood vessel in the brain that

bulges dangerously and fills up with blood. Bloated

aneurysms compress the surrounding nerves and brain

tissue, and have a high risk of rupture, which results

in subarachnoid hemorrhage (SAH). The risk of such

rupture is related to the size and form of the IA [7].

The practical surgical approach to prevent rupture is

to clip the neck of the aneurism. Therefore, extracting

the shape of aneurysms is a crucial aspect not only of

IA diagnosis but also of preoperative examination to

determine the position and posture of the necessary

clips [1]. In current practice, this process requires

manual identification by medical experts, taking several

minutes per case. Clearly, automating this process is

a very worthwhile venture. Furthermore, employing

automation, we can also obtain large segmented

datasets, which can open up new avenues for research

aimed at gaining further insights into IA through

statistical analysis.

Over the last decade, many extraction algorithms

have been designed by calculating local geometric

features [13, 17]; however, rule-based methods have

high computational costs and time requirements,

and their performance is limited because of the

wide variety of aneurysm shapes. Meanwhile, deep

learning techniques are becoming increasingly popular
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in medical image processing; however, they are mostly

used for classification and detection. Few prior

research works have explored the application of deep

learning methods to the segmentation of IAs, and their

performance remains limited [17] (see Section 2).

This study builds on Yang et al.’s work the IntrA

dataset [28], which was created for surface-based

classification and segmentation of IAs, and reported

the performance of existing neural network models

on both tasks. However, in their work, the dataset

and execution process were fully separated for both

classification and segmentation tasks. Segmentation

was evaluated only on manually sampled surface

fragments containing aneurysms. This process is

unrealistic in clinical practice. In addition, the per-

fragment segmentation results were not integrated.

Therefore, in this study, we present a complete

processing pipeline for segmenting IAs, shown in

Figure 1, which integrates deep learning and geometry

processing techniques to achieve better results. Our

proposed pipeline takes an entire intracranial vessel

network model as input and returns IA fragments as

output.

The main contributions of this study are as follows:

1. A complete pipeline using point-based 3D deep

neural networks for aneurysm segmentation from

entire medical images. The proposed pipeline

uses automatic sampling and achieves state-of-the-

art results comparable to segmentation based on

manual sampling [28].

2. Adjusted algorithms for fragment sampling,

refinement, and integration by geometry

processing techniques to support the proposed

pipeline.

3. A demonstration of the advantage of our two-

step pipeline combining a classification step

and a segmentation step by comparing it

to a segmentation-only pipeline, and a direct

comparison of our surface-based framework to a

state-of-the-art voxel-based method, showing the

superiority of our proposed framework.

In the field of computer vision in general, detection

tasks usually involve determining the rough location

and size of target objects, for example, a boundary box,

whereas, in medical imaging, detection may indicate

only the presence of target objects. The difficulties of

both are lower than those of the segmentation task,

which requires algorithms to predict the precise shape

of the target objects.

Fig. 1 Comparison of the pipelines of Yang et al. [28] and the

proposed method.

2 Related work

2.1 Detection

Deep learning methods have been widely used as

diagnosis aids to detect IAs. Nakao et al. [15] detected

intracranial aneurysms in MRA images using a basic

deep convolutional neural network. Ueda et al. [24]

used ResNet-18 for an automated diagnosis of cerebral

aneurysms from TOF MR angiography image data from

several sources. Zhou et al. [29] proposed a transferable

multi-model ensemble (MMEN) architecture to predict

the possibility of aneurysms using a mesh model. This

approach used 3D objects as input, but also still used

2D neural networks by conformal mapping.

2.2 Segmentation

Segmentation of IAs requires obtaining detailed

location and shape information for aneurysms.

Conventional approaches have used rule-based 2D or

3D shape analyses. For example, Nikravanshalmani

et al. [16, 17] used a level set algorithm and a

region growing based approach for semi-automatic

segmentation of cerebral aneurysms from CTA images.

Law et al. [12, 13] proposed an intensity-based

algorithm to segment intracranial vessels and embedded

aneurysms using multirange filters and local variances.

Wang et al. [26] presented a multilevel segmentation
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Fig. 2 Comparison of our proposed pipeline and a voxel-based method.

method based on the lattice Boltzmann method (LBM)

and level sets with ellipses for accurate segmentation

of intracranial aneurysms. Sulayman et al. [23]

proposed a scheme for semi-automatic detection and

segmentation of intracranial aneurysms. Dakua et

al. [4] presented a PCA-based approach to segmenting

the brain vasculature in low contrast cerebral blood

vessels. Jerman et al. [8] proposed automated cutting

plane (ACP) positioning, based on the detection of

specific geometric descriptors of an aneurysm and its

parent vasculature.

