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Abstract Indoor scene synthesis has become a popular topic in recent years. Synthesizing functional and plausible indoor

scenes is an inherently difficult task since it requires considerable knowledge to both choose reasonable object categories and

arrange objects appropriately. In this survey, we propose four criteria which group a wide range of 3D (three-dimensional)

indoor scene synthesis techniques according to various aspects (specifically, four groups of categories). It also provides hints,

through comprehensively comparing all the techniques to demonstrate their effectiveness and drawbacks, and discussions of

potential remaining problems.
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1 Introduction

Indoor scene synthesis is a process of generating a

room, with appropriate furniture and layout, which has

received a great deal of attention in recent years, e.g., [1,

2]. With the development of virtual reality and increas-

ing demands of open-world video games, many scenes

are built, where automation mitigates the tedious repe-

tition of hand-crafted scenes. Interior designers benefit

too, typically from faster, easier-to-use tools, employed

as they consult with customers, to generate suggested

layouts[3,4]. Fig.1 shows several examples of indoor

scenes.

Synthesizing 3D (three-dimensional) indoor scenes

is inherently difficult. Firstly, different rooms usu-

ally provide different functionalities, such as sleeping,

watching TV, or eating, but sometimes one room may

serve several purposes[6], e.g., a living room where we

can cook. Secondly, designs (specifically, selecting, po-

sitioning and orienting objects) of indoor scenes should

take into account many aspects. For instance, there

should be clear routes to walk among objects[7,8], and

all objects should be accessible. Furthermore, room

design may also be required to satisfy non-functional

requirements: be visually pleasing, for example. Next,

the state of an indoor scene, i.e., what objects are in the

room and where they are, exists in an extremely com-

plex and high-dimensional space[9], including discrete

categories for the number of objects, continuous values

for objects’ positions and orientations, etc. Measures

and optimisation algorithms in such a space are hard

to define.

The problem of automatic synthesis of indoor scenes

is the problem of “where” to put “what”, subject to

constraints, for example, the use constraint that deter-

mines “what” objects are relevant to a room, and a

bed is likely to be placed in a bedroom and unlikely

to be placed in a kitchen. Some rooms have multiple

uses: so-called “bed-sit” is a single room that combines

a kitchen, a bedroom, and a sitting room all into one

space. The “functional” constraints determine “where”

objects should be placed. For example, people should
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Fig.1. Examples of 3D indoor scenes, rendered using SUNCG datasets[5] .

be able to walk through the room, the furniture should

be accessible, windows should not be blocked, and so

on. Additionally, there are “aesthetic” constraints,

which are often interpreted as that the room should

be visually pleasing, but adherence to reality could also

be considered as such a constraint. There are even “ap-

plication” constraints: a game designer and an interior

designer will typically have different requirements.

Fig.2 shows the typical and general workflow for au-

tomatically generating 3D indoor scenes. Ideally, any

format of inputs is acceptable, and most work would

incorporate learned priors with human knowledge of

layouts and functionalities. Next, we would like to re-

format the input, because sometimes input is not struc-

tural. For example, considering the binary relations

and objects’ attributes, we may translate text input to

a graph[10]. Finally, the “what” and “where” questions

are commonly answered by optimizing a scene given all

the factors above.

A general way to model the problem is regarded as

a search through a space of labelled graphs, e.g., [6,

8]. In this case nodes of the graph correspond to ob-

jects, and the arcs represent the relationships between

them. The space is very large and complex, making the

problem apparently difficult. The graph can vary in the

number of nodes, which means the underlying dimen-

sion of the space can change. Some dimensions of the

space will be categorical, e.g., “chair”, “TV” or “bed”.

Other dimensions will be continuous, such as the dis-

tance between objects. Ideally, functions defined over

this space will measure both aesthetic and application

values, but these are subjective and hard to specify.

The literature forms four criteria, specifically four

groups of categories, for dividing work. Each dimen-

sion is categorical and contains several classes. The

criteria are:

• input, including the explicitly initial scene, sketch,

texts, and so on;

• internal representation, including graph, activity-

based representation and projection;
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Fig.2. Typical workflow of synthesizing a 3D indoor scene. Given inputs to the algorithm, including constraints of the desired scene
(Section 5) and learned priors (Section 7), we would like to generate a plausible scene through several processing stages. Before achiev-
ing the final result, some preprocessing techniques are assembled (Section 6). Finally, resulted scenes are optimized by answering two
questions: what objects should occur in the scene and where to place the objects (Section 8).
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• prior, including hard-coded priors, context,

activity-driven priors, examples and neural networks;

• optimization, including interactions, explicit it-

erations, gradient-based approach and Markov Chain

Monte Carlo (MCMC).

The reason why we follow these four criteria is that

they form an entire process of synthesis. Intuitively,

the four criteria are completely sufficient for a synthe-

sis technique. A large amount of work counts on even

fewer aspects, e.g., [11] which has no prior. Thus, fol-

lowing the comprehensive process of an algorithm, we

decompose literature at each step or subprocess.

Other decompositions of the literature exist. For

example, “interactivity” may be considered by some to

be a valid dimension. We include human interaction

as a class in the optimization dimension (see Subsec-

tion 8.1).

In this survey, we make the following contributions.

