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Abstract—We present a framework for fast synthesizing indoor scenes, given a room geometry and a list of objects with learnt priors.

Unlike existing data-driven solutions, which often learn priors by co-occurrence analysis and statistical model fitting, our method

measures the strengths of spatial relations by tests for complete spatial randomness (CSR), and learns discrete priors based on

samples with the ability to accurately represent exact layout patterns. With the learnt priors, our method achieves both acceleration and

plausibility by partitioning the input objects into disjoint groups, followed by layout optimization using position-based dynamics (PBD)

based on the Hausdorff metric. Experiments show that our framework is capable of measuring more reasonable relations among

objects and simultaneously generating varied arrangements in seconds compared with the state-of-the-art works.

Index Terms—3D indoor scene synthesis, furniture objects arrangement, complete spatial randomness

Ç

1 INTRODUCTION

3D indoor scene arrangement is to automatically
arrange furniture objects, which benefits various

applications [1], [2], [3] including video game, virtual real-
ity, home decoration, or even creating datasets for 3D scene
understanding [4]. With the emergence of various datasets
for 3D indoor scenes [5], [6], [7], techniques of arranging fur-
niture objects have shifted toward data-driven approaches
[4], i.e., learning priors expressing strategies of existing lay-
outs of furniture objects.

However, inherent difficulties of 3D indoor scene synthe-
sis still exist in various aspects. First, it is inevitable for deal-
ing with furniture layouts parameterized continuously or
discretely, which distribute in complex high-dimensional
spaces [8]. A few works (e.g., [9], [10], [11], [12]) attempt to
simplify layouts into independent cliques or subsets e.g.,
[10], [11]. Their underlying metric largely depends on “co-
occurrence”, which merely counts co-existence frequencies
from existing layouts. However, co-occurrence is not

sufficient to fully indicate the relationship between furni-
ture objects. For example in Fig. 2, ‘nightstand’ often co-
exists with ‘chair’ in one room, but they are rather indepen-
dent in terms of layout arrangement. On the other hand,
‘nightstand’ has high dependency with ‘bed’ not only due
to the co-existence, but also the spatial closeness and consis-
tency across layouts. This observation motivates us to learn
stronger spatial relation priors beyond co-occurrences
towards more plausible arrangements.

Second, due to innumerable arrangement choices, it is
hard to exhaustively list all possible spatial relations among
objects [13], [14], [15], [16], [17] or to mathematically formu-
late unified and accurate models for them [11], [18], [19],
[20]. For example, Chang et al. [13] dictate a specific set of
possible relations such as “support”, “right”, “front”, etc.,
which fundamentally limit the variety of possibly synthe-
sized scenes. To model relations with multiple patterns, a
common approach is to fit observed layouts with models.
While allowing comprehensive exploration of a continuous
layout space, the “fitted models” could potentially intro-
duce unexpected results that are suboptimal, especially
when the underlying layout patterns do not satisfy the
model assumptions. Fig. 3 shows less successful examples
of sampling relative positions from a Gaussian Mixture
Model (GMM) and a Convolutional Neural Network
(CNN) [20]. We argue that when the dataset of 3D Scenes is
of sufficient size, the exact cases by observing samples
(without fitting continuous statistical models) already offer
adequate layout variations while ensuring layout quality.
This is particularly desirable for practical applications
where the robustness of the results is a major concern rather
than the unpredictable variousness.

To address the above difficulties, we propose a method
to measure the strength of spatial relations between objects
by utilizing tests for complete spatial randomness (CSR)
[21]. A test for CSR (Section 4) describes how likely a set of
events are generated w.r.t a homogeneous Poisson process.
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Intuitively, it measures how obvious certain patterns exist
in a set of points. Therefore, objects with high value of test
for CSR tend to be grouped and arranged together. Objects
that fail to pass tests for CSR are ignored, even if they have
high co-occurrence (Section 4).

Furthermore, we present an approach for extracting rep-
resentations of various shapes of layout strategies. Unlike
existing frameworks [11], [19], [22], which fit continuous
priors and might cause the sampling of inappropriate trans-
formations of furniture objects, our approach first removes
outliers inside datasets and then directly takes the remain-
ing data as “discrete priors”, with each datum expressing
an “exact” transformation incorporating density peak clus-
tering (DPC) [23]. Finally, as illustrated in Fig. 1, we present
a framework for automatically synthesizing various arran-
gements of given furniture objects w.r.t an input room
geometry, by partitioning the input objects into disjoint
groups according to the learnt priors, followed by an opti-
mization. Instead of using Markov Chain Monte Carlo
(MCMC) [22], which typically takes more than thousands of
iterations to converge, we optimize furniture arrangements
based on the Hausdorff metric to cope with the learned dis-
crete priors, and are able to complete the entire process in
seconds.