Recently, learning-based methods have become

increasingly popular alongside the development of deep

learning. However, few studies have focused on

segmentation of IAs. Podgorsak et al. [19] claimed

that segmenting IAs and the surrounding vasculature

from digital subtraction angiography (DSA) images

using a convolutional neural network was not inferior

to manually identifying the contours of aneurysms.

However, they extracted only 2D contours of the

IAs. Park et al. [18] developed a neural network

segmentation model called HeadXNet to generate

voxel-by-voxel predictions of intracranial aneurysms on

tomographic angiography (CTA) imaging to augment

the performance of clinical intracranial aneurysm

diagnosis. However, they evaluated their model based

on the sensitivity, specificity, and accuracy of the entire

image; these metrics cannot reflect actual segmentation

performance in practice. Sichtermann et al. [22] applied

a popular software-based method using a volume-based

neural network, called DeepMedic [9], to segment IAs

from MRA images. However, the quality of their

results was poor (46% in DSC). Importantly, Yang et

al. [28] and Bizjak et al. [3] made useful attempts to

apply point-based networks to segment IAs. However,

segmentation was only performed for surface fragments

that were manually labeled as containing aneurysms.

This approach is unrealistic in clinical practice. In

addition, Bizjak et al. [3] employed only the sensitivity

of the entire input as an evaluation metric.

2.3 3D deep learning

3D surface models have several representations,

including projected views, voxels or pixels, point clouds,

and meshes. Voxel-based deep learning approaches

are easy to implement using networks developed for

2D image tasks. However, point-based methods

have shown great promise and improved performance

compared to previous voxel-based methods in deep

learning 3D shape analysis [5, 20, 25, 27]. In addition,

using point-based rather than mesh-based methods [6]

avoids arduous pre-processing steps, including model

cleaning and manifold mesh construction. A problem

with point-based methods is that they require surface

models and cannot be directly applied to medical

images. Therefore, we introduce an interactive surface

reconstruction process before applying point-based

classification and segmentation. We leverage Yang

et al. [28]’s surface model data set for training and

evaluation.

3 Proposed Pipeline

3.1 Background

Figure 2 compares our surface-based pipeline with

a voxel-based method [22]. In the latter, the medical

image is directly fed to a neural network, which affixes

a label to each voxel indicating whether it is part of an

aneurysm or not.

Our surface-based pipeline first interactively

reconstructs a surface model of the entire set of
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Fig. 3 In contrast to grid sampling, our sampling based on

geodesic distance avoids involving noisy blood vessels.

principal brain arteries using a multiple threshold

method. We then generate small samples along vessels

within the entire model and perform surface-based

classification (using PointNet++) on them. Finally, we

perform surface-based segmentation (using SO-Net)

on samples classified as containing aneurysms. The

deep learning models were selected following [28]. To

compare our results to those obtained by voxel-based

methods, we voxelized the surface model of the

segmented aneurysms into volumes using winding

number [2].

3.2 Interactive reconstruction of surface

models

We first obtain surface models of the principal

brain arteries of patients using TOF-MRA image sets.

We perform this semi-automatically using a software

package (Amira 2019 by Thermo Fisher Scientific,

MA, USA) based on a multi-threshold method [10].

Importantly, we focus on dealing with the brain regions

surrounding aneurysms to ensure that the complete

shape of the aneurysms was exhibited in the extracted

3D surface model, compared to the data in Intra [28].

In future, we envision that this process can be mostly

or fully automated using a reconstruction network

specifically designed for brain arteries.

3.3 Fragment sampling

Segmentation network does not work well if the

entire model is input directly because aneurysms are

a tiny portion of the entire model. Therefore, we

first sample small fragments from the entire model. A

typical method used to obtain small patches in medical

images involves systematically sampling rectilinear

boxes; however, it is difficult to obtain clean artery

surfaces because surface boundaries are not aligned

with canonical axes. Thus, we have designed an

algorithm to sample along a surface, as shown in

Figure 3. We set the size of the fragments to roughly

cover an aneurysm of typical size in medical experts’

experience. Then, we divide the 3D space into regular

grid cells. From the center of each grid cell, the nearest

point on the surface model closer than a threshold (α) is

selected as a starting point, while grid cells that do not

have nearby surface model points are ignored. Finally,

we collect the surface points around the starting points

whose geodesic distance is less than a threshold (β).