1) We formulate comprehensive criteria, which could

be instantiated by all indoor scene synthesis literature.

2) We compare state-of-the-art techniques for gene-

rating indoor scenes, during which strengths and weak-

nesses are discussed. As a result, stakeholders, such as

researchers, engineers or designers, can easily choose

their most appropriate algorithms, considering their

own demands.

3) We present the potential remaining problems that

most work ignores.

The rest of the paper is organized as follows. Sec-

tion 2 discusses several topics related to scene synthesis.

Section 3 presents the overall criteria of scene synthe-

sis techniques, and relations among three subprocesses

are discussed. Section 4 introduces public datasets and

their comparisons. Section 5 discusses various input

formats. Section 6, Section 7, and Section 8 discuss

three subprocesses and we group different concrete tech-

niques for each subprocess, respectively. Finally, we

summarize current scene synthesis techniques and pro-

pose future directions in Section 9.

2 Related Topics

Scene understanding is the problem of parsing ex-

isting scenes into semantic parts. Scenes could be

monocular images, RGB-D images, 3D models, and so

on. Some authors[12,13] clustered point clouds to seg-

ment objects in input RGB-D scans. Satkin et al.[14,15]

predicted labels for each object in a scene, incorporat-

ing 3D auxiliary information, which is similar to [16, 17]

that use 3D models to localize objects. Savva et al.[18]

perceived human activities of given 3D reconstruction

indoor scenes. Geometric information is also an alterna-

tive solution of recognizing objects in scenes[19]. Scene

understanding has many uses, such as [20], but it is the

inverse task of scene synthesis. Compared with scene

understanding, scene synthesis is trying to generate new

scenes given variegated inputs (Section 5). As men-

tioned in [21], scene understanding and scene synthesis

benefit from each other.

Clustering groups scenes that share semantic con-

tent. Xu et al.[22] clustered a 3D indoor scene repository

with merely objects labelled and each cluster contains

several focal points that are substructures of scenes,

i.e., objects in scenes. All focal points can characterize

a cluster because they are discriminative for different

clusters and frequent for their own clusters. Quantita-

tive comparison between scenes is also needed[23], which

is a way to measure the similarities between different

and heterogeneous scenes, based on graph comparisons.

Several studies[24,25] focus on the entire layout of a

house or flat. For example, Merrell et al.[26] constructed

a house at room-to-room level using graphs. They

considered the relations between different rooms, while

scene synthesis focuses on the content in a particular

room. The same is true for [27].

Illustrating above work suggests similarities and

differences compared with scene synthesis, while the fol-

lowing contributions are subproblems for scene synthe-

sis. 3D model retrieval retrieves 3D objects given de-

scriptions such as context[28], deformation[29], orthogo-

nal views[30], or even sketches[31]. Chen et al.
[32] uti-

lized a contour-matching technique[31] to retrieve 3D

models and a shape-recovering technique[33] to com-

plete part models, in order to synthesize indoor scenes

based on RGB-D images. Even for image retrieval,

Schuster et al.[34] used a structural representation of an

image to generate plausible 3D indoor scenes. Model

retrieval is an essential technique to construct indoor

scene dataset for priors (Section 7).

Graph models[35] and probabilistic inference are

two of the most common approaches to scene synthe-

sis. Recognizing an entire scene pure geometrically is

not effective since operations such as convolution are

less efficient and ignore structures. As a result, most

work chooses structural and hierarchical graphs (Sub-

section 6.1), and operations are conducted on graphs

instead of geometry. To sample a graph or a model

generally, many statistical strategies are assembled, es-

pecially Markov Chain Monte Carlo (Section 8).

Datasets are needed for data-driven approaches. To
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generate sufficient training data, tedious and manual

annotations or designs are common[5]. Some strate-

gies to automatically generate data exist[7,36], but still

require considerable manual work. Training tools are

publicly available, e.g., Sketchup 1○ and Planner 5D 2○.

Some authors may choose to create their own training

data to suit their particular usage, e.g., [37, 38]. Sec-

tion 4 will introduce more popular datasets for indoor

scene synthesis.

3 Overview

3D indoor scene synthesis is a process of optimizing

a plausible, functional and even aesthetic interior scene,

given inputs implicitly or explicitly specifying scenes

with appropriate priors, under a set of constraints. In

this section, we present the overall criteria of 3D indoor

scene synthesis and demonstrate each criterion.

Fig.3 shows the criteria of scene synthesis, which can

be divided into several coupled subprocesses. An input

of algorithms could be any format, and we may choose

to encode the input into a more adaptive form. Dur-

ing input preprocessing (internal representation), the

input is parsed, transformed or abstracted into other

forms that are adaptive to the following operations

(Section 6). Offline learning is a process of training

a model capable of common sense knowledge such as

aesthetics, ergonomics or praxeology (Section 7). After

aggregating input, preprocessed input (internal repre-

sentation) and priors into a set of constraints, each syn-

thesis algorithm would try to optimize the 3D scene in

order to make it plausible (Section 8). The concrete

structures and contents of inputs can vary extensively

from pure texts[10,39] to an initial scene[3,6,40−43], or

even a set of examples[11,37], which is discussed in Sec-

tion 5. In this paper, “input” specifically refers to data

fed into input preprocessing or into optimization algo-

rithm directly, while data used to train priors offline

refers to a dataset or repository.