In summary, our work makes the following contributions:

1) We incorporate spatial relation prior learning based
on CSR and DPC, which is more effective than sim-
ply measuring co-occurrences, thus leading to plau-
sible results consistent with common sense.

2) Our method improves the robustness and efficiency
of indoor scene arrangement due to the usage of dis-
crete and exact priors, which ensure predictable and
quality object relationships, and enable efficient lay-
out optimization based on a Hausdorff metric in
seconds.

2 RELATED WORKS

3D Indoor Scene Synthesis aims at generating appropriate and
well-aligned layouts of furniture objects for rooms. Various
solutions considering different input settings and tasks
have been proposed. For example, [24], [25], [26], [27] gener-
ate room layouts based on RGB-D images or 3D scans.
Human language [12], [13], [14], hand-drawn sketches [18],
semantic bounding boxes [28] have also been explored as
additional inputs to guide scene synthesis. Table 1 lists simi-
lar works compared to ours. A full review of existing works
on indoor scene synthesis is beyond the scope of this paper.
Please refer to an insightful survey in [1]. Our work focuses
on furniture layout synthesis within a single room. Please
refer to the recent works [29], [30] and the references therein
for floorplan synthesis with multiple rooms.

To synthesize a room layout, typically, two stages are
required: “selecting” a list of appropriate furniture objects
and “arranging” them. One characteristic that classifies dif-
ferent works is whether or not the two stages are coupled
with each other. For example, [19], [20], [31], [32] iteratively
infer the next objects to be included into rooms, i.e., placing
objects depends on each pending layout. [9], [10], [22] and
ours first create a list (graph) of objects of interest and
arrange them. It is hard to compare which class of methods
is better. However, making object arrangement decoupled
with object selection gives flexibility to swap or combine dif-
ferent ways for object selection and arrangement.

As discussed in Section 1, the representations of layout
strategies play an important role in 3D indoor scene synthe-
sis. To encode prior knowledge, [15], [16], [33] attempt to

TABLE 1
Qualitative Characteristics of Similar Works to Ours

Method Spatial
Measurement

Layout Strategy

Yu et al. [22] User Suggestions MCMC
Qi et al. [10] Co-Occurrence MCMC
Wang et al. [20] - CNN
Wang et al. [19] - CNN
Ours Tests for CSR PBD w/ Hausdorff

metric

Fig. 1. Given a list of furniture objects (Left), we decompose them into
disjoint groups (Top-Middle) with coherence for each individual group
and freedom among groups. By incorporating discrete templates learned
from datasets [5] as priors to guide syntheses, our method generates
various plausible layouts in seconds.

Fig. 2. Illustrating the problems of co-occurrence. With similar frequen-
cies, two relative positions of two pairs of objects are shown in Fig. 2a.
The points in Figs. 2b and 2c represent the relative positions between
two given furniture objects. Axes are aligned to walls, and bed/chair is
centered. In Fig. 2b, the double bed and the nightstand are obviously
spatially related, while there is no obvious spatial relation between the
nightstand and the chair.