Note that this sampling is designed to cover the model

with some overlap; uniform sampling is not a vital

requirement of our proposed method.

3.4 Classification step

We use PointNet++ [21] to classify the fragments

into two classes, those with and without aneurysms.

Fragments with few points are discarded before

classification. However, the number of fragments with

aneurysms is still significantly fewer than those without

aneurysms. Therefore, we use a weighted soft-max

cross-entropy loss function to train the classification

network to deal with the imbalance between the two

classes. The purpose of the classification step is to

reduce the number of candidate fragments fed to the

segmentation network and improve its accuracy.

By design, we sacrifice some classification

performance to obtain a better segmentation result.

See Section 4.5 for a detailed discussion. The evaluation

of our classification results does not match the accuracy

of the detection task. Our sampling method allows one

IA to be sampled in several fragments, and fragments

with a tiny portion of IA may be misclassified, but

the same IA may be detected from other fragments.

Therefore, the real-world detection performance results

are much better than the performance of the classifier

itself.

We expected the classification step to reduce training

and prediction time as well as data noise in the

final segmentation result. To demonstrate this, we

conducted an experiment comparing results between

the proposed two-step pipeline and a pipeline without

the classification step (see Section 4.6.2).

3.5 Segmentation step

We next feed fragments with aneurysms into the

segmentation network, SO-Net [14]. Only a fraction

of the original points are classified after segmentation

because the point-based network uses random sampling

to deal with input models with varying numbers of

points. Thus, we perform segmentation with random

sampling multiple times and assign labels to all points

based on a voting criterion to enrich segmentation

details. There is the possibility that a small number

of points may fail to be sampled; we label them as

arteries rather than aneurysms. However, these are few,
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Fig. 4 Data-processing pipeline and algorithm.

and do not significantly affect the segmentation results.

Next, we use a conditional random field (CRF) to refine

each voting result, specifically DenseCRF [11]. Finally,

the segmentation results of the individual fragments are

remapped into the original entire model using a global

ID for each point to obtain a complete segmentation

result over the entire surface. Points in overlapping

parts are commonly sampled twice, so we do not use

majority voting. Points with multiple labels are marked

as aneurysms if they had an aneurysm label.

3.6 Voxelization

We convert the results of our surface-based

segmentation to a volume to perform a direct

comparison with voxel-based methods. An example is

shown in Figure 4. We first obtain a set of query points

through uniform sampling using the same interval as

for the MRA images. We then compute the winding

number of each query point using the fast winding

number method [2] to determine whether a given

point is inside or outside an aneurysm. We set the

winding number threshold to 0.5, as suggested in their

study. This step is not necessary for clinical practice

if segmentation results are required only on a surface

model.

4 Experiments

4.1 Imaging

Various medical imaging techniques, such as

computed tomography angiography (CTA), magnetic

resonance angiography (MRA), and digital subtraction

angiography (DSA) can be used to image the brain.

DSA is the most sensitive method for diagnosing

intracranial IAs; however, it is invasive and time-

consuming. Although CTA scans are efficient,

distinguishing details of vessels and aneurysms using

CTA remains difficult. TOF-MRA is less invasive and

has high sensitivity for diagnosing IAs. Therefore,

we decided upon TOF-MRA as a suitable technique

for preoperative examination. However, our proposed

pipeline is not affected by the type of medical image,

as it is based on reconstructed surface models.

4.2 Dataset

We collected TOF-MRA image sets from 103 patients

with 114 aneurysms. Each set contains at least one

IA, and 180–300 2D images of resolution 512 × 512

sliced at 0.496 mm. Our dataset does not include

small aneurysms (<3.00 mm), as our objective is to

segment aneurysms requiring surgery. We calculated

the size of each aneurysm based on maximum diameter.

Figure 5 shows the distribution (Mean: 7.49 mm, SD:

2.72 mm; Range: 3.48—18.66 mm) of aneurysm sizes on

our dataset. In terms of IA type, most were saccular

aneurysms, and one fusiform aneurysm was included,

but no dissecting aneurysm. Another special case was

that we treated two aneurysms very close together as

being one. We annotated the aneurysm portions on

both the entire surface models of the brain arteries

and on TOF-MRA images to generate ground truth

for classification and segmentation for training neural

networks. It took a total of three experts 21 working

days to perform this task. We used five-fold cross-

validation to conduct our experiments. A total of 103

sets were shuffled and divided into five subsets, of which

four were used as training data, and one was used as

testing data. This study design was approved by an
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Fig. 5 Distribution of aneurysm sizes on our dataset. Mean:

7.49 mm, SD: 2.72 mm; Range: 3.48–18.66 mm.