Note that a specific algorithm has its own choice

for each group of categories, and it need not incor-

porate each criterion. For example, Fisher et al.[44]

preprocessed the input to a scene template containing

activity distributions and geometric properties. They

trained a prior based on a corpus of annotated indoor

scenes. During optimization, a specific candidate object

with its scale, location and orientation is added into the

scene in each iteration. In contrast, Xie et al.[11] intro-

duced a non-learning-based method for scene synthesis,

i.e., their technique does not contain offline learning

stage (prior).

4 Datasets

Training priors requires enormous quantities of

data, especially for data-hungry models such as neu-

ral networks. Thus, before introducing the criteria, we

first discuss several popular datasets that researchers

use to train their priors.
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Fig.3. Criteria of scene synthesis. During input preprocessing, we convert the input data into internal representations of models,
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but also direct input preprocessing. Finally, priors and internal data would form constraints to the optimization to determine what is
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1○Sketchup. https://www.sketchup.com, April 2019.
2○Planner 5D. https://planner5d.com, April 2019.
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4.1 Model Collection and Scene Construction

Constructing a huge 3D indoor scene dataset is a so-

phisticated and tedious task[36]. Crowd-Sourcing[45,46]

is one of the most common ways to collect scene con-

figurations, such as Google 3D warehouse 3○ or Planner

5D 4○. Placing models into a scene is actually not a tri-

vial task. For example, 3D models could have different

measurements, e.g., meter or foot. Labels on models

are also of concern because without proper labels users

are not able to search for the desired model. To tackle

these difficulties, many techniques are proposed, e.g.,

[47-52].

4.2 Public Datasets

Many datasets exist based on RGB-D data, includ-

ing NYUv2[53], SUN RGB-D[54], Cornel RGB-D[55],

Washington RGB-D[56] and UZH[57]. Illustrations of

RGB-D datasets are covered in detail in [58]. Although

they are useful for various tasks, noise and mislabel-

ing may still occur due to the low quality of raw depth

images or human errors. An alternative way to cope

with this problem is to reconstruct triangle meshes of

scenes[59], or to use a fully annotated 3D indoor scene

to generate images with arbitrary perspectives[36].

SUN3D[60] and ScanNet[61] focus on 3D-based in-

door scene datasets instead of limited viewpoints.

Given an RGB-D video of indoor scenes, both of them

reconstruct a 3D representation of indoor scenes. The

idea is that semantic labels of a frame can be propa-

gated into the next frame based on camera poses, and

a labelled frame could also be assembled to correct er-

rors. Compared with SUN3D, camera poses are availa-

ble in ScanNet and it contains larger quantities of in-

door scenes.

However, SUN3D is still limited in size where only

254 spaces were captured. In contrast, several datasets

go another direction. SUNCG[5] consists of over 45 000

indoor scenes with manually designed rooms and object

arrangements. Indoor scenes of SUNCG are completely

based on 3D meshes, though a toolbox is available for

simulating RGB-D images.

Based on SceneNet[62], SceneNet RGB-D[63] pro-

poses another 3D-based way to generate photorea-

listic and accurate images. Compared with SUN3D,

SceneNet RGB-D is created by human designers instead

of 3D reconstructions. Compared with SUNCG, it has

fewer layouts, but photorealistic rendering and video

trajectories are available. Perturbations of object ar-

rangements are added to increase real-world authenti-

city.

One recent dataset is InteriorNet[7], which com-

prises nearly 22 million indoor scenes with realistic ren-

dering. Compared with SceneNet RGB-D, it provides

three types of trajectories with camera jitters.

Other relatively small datasets are also available.

These datasets are constructed and used for particu-

lar purposes. Fisher et al.[37] distributed a software

tool, which is a platform allowing users to construct

scenes by populating objects drawn from Google 3D

Warehouse with transformations of objects into indoor

scenes, containing kitchens, living rooms, etc. [64] is

a special dataset. Its scenes are annotated in natural

language.

In addition to scene datasets, 3D models reposito-

ries are also needed, e.g., ShapeNet[65,66]. They have

annotations for each 3D model, including the cate-

gory, transformation, front orientation, etc. Based

on ShapeNet and ScanNet, [67] introduces Scan2CAD

dataset mapping alignment from CAD models to

scenes.

5 Input Data

Commonly, synthesizing an indoor scene requires

some inputs as constraints or “hints” to guide algo-

rithms, i.e., given a constraint c we want to find the

scene s that satisfies:

s = argmax
s

p(s|c),

where s is the scene that we want to generate, and p(·)

is the learned or coded model. Often, but not always,

an input is needed to fix positions of particular furni-

ture items, or to insist some objects exist in the scene,

etc. Several purely automatic algorithms require no in-

put or meaningless input, e.g., [7, 8]. It is also possible

to consider a “prior” as “input”. Since this survey ex-

tracts prior learning as a stand-alone stage, we consider

priors as a sub-process of algorithms instead of inputs.

5.1 Explicitly Initial Scene

One of the most intuitive and common ways to con-

strain scene synthesis is feeding the initial 3D scene.

The shape and the area of the room are required by

3○Google 3D Warehouse. https://3dwarehouse.sketchup.com/, April 2019.
4○Planner 5D. https://planner5d.com, April 2019.
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some studies[6,69], and others fix the positions and cate-

gories of objects[3,70]. Typical work also includes [11,

37, 40–43]. Among those studies, few papers consider

rooms with arbitrary shapes.

5.2 Implicit Input

Implicit inputs are not directly presenting an initial

3D scene, which adds numerous combinations and flexi-

ble ideas to scene synthesis. Implicit inputs should be

processed into a more structural or meaningful format

in the following stages. Thus, internal representation is

usually conducted (Section 6). One interesting study[38]

inputs human sketches of 3D scenes and converts them

into structural groups. We can also use a human lan-

guage as input to guide the synthesis. [10, 39] are two

successive studies. They accept a sentence which can

be parsed into a furniture hierarchy. [12, 32, 44] take

in one or several RGB-D scans and reconstruct the 3D

layout of indoor scenes. [58] is a review, specifically for

“RGB-D data to 3D indoor scenes”.

6 Internal Representation

The internal representation is a stage where we pre-

process the input data into a format that the follow-

ing algorithms are able to handle. Representation for

indoor scenes is complex due to various objects and

layouts[9]. There are two significant objectives of inter-

nal representation. Firstly, it should be structural, i.e.,

attributes of objects and relationships between objects

are expressed explicitly and consistently. Secondly, it

should infer attributes that input data does not pro-

vide, object categories for example. In this section, we

present several techniques for internal representation.

Representation depends slightly on input data; thus we

will combine different types of input data as introducing

patterns of representation.

6.1 Graph-Based Representation

It is obvious that modelling an indoor scene with

a purely geometric mechanism is difficult. An inhe-

rent property of indoor scenes is the relationship be-

tween different objects, including semantic and spa-

tial meanings. Indoor scenes themselves are commonly

comprised of objects supporting other objects[71]. For

example, a room can support a table, while the table

could support several plates on it. A graph is one of

the most intuitive ways to represent such relations, e.g.,

[72]. Thus, we can represent an indoor scene as a holis-

tic hierarchical relationship. This structural representa-

tion is not restricted to 3D indoor scene synthesis. For

example, Schuster et al.[34] formulated a scene graph

for image retrieval.

Chang et al.[10,39] preprocessed input text into

a static support hierarchy named “scene template”,

within which nodes are objects including rooms and

edges are relationships such as “supporting” or “to the

left”. For a scene template T = (O,C,Cs), a set of

objects O, constraints C, and a scene type Cs are in-

cluded. Objects also have their own attributes con-

taining colors, materials, etc. Consequently, a sin-

gle scene template contains considerable detail about

a room. A scene template initially contains only ex-

plicit information extracted from the input text but is

expanded using priors during preprocessing. Eventu-

ally, the scene templates are used to iteratively add

objects into the pending indoor scene during optimiza-

tion. Li et al.[68] preprocessed the input, which is a

vector sampled from Gaussian distribution, into a hi-

erarchical encoding leveraging a neural network based

prior (Section 7). Their hierarchical graph is slightly

different from that of Chang et al.[10,39] Li et al.[68] for-

mulated a node-based graph representing a room. All

non-leaf nodes contain several pointers to their children

and corresponding vectors denoting relative positions of

child nodes. A child node of a non-leaf node could be

either a leaf node (object category) or another non-leaf

node.

Some work uses particular forms of graph. Qi et

al.
[8] learned an attributed spatial And-Or graph (S-

AOG)[73], which encodes distributions about indoor

scenes. Each scene hierarchy (specifically, a parse tree)

is derived from the overall S-AOG through sampling.

Compared with the aforementioned work, this work en-

ables that the representation and the prior share the

same semantic and format, i.e., the representation of

graph is interpretatively and explicitly extracted from

the entire graph model which is the prior.

Graphs are also feasible for non-contextual situa-

tions. Chen et al.[32] utilized graphs to infer objects

from noisy point clouds and formed a graph for each

scene, in which vertices represent point clouds and

edges represent how likely two clouds belong to the

same object.

6.2 Activity-Based Representation

Graph-based representations commonly focus on

scenes themselves without human-centric inference, i.e.,
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each indoor scene serves several semantical functionali-

ties, such as sleeping or using computers in a bedroom,

cooking or having dinner in a kitchen. Namely, a num-

ber of particular activities may happen in an indoor

scene. Activities can provide important knowledge for

inferring categories and arrangement of objects.

Fisher et al.[44] assembled the prior of Savva et al.[74]

so that a distribution of activities is mapped to input

RGB-D images denoting continuously how likely acti-

vities could happen at each position.

Fu et al.[6] required each indoor scene has one or

more scene types, which indicates that activities should

be executed in the room; therefore they converted in-

put objects categories into a graph. Thus more poten-

tial objects categories can be added into pending indoor

scenes. Given a room area and few categories, they used

a prior called activity-associated object relation graphs

to explore what object categories are also needed to

satisfy particular room types.

Ma et al.
[43] associated each initial scene with an ac-

tion sequence where each action introduces some object

categories and human interactions with them. These

actions are used to iteratively add and arrange objects

in the 3D scene during optimization. Action sequences

are sampled from an action graph trained as a prior

(Section 7).