Fig. 6 ROC curves and confusion matrices of five trained

classification networks.

appropriate ethics review board.

4.3 Evaluation metrics

Several evaluation metrics were employed to assess

the models in different tasks. Accuracy, recall, and

sensitivity are typically used to evaluate performance

on classification tasks. For segmentation task, Dice

similarity coefficient (DSC) or Intersection over Union

(IoU) is employed to indicate the prediction of the

target region. Sensitivity for the entire input can

easily be high because the target region may be tiny.

Moreover, in this situation, the overall statistics may

conflict with the part-wise statistics due to Simpson’s

paradox.

A B C

D E F G

Fig. 7 Fragment examples. A has a complete aneurysm. B

and C partly overlap with A, but only include a part of the

aneurysm. D, E, F, and G lack aneurysms, but are misclassified.

The original data for D is noisy, while E, F, and G have shapes

very similar to a part of the aneurysm.

4.4 Implementation details

The experiments were performed on a PC with a

GeForce RTX 2080Ti GPU. During data preprocessing,

the normal vector of each point was estimated using

the original surface model. We also recorded the point

index of the entire model as a global ID on the sampled

fragments for each point to improve the efficiency of

voting. We set the sampling thresholds to α = 15,

β = 1.5α, and samples with fewer than 500 points

were removed. We automatically generated 7192 vessel

fragments from the 103 entire models; 392 fragments

contained aneurysms.

The training hyper-parameters were set as follows.

For the classification network, the number of sample

points for each fragment was 1024. The weights of the

loss function were determined according to the number

of fragments. We trained the network using 251 epochs

and a batch size of 8. The classification results were

predicted by setting a discrimination threshold of 0.23.

For the segmentation network, the number of sample

points was 2048. We trained the network for up to 401

epochs, with a batch size of 12. For each network, we

used the Adam optimizer with a learning rate of 10−3.

4.5 Results

The receiver operating characteristic (ROC) curve

and confusion matrix of each classification network are

shown in Figure 6. It can be observed that all areas

of the ROC curves are higher than 0.95, demonstrating

that the trained classification networks generalize well.

The sensitivities to the aneurysm class of the five

networks were 73.63%, 81.08%, 79.49%, 86.11%, and

80.77%, respectively. This shows that we can precisely

detect fragments with IA portions. By analyzing

the confusion matrices, we observed that only a few
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Fig. 8 Examples of final segmentation results (rendered as points); enlarged figures may be captured from a different viewpoint

to show the aneurysm shape. Above left: saccular aneurysms. The proposed pipeline obtained a perfect segmentation. Above

right: saccular aneurysms. The aneurysm was segmented clearly without the impact of close blood vessels (see top enlargement). A

potential aneurysm was also found, which was not annotated by experts (see bottom enlargement). Below left: fusiform aneurysms.

The aneurysm was well segmented (see top enlargement). The ends of normal blood vessels were segmented incorrectly into aneurysms

(see bottom enlargement). Below right: double saccular aneurysm: multiple aneurysms in one case. Two close aneurysms were

annotated as one, and our segmentation did not achieve the same result as Yang et al. [28] as our training data included much more

complex shapes.

fragments with aneurysms were misclassified because

they had tiny aneurysms or contained only a small

part of the aneurysm. However, 100% sensitivity is

not necessary for our classification network because

the sampled fragments overlap, as shown in Figure 7.

Using our sampling algorithm, 80% sensitivity of the

classifier does not mean that 1/5 of the aneurysms are

already missed before the segmentation step. In fact,

in this experiment, only 5 out of 114 IAs were missing.

The real sensitivity to IAs is satisfactory, as shown in

Table 2. However, some fragments lacking IAs were not

classified correctly because the original data contained

significant noise and the fragments had a very similar

shape to a small part of the full aneurysms. These

misclassified cases were also sometimes difficult for

segmentation networks; they did not have a significant

impact on the final segmentation results.

We added the classification step before segmentation

to filter out the majority of fragments that did not

contain aneurysms. This helped the segmentation

Tab. 2 Sensitivities for aneurysm fragments and whole IAs (%).