6.3 Projection-Based Representation

Previous representations encode input semantically,

while projection-based methods project the input into

2D planes geometrically. Wang et al.
[41] converted the

3D scene into a plan view, which is similar to the work

of Ritchie et al.
[75] Wang et al.

[41] used convolutional

neural networks to generate a probability distribution

suggesting objects occurrence and placement on top-

down views. Fu et al.
[6] calculated orthogonal layout

masks, which are the weighted sum of similar exemplary

layouts from a 2D floor plan database. Xu et al.
[76] used

wall grids to facilitate arrangement. Projecting indoor

scenes into 2D views can simplify problems, e.g., con-

volution becomes feasible. However, synthesis discards

3D information.

7 Priors

Most scene synthesis techniques use priors, which

are commonly learned offline and based on proba-

bilistic models. The purpose of introducing priors is

to incorporate aesthetic, functional knowledge that is

not trivial to manually encode into pending indoor

scenes, which significantly increases the plausibility of

indoor scenes. Two commonly employed outcomes

of prior are object selection and object placement.

However, achieving the same outcome could result in

completely independent patterns of prior. For exam-

ple, to automatically select object categories, we can

leverage human-object relationship to provide activity-

associated suggestions[6,43,44,74], while we can also infer

probabilities of object category occurrence based on bi-

nary object-object relations[28].

Note that it is not necessary for a prior to yield

entire suggestions including object category occurrence

and arrangement, i.e., a single prior may merely gene-

rate probability about object occurrence. In this sec-

tion, we discuss priors with respect to their patterns

(groups), as well as subtle differences among work.

7.1 Hard-Coded Priors

Merrell et al.[3] developed an interactive system that

generates design suggestions for each iteration when

users fix an instance. They splited the prior into a set

of design guidelines, and each guideline corresponds to

a formula measuring how much the current layout sati-

sfying the guideline. There are two groups of criteria:

functional constraints and aesthetic constraints. For

each group, a set of formulas are presented mathemati-

cally. Although each formula is rigid, they considered

many aspects of indoor scenes, such as clearance (acces-

sibility), pairwise relations and conversation support.

However, numerous criteria remain unused. Further-

more, considering merely arrangement, their formulas

can support only a few object categories.

Fixed constraints can be partially assembled. Yeh

et al.
[69] coded several factors into a factor graph[77].

For example, a factor could be that the total area of

plates must not exceed 70% of the table area. As a re-

sult, though fixed priors are less flexible, they still play

important roles.

7.2 Contextual Priors

Contextual priors are one kind of the most fre-

quently used priors. A typical form of a context is learn-

ing a set of mathematical models, such as (1), which is

simply a frequency statistic. Contextual priors focus on

relations among entities in indoor scenes. Commonly

assembled priors are binary object-object relations, ob-

jects with scene type relations, etc. A context-based re-

lationship is not firstly investigated in scene synthesis.

Fisher and Hanrahan[28] encoded objects’ co-occurrence
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and spatial relations as contextual priors in order to re-

trieve desired 3D models.

Chang et al.
[10,39] learned a set of straight-forward

contextual priors. Given a contextual hint, they mea-

sured how frequently (probably) an input pattern is

likely to occur in the scene, as shown in (1) and (2),

where cp and C denote pattern and context respectively.

P (cp|C) =
count(cp, C)

|C|
, (1)

count(cp, C) = |{X |cp ∈ X,X ∈ C}|. (2)

They used this model for inferring how probable an ob-

ject is likely to occur in a particular scene type, how

likely an object is supported by other objects and how

likely an object should be placed on a particular surface

of another object. They also calculated probabilities of

the position and orientation (x, y, θ) of an object, given

the object category Cobj, a reference object category

Cref , the scene type, and the hierarchical relations of

objects.

A co-occurrence prior is a specific form of contex-

tual priors. It explores the binary relationship between

two objects oa and ob, which is p(oa, ob, e), where e

represents a particular relation. Chen et al.[32] used a

Bayesian network[78] to encode probabilities of all re-

lations for each objects pair. Thus, an obvious draw-

back of contextual priors is that information is utilized

merely from the scenes themselves, while a room may

have several semantic functionalities. Though Chen et

al.[32] encompassed floors, walls and ceilings as exam-

ples, knowledge is still learned based on pure object-

object relations.

In addition to co-occurrence prior, Xu et al.[38] pro-

posed priors, called structural groups (SG), which en-

code both object co-occurrence and co-placement. An

SG G = (V,E) is a complete graph, where vertices (V )

denote object categories and edges (E) denote relation-

ships such asA-supports-B and relative positions. Each

SG has a corresponding probability distribution sug-

gesting co-placement hints. Thus, during optimization,

objects selection could be refined using SGs, i.e., a set

of objects chosen from the input sketch should satisfy

SGs. A placement distribution of an SG can also refine

sub-groups of objects of pending indoor scenes.

7.3 Activity-Driven Priors

Objects are related to human poses and activities

naturally[79]. Compared with contextual priors, utiliz-

ing activities for scene synthesis can adaptively aug-

ment scenes, e.g., an activity can judge whether or

not an indoor scene satisfies it. Liang et al.
[70] as-

sembled a straight-forward way to combine room func-

tions together with objects. Fu et al.[6] trained activity-

associated object relation graphs, which are able to in-

dicate implicit object categories, given the only size and

initially specified object categories. Ma et al.[43] learned

an action model to generate instances of Markov chains

for each input scene, i.e., they combined each input

scene with an action sequence which can adjust the 3D

scene with more object categories or finer object ar-

rangements.

Fisher et al.[44] trained a model based on a database

of 125 3D scenes[37] and a set of 3D models. They an-

notated several agent proxies representing interaction

with other models. Thus, each 3D model is correspond-

ingly annotated with interaction maps, which are com-

ponents or regions that agents have to see or touch.

Their activity model consists of an occurrence model

and an interaction model, judging quantitatively how

reasonably a particular set of 3D objects presents in

each activity and how good an arrangement of the ob-

jects is for the interaction, with respect to two objec-

tives of optimization. Both occurrence and interaction

models will be used to iteratively optimize the entire 3D

indoor scene during optimization shown in Fig.3. Note

that Fisher et al.[44] also leveraged another prior trained

by Savva et al. to generate activity map[74], which is

a continuous distribution suggesting how likely an ac-

tivity can occur and is similar to affordance maps[80] of

[8, 79, 81]. This prior is used to convert input RGB-D

scan into scene template during preprocessing.

7.4 Example-Based Priors

An intuitive way to synthesize indoor scenes is to

learn knowledge directly from provided examples of the

scenes. Xie et al.[11] reshuffled the objects across a small

set of input indoor scenes, which is not based on the

learning process. Fu et al.[6] selected top K similar

room layouts of the same scene type for arrangement

hint.

Fisher et al.[37] extracted knowledge from a small

amount of input example scenes and a database (see

Subsection 4.2) so that a similar indoor scene is gene-

rated compared with input scenes. They learned two

priors: occurrence model and arrangement model, both

of which are trained using the input and the database.

Weights are added as hyper-parameters to leverage how

much we want to bias the influence from the database.

For example, if we set λarrange = 0, the arrangements
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of synthesized scenes conform to merely inputs. If we

set a higher λarrange, i.e., adding knowledge from the

database into synthesis, synthesized scenes would have

more variance. Since their occurrence model is trained

with both input scenes and the database, time con-

sumption could be a concern.

7.5 Neural Network Priors

Neural network has become one of the most popu-

lar research directions in recent years. Convolutional

neural network (CNN) is a neural network incorporat-

ing specific layers including convolutional layers, pool-

ing layers, etc. Wang et al.[41] trained three convo-

lutional neural networks as separate priors using the

ResNet architecture. At each iteration, the first CNN

will be assembled to suggest whether or not to continue

adding objects, given the current scene. If continuing,

the second CNN is used to calculate categories c and

locations (x, y) of the next object to add. Finally, the

object instance is retrieved through the third CNN into

the current scene which would be the input of the next

iteration. Avetisyan et al.[67] trained a different CNN

that accepts voxels and outputs matching probability

between a CAD model and an RGB-D scan.

However, Li et al.[68] argued that CNN is not suit-

able for indoor scene synthesis, because traditional con-

volution does not fit well with the latent structure of

indoor scenes. Thus, they combined a recursive neural

network (RvNN)[82] with a variational recursive autoen-

coder (VAE)[83] to construct RvNN-VAE, which is a

generative model containing an encoder and a decoder.

After training, the decoder is assembled to parse ran-

dom vectors sampled from Gaussian distribution to a

hierarchical representation of indoor scenes, followed by

reconstructing 3D scenes.

8 Optimization

Optimization is the stage that combines representa-

tions of input and trained priors to synthesize the final

3D indoor scene. Typically, existing work leverages ite-

rative methods that adjust the pending 3D scene to

satisfy a set of constraints. As mentioned in Section 3,

optimization is optional. For example, Fu et al.[6] used

a weighted sum of associated scenes to generate the fi-

nal arrangements. Li et al.[68] trained a prior generating

the entire hierarchy about a room, which means that de-

tails of categories and arrangements are all contained in

the generated graph; therefore Li et al. merely needed

to construct the indoor scene following the graph.

8.1 Human Interaction

Manually optimizing the putative 3D scene requires

human interactions with systems, resulting in the semi-

automatic process, but priors about plausible, aesthetic

and functional arrangements are no longer needed.

Some work even focuses on interactions, e.g., [84]. Mer-

rell et al.[3] built up a system to aid indoor scene syn-

thesis. By initially inputting a shape and a set of ob-

jects, the system can offer a sequence of suggestions

following several interior design constraints. A user

can iteratively choose suggestions to automatically ar-

range the indoor scene. For each iteration, users can

fix items in specific positions, which would further add

constraints for generating suggestions.

Chang et al.[39] built up a system that allows users

to refine indoor scenes using natural languages. They

firstly entered a sentence to generate an initial scene.

After that, they modified object categories and posi-

tions in that scene using natural language for each it-

eration.

Savva et al.[42] developed another system. Given an

initial scene, users can add an object instance by click-

ing the desired position on the screen, through each

iteration. When clicking, the system can automatically

list a set of objects that are plausible according to its

context as well as the estimated positions and orien-

tations. This is also very similar to [4], which focuses

on recommending small-scaled objects, such as plates,

books or shoes.