Fold 0 1 2 3 4

Fragments 73.63 81.08 79.49 86.11 80.77

Aneurysms 95.24 100.00 100.00 95.00 85.71

network to avoid predicting false positive results on

non-aneurysm regions, as well as improving the balance

between fragments with and without aneurysms,

leading to better final segmentation accuracy. The

benefit of the classification process is shown in

Section 4.6.2, in which we compare the proposed two-

step pipeline and a segmentation-only pipeline.

Four examples of the final segmentation results are

presented in Figure 8. In this figure, we show the

entire 3D surface models and enlarged important parts

marked by black dotted boxes. Segmented aneurysms

are shown in cyan, and other normal blood vessels

are red. We can see that our proposed pipeline

obtained satisfactory segmentation results for various
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Tab. 3 Comparison of segmentation results between

segmentation only, and our two-step design, on surface DSCs

(%).

Segmentation only Two-step

Mean STD Mean STD

Overall 31.43 16.92 74.74 26.47

Fold 0 36.10 15.63 76.73 25.83

Fold 1 38.21 19.28 80.18 17.75

Fold 2 33.74 18.81 80.66 20.33

Fold 3 26.67 11.78 73.78 25.67

Fold 4 22.52 14.00 62.54 36.62

shapes and sizes of saccular aneurysms. We also

found that unannotated potential aneurysms could also

be segmented. However, a few normal vessel ends

were segmented as aneurysms because their shapes

were extremely similar to IAs. In addition, our

networks predicted a suitable segmentation result for

the fusiform aneurysm, even though they were trained

only on saccular aneurysms. This demonstrates the

excellent generalizability of point-based deep learning

models. Furthermore, our proposed pipeline obtained

superb segmentation of multiple aneurysms in one

case. A more detailed statistical analysis of our final

segmentation results is provided in the comparison

experiments 4.6.

4.6 Comparisons

4.6.1 3D U-Net

We first applied the original 3D U-Net to our data;

however, the network did not predict any segmentation

result because the aneurysms were too small compared

to the entire image. This demonstrates the difficulty of

this segmentation task.

4.6.2 Segmentation only

To indicate the utility of the two-step design,

we performed an ablation study by removing the

classification step from our proposed pipeline: we fed

all fragments to the pre-trained segmentation network

to segment the aneurysm regions in the fragments. We

compared the final results of this segmentation-only

pipeline with those of the two-step pipeline on the entire

artery surface models, as shown in Table 3. The results

demonstrate that the classification step greatly reduces

noise and improves the final segmentation result.

4.6.3 DeepMedic

We also applied the method described in [22] to our

dataset for comparison. Four preprocessing approaches

A,B,C, and D were applied in their study. A was

only been applied as a necessary step in DeepMedic,

while B,C, and D, were used as additional masks

for the skull-stripping of the TOF-MRA images. B

generated masks with a fixed threshold, C used a

manual threshold for skull-stripping of each sample,

and D added N4 bias correction to the result of C.

By analyzing the segmentation results, we found that

skull-stripping could improve performance; however,

there was not much difference between the results of

B, C, and D. Therefore, we compared our method

with B, which has the highest reproducibility. We used

BET2 to obtain masks for skull-stripping using a fixed

threshold of 0.2. The input of the TOF-MRA images

was resized to 256×256 by down-sampling, to meet the

requirements of DeepMedic.

The DSC of the aneurysm parts was employed to

evaluate the segmentation results. A comparison of

the final segmentation results is shown in Figure 9

and Table 4. The performance of the voxel-based

method was comparable to that reported in the original

paper ([22]). Our surface-based method obtained

much better segmentation results than the voxel-based

method on most of the data. However, a few samples

with tiny aneurysms were challenging both for the

voxel-based method and for ours.

4.6.4 DeepMedic with surface mask

(DeepMedic S)

To directly compare performance between voxel-

based and points-based networks, we generated artery

region masks by converting our entire surface models

into solid models and then mapping them back to the

original MRA images, as shown in Figure 10. Having

done so, the voxel-based network obtained the same

region of interest (ROI) as point-based models. We

can see that the segmentation results were improved

compared to the model trained with skull-stripping

masks. However, the performance was still worse than

for our surface-based method. This experiment shows

that point-based networks can learn more accurate

topological and geometric shape information than

voxel-based models.