8.2 Explicitly Iterative Methods

Some techniques optimize the putative indoor

scenes under several explicit rules. Wang et al.[41]

trained three priors for continuation, object placement

and object instance selection. During optimization,

they used the first prior to judge whether or not to

continue modifying the indoor scene. If the first prior

suggests continuing, the rest two priors are assembled

to add new object instances. Otherwise, synthesis is

over.

Xie et al.
[11] proposed a non-learning based ap-

proach. After extracting relationships between objects,

they reshuffled objects in different scenes, trying ev-

ery possible position. Next, according to a size factor

and an environmental factor, they scored each candi-

date and discarded failing scenes. Fisher et al.[44] also

generated a set of candidate scenes and also defined

a score function, and they sampled candidates using

activity-centric agents.
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8.3 Gradient-Based Optimizer

Given several learned priors and other constraints,

we can formulate cost functions (or score functions)

to measure how reasonable the pending indoor scene

is. After that, gradient-based approaches are utilized

to maximize (or minimize) cost functions. Chang et

al.[10,39] defined their cost function with respect to 25%

of learned priors and 75% of ergonomic design strate-

gies. Fisher et al.[37] optimized a total arrangement

score function based on a learned arrangement model

and other penalty measurement based on hill climbing

optimizer. Xu et al.
[38] optimized a score function for

object arrangements based on gradient descent. Us-

ing gradient-based approaches is straight-forward and

effective, but cost functions do not guarantee convexity.

8.4 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a widely

used stochastic optimization method for 3D content

generation[85]. It is prohibitively complex to express

a state of indoor scenes mathematically, because a rela-

tively simple scene could comprise a set of object cate-

gories as discrete values and their positions as contin-

uous values, resulting in an extraordinary high dimen-

sional hypothetical space[9]. Thus, MCMC is used to

approximate those multi-dimensional spaces.

Yu et al.[40] and Qi et al.[8] leveraged simulated

annealing[86] with Metropolis-Hastings (MH)[87,88] to

iteratively arrange positions and orientations of objects

inside indoor scenes, given initially a set of object in-

stances placed randomly. For example, Yu et al.[40]

treated objects as atoms in annealing metals, and states

of indoor scenes are represented as S =
{

(pi, θi)|i =

1, ..., n
}

, where (pi, θi) is the position and orientation of

the i-th object. For each iteration, they proposed a new

subsequent state S
′

. If current state S and new state S
′

are satisfied with a function α(S
′

|S), the move would be

conducted according to probabilities. They formulated

their cost function based on a set of design rules such

as “functional objects should be accessible to people”,

“objects like television should be visible to people”, in

addition to their priors. Compared with Yu et al.[40], Qi

et al.[8] considered positions and orientations together

as potentials according to their Markov random field

prior. Thus, for each iteration, they tried to accept the

sampled scene (specifically, proposed walk-in MCMC),

if the next sample has relatively low energy compared

with the current sample or an energy-based probability

is used to judge whether to move or not.

Yeh et al.
[69] formulated an improved version of Re-

versible Jump MCMC (RJ-MCMC) named Locally An-

nealed Reversible Jump MCMC (LARJ-MCMC). The

pure RJ-MCMC is less compatible with dimensional

changes, i.e., inserting or removing objects of indoor

scenes often results in low probabilities. To address

this, they added a sequence of intermediates during

jumping between dimensions, which is named locally

annealed jump. Consequently, their work is notably

successful in generating scenes without a fixed number

of objects. Their work is also flexible to many open-

world generating tasks, such as synthesizing a golf field.

However, with regard to scene synthesis, LARJ-MCMC

requires users to provide latent objects. Furthermore,

it can only synthesize a fixed type of scenes. If we want

a new type, another factor graph[77] is needed as con-

straints.

Liang et al.
[70] presented another technique, which

is similar to the work of Yeh et al.[69] To address the

problem that users need to manually provide object

categories, they trained an object selection model based

on latent Dirichlet allocation (LDA)[89], in addition to

the object placement prior based on Bayesian frame-

work. During optimization, they employed Metropolis-

Hastings as an MCMC solver to iteratively adjust the

pending indoor scene. Their work is more specific in in-

door scene generation but slightly lacks general usage.

Markov chain can also be assembled separately. Ma

et al.
[43] learned an action graph suggesting action tran-

sitions, and they used the prior to generating an in-

stance of Markov chain, which is also an action se-

quence. During optimization, they iteratively placed

and re-placed objects according to the sequence.

However, MCMC has an issue with computational

cost, e.g., convergence[90]. Fisher et al.[44] tried two

sampling approaches. During optimization, they uti-

lized activity-associated agents to propose categories

and arrangements of candidate objects. They found

that, compared with using MCMC, their chain is no-

tably faster.

9 Conclusions

In this survey, we presented the general criteria for

decomposing 3D indoor scene synthesis literature. For

input data, we discussed the explicit format of data

which is basically the initial 3D scene configuration and

the implicit format of data which requires further inter-

nal representation.

The internal representation is commonly conducted

in structural and hierarchical graphs or trees, while
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projection-based representation is an alternative so-

lution. Priors statistically encode human knowledge

about aesthetics and functionalities of rooms. We or-

ganized priors into five categories. Two of the most

popular priors, according to this survey, are contex-

tual priors and activity priors, which could be basic

guidelines. Little work assembles the rest three pri-

ors. Although hierarchical information is unlikely to be

preserved by convolving and 3D convolution is not effi-

cient, there is still potential usage of the neural network

prior which is discussed subsequently. Example-based

priors require quite an amount of input and rerunning

the entire algorithm including training; thus time is a

concern. Unless knowing exactly how synthetic rules

behave, we should avoid using hard-coded priors. Fi-

nally, with input data or internal representation, and

learned priors, optimizations are conducted to generate

the final plausible scene. Table 1 lists all related work

of 3D indoor scene synthesis of this survey.

Various unsolved problems remain currently.

Table 1. Comparisons Among Different Indoor Scene Synthesis Techniques

Index Input Internal Representation Prior Optimization

Avetisyan et al.[67] (2018) RGB-D image - CNN (3D) Levenberg-Marquardt

Chang et al.[10] (2014) Text Graph (static support
hierarchy)

Context Sampling implicit
object & gradient

Chang et al.[91] (2014) Text Graph Context User interaction

Chang et al.[39] (2017) Follow Chang et al.[10] Follow [10] Follow [10] User interaction

Chen et al.[32] (2014) RGB-D image Graph based on point
cloud segment

Context Gradient descent

Fisher et al.[37] (2012) Example scenes Static support
hierarchy

Context (Bayesian
network & Gaussian
mixture models)

Sampling &
gradient-based
approach

Fisher et al.[44] (2015) RGB-D image Activity map[74] &
geometry

Context with activity Iterative sampling

Fu et al.[6] (2017) RoomShape, objects’
category & quantity

Graph Activity-associated
object relation graphs

Iterations

Jiang et al.[81] (2016) Initial scene
(point cloud)

Graph Conditional random
field

MCMC & iteration

Kermani et al.[92] (2016) Initial scene - Context (factor graph &
K-means)

MCMC & iteration

Li et al.[68] (2018) - Graph (hierarchy) RvNN-VAE -

Liang et al.[70] (2017) RoomShape, doors,
windows,
room functions

- Topic model &
Bayesian theory (MAP)

MCMC

Liang et al.[93] (2018) Initial scene or
scene types

Graph Context User interaction &
MAP

Ma et al.[43] (2016) Initial scene - Action graphs Action sequence
(Markov chain)

Ma et al.[94] (2018) Text Graph Context
(GMM & frequency)

User interaction (using
text)

Merrell et al.[3] (2011) Room shape &
furniture set

- Hard-coded layout
guidelines

User interaction

Qi et al.[8] (2018) - Sampled parse tree Spatial and-or graph
with contextual MRF

MCMC

Ritchie et al.[75] (2018) Initial scene Top-down scene CNN Iteration

Savva et al.[42] (2017) User interaction Contextual tree & [66] Context[10] -

Shao et al.[95] (2012) RGB-D image - [96], context (K-means)
& random forest

Gradient descent

Wang et al.[41] (2018) Initial scene Top-down scene CNN Iteration

Xie et al.[11] (2013) Example scenes - Hard-coded factors Iteration

Xu et al.[38] (2013) Sketch - Structural groups
(graphs)

Iteration & gradient
descent

Xu et al.[76] (2015) RoomShape, doors,
windows, room type

Wall grids Context Iterative filtering

Yeh et al.[69] (2012) Room shape &
potential furniture
objects

- Factor graph MCMC (locally
annealed reversible
jump)

Yu et al.[40] (2011) Initial scene with
furnitures placed
randomly

- Context Simulated annealing
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Firstly, one significant limitation is that existing work

usually treats each room as a single scene type, e.g., a

kitchen, a bedroom, or a living room. A room may be

partitioned to some subareas, and each of them serves

more coherent functionalities.

Secondly, most work based on context considers one-

to-one relations, but relations involving more than two

objects are useful in some particular cases. For in-

stance, when placing a fork, a plate and a knife, very

specific order should follow from left to right, while with

one-to-one relations, a fork could be at any position rel-

ative to a plate. This implies using (a, b, c) rather than

(a, b), which is an example of a hypergraph[97]. Alter-

natively, the local field is also an option.

Thirdly, many existing techniques are not suffi-

ciently flexible. They only provide an “integrated” al-

gorithm, i.e., given input the algorithm just generates

the final synthesized room. The learned priors can play

far more tasks, such as refining an existing scene that

has already been arranged adequately, which is useful

for incorporating knowledge from various priors.

Though scene synthesis considers simple and regular

shapes instead of complex terrains, little work considers

rooms with arbitrary shapes, i.e., much existing work

still considers rectangular room instead of “L”-shaped,

for example. Next, the accessibility to room items such

as sockets is commonly ignored. Additionally, style con-

sistencies between furniture are rarely considered for

object-object relations[98].

With the development of artificial intelligence, arti-

ficial neural network (ANN) becomes one of the most

powerful and overwhelming learning techniques. Thus,

assembling ANN as a prior could be potentially useful,

which is rarely explored in current work. Convention-

ally, we could use a CNN to tackle spatial entities, but

convolution ignores the overall hierarchy of the scene

and is less efficient for complex indoor layout[68]. Thus,

the specific architecture of ANN for scene synthesis

should be considered, and this may become a break-

through point for it.
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