5 Discussion

5.1 Impact of classification accuracy

To quantify the impact of the classification accuracy

on the segmentation results, we show a comparison

for different discrimination thresholds for Fold 0 in

Figure 11. Even for an extremely small threshold, the

classifier performs superbly compared to the method of

segmentation only. When adjusting the discrimination

threshold from small to large, the classification model

8
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Our method

GT:

Pred:

GT:

Pred:

DeepMedic

Input:

GT:

Pred:

Pred:

Pred:

Fig. 9 Comparison of segmentation results. Left to right: both our method and DeepMedic yielded high segmentation accuracy

on the first two examples. Our method yielded significantly better results than DeepMedic on the next three examples. Both our

method and DeepMedic failed to obtain the parts with IA in the final example, as the fragment with the IA was filtered out by our

classification network. We also show the results predicted by DeepMedic as volumes (last two rows).

9



10 Xi Yang et al.

Fig. 10 Left: an original MRA image slice. Center: the

corresponding ROI mask for skull-stripping generated by BET2.

Right: the corresponding ROI surface mask generated by

our surface model to provide the same input region for the

DeepMedic model.

Tab. 4 Comparison of segmentation results on DSCs (%). U-

Net failed to provide segmentation results.

Ours DeepMedic S DeepMedic B

(Surface-based) (Voxel-based) (Voxel-based)

Mean STD Mean STD Mean STD

Overall 71.79 29.91 52.55 31.37 45.90 31.00

Fold 0 73.10 32.55 59.38 28.20 56.56 28.77

Fold 1 75.72 27.23 61.70 30.73 47.40 30.25

Fold 2 73.81 30.43 47.96 32.34 38.86 31.57

Fold 3 72.37 30.50 53.97 27.58 45.51 30.88

Fold 4 64.17 34.85 40.26 35.27 41.20 33.22

Fig. 11 Comparison with different discrimination thresholds

for Fold 0. (Due to the random sampling of the input points,

the results may fluctuate slightly each time.)

tends to classify fragments as arteries. The average

accuracy improves as the number of artery fragments

is much higher than of aneurysm fragments, while

the recall of aneurysms becomes worse. However,

the final results of segmentation perform stably due

to the designs of the methods of fragments sampling,

refinement, and integration. It shows that our proposed

pipeline is convenient for use in clinical practice.

5.2 Limitations

Figure 12 shows two examples comparing 3D

surface models of aneurysms created automatically

and manually. Our current pipeline requires manual

effort by medical experts to obtain surface models of

Fig. 12 Above: complete 3D surface models of aneurysms are

difficult to reconstructed automatically. Below: corresponding

models manually created by experts.

intracranial artery networks. Thus, a possible criticism

of our method is that this process severely limits

its practical value. There are three reasons why we

still believe that our method has significant practical

value. Firstly, neurosurgeons are presently already

constructing surface models regularly in practice for

preoperative examinations. Thus, in this context, we

can assume that the surface model is already available.

Secondly, construction of the surface model is mostly

performed through simple thresholding [10]. An expert

manually sets a threshold, and voxels with intensities

higher than the threshold are automatically extracted.

In this process, the expert does not pay attention to

the details of individual aneurysms. Aneurysms need to

be carefully segmented manually using surface editing

tools in current practice, and we expect automation

of this process to be highly appreciated. Finally, we

expect that, with advances in deep learning methods,

surface extraction will become largely or even fully

automatic in future. Consequently, the entire process

may be fully automated, which has the potential to

significantly impact the field.

Our experimental results show a baseline

performance for the proposed framework. We believe

that our results can be further improved significantly

by adjusting hyper-parameters.

5.3 Benefits to clinical practice

Clipping surgery of intracranial aneurysms uses

clips at the boundary between aneurysm and parent

artery. The number of clips and their position and

posture determine the artery deformation and blood

flow, impacting the effect of the surgery. Discussion

and simulation of these issues are critical in both

surgery planning and the education of students. 3D

visualization provides an intuitive way of observing and

simulating the real brain of the patient. The exact

10
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aneurysm boundary on 3D surface models of brain

arteries is of great help in the automatic computation

of positions and postures of clips and the simulation of

blood flow.

6 Conclusions

In this study, we proposed a new surface-

based framework for the segmentation of intracranial

aneurysms from TOF-MRA images. Our framework

applied a two-step design, based on classification

then segmentation, using state-of-the-art point-based

deep learning networks. We also designed sampling

and refinement methods for the IA segmentation

task. The segmentation results show that our

framework significantly outperforms an existing voxel-

based method. Surface-based methods are as yet not

prevalent in medical diagnosis and surgical planning.

Our results show that surface-based methods can be

a reliable alternative to popular voxel-based methods,

and we hope this work will inspire further research

efforts in this direction in other medical application

domains.
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