Fig. 3. Fitting continuous statistical models to represent spatial relations
between furniture objects has inherit difficulties. These models can
potentially lead to unexpected results that are not optimal. Instead, our
method can extract and reproduce exact patterns without fitting such
models while ensuring synthesis quality.
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quantify interior design rules, i.e., mathematically modeling
how we arrange furniture objects according to designers or
common senses. In contrast, our framework is data-driven
due to the emerging availability of 3D indoor scene datasets,
which enable various data-driven approaches. For example,
Chang et al. [14] model spatial relations between objects
using semantics such as “left”, “right”, “front”, etc. How-
ever, since it is difficult to enumerate all potential semantics
between objects, our discrete priors are learnt to express as
many exact patterns as possible according to datasets. To fit
observed distributions of objects, Gaussian mixture models
(GMMs) are adopted by [11], [18], [34], but [11], [18] do not
have the same input to ours and the priors of [34] considers
only the “XOZ” plane without the “Y” axis (height). [22],
[35] model contexts for objects, e.g., average orientations
and distances between objects, orientations w.r.t the nearest
walls, etc. Furthermore, Wang et al. [19], [20] train convolu-
tional neural networks (CNNs) for placing furniture objects.
Instead, we do not fit any models. Our discrete priors are
from exact cases inside observed data. We assemble a subset
of discrete ground truth which already includes sufficient
and exact layout patterns from datasets after denoising.
Graph structures are constructed by [9], [10] for encoding
priors, which still resort to co-occurrence but measure spa-
tial relations inappropriately. Based on contextual models,
for optimizing transformations of furniture objects, Yu et al.
[22] and Qi et al. [10] incorporate MCMC, which is experi-
mentally verified being inefficient [33]. The reason to incor-
porate MCMC is due to the complicated fitted models are
not differentiable, while MCMC enables updating transfor-
mations of furniture objects by proposal functions, i.e., sam-
pling based on previous samples. The stochastic nature of
the sampling strategy often leads to non-optimized samples
being rejected. To ensure convergence, a large number of
iterations is often needed, and each iteration usually
requires costly evaluation to accept/reject samples, making
the whole process computationally expensive. By incorpo-
rating the discrete priors, we measure the loss of arrange-
ments using the Hausdorff metric, so MCMC is no longer
needed, thus accelerating the entire optimization. A full dis-
cussion of MCMC is beyond the scope of this paper. Please
refer to a detailed experiment in [33].

Our task partially resembles [22], but takes an automatic
approach to extract constraints from existing layouts.
Instead, the framework of Yu et al. [22] requires manual
assignment of spatial relations between furniture objects,
while learning clustered means of distances and orienta-
tions from a given dataset. Our task also partially resembles
[33], but their approach is not data-driven. We are also
inspired by the works of [11] and [36]. However, the former
requires exemplar scenes as input, while the latter focuses
on the re-arrangement of existing scenes. In contrast, we
aim to learn general patterns for pairs of objects from exist-
ing layout examples for synthesizing new scenes.

Tests for Complete Spatial Randomness is a classical topic
[37]. Given a series of points distributed on a plane, a test
for CSR is typically used to answer how likely the points are
placed randomly. Formally, it describes how likely a set of
events are generated w.r.t a homogeneous Poisson process
(planar Poisson process). Previously, most applications of
CSR are confined to ecology [38], e.g., to investigate whether

or not a set of observed plants are located with patterns.
Rosin [39] is probably the first to bring the concept of CSR
into computer vision to handle the problem of how to detect
white noises inside images. To the best of our knowledge,
our work is the first to introduce tests for CSR to solve the
problem of 3D indoor scene synthesis.

3 OVERVIEW

As illustrated in Fig. 4, our pipeline is split into an offline
stage for spatial relation prior learning, and an online stage
for automatic scene synthesis based on a given list of furni-
ture objects and the learnt priors. The pattern of spatial rela-
tions are extracted from datasets in the offline stage. We
first learn a specific spatial strength graph model �G indicat-
ing how objects are spatially related with each other (Sec-
tion 4). In this graph, vertices represent objects, and edges
are associated with weights to encode the spatial strengths
between objects. This is more powerful than simply count-
ing co-occurrence. We then extract versatile patterns of lay-
out strategies as discrete “templates” by reducing noises
within datasets such as SUNCG [5] using Density Peak
Clustering [23] (Section 5). Given the learned priors, an
empty room, and a set of user-specified objects, during the
online stage, our method first groups spatially coherent
objects into groups (e.g., a bed, a night stand and a TV
Stand, as illustrated in Fig. 11b). Next, we do an instant
arrangement for each group by heuristically using the
learned templates. Finally, we adjust the overall layout by
optimizing a consistent loss function (Section 6).

Existing datasets for scene understanding and synthesis,
such as SUNCG [5] and 3D Front [40], typically contain a set
of furniture objects and a set of existing arrangements
(rooms), and reuse each furniture object from several to
thousands of arrangements with other objects. This moti-
vated us to use such datasets to extract relations between
furniture objects instead of arrangements. Therefore, to
make it object-centric, we convert a given dataset into a
multigraph G ¼ ðV;EÞ, which is conceptually a direct math-
ematical representation of the original dataset: each vertex
corresponds to an object instance and each directional edge
encodes the relative position and orientation between a pair
of objects. More specifically, a vertex vi 2 V contains a set of
attributes fðdi;vwall; ui;vwall; ti;vwallÞjv ¼ 1; 2; 3. . .;Vg, i.e., the row
values of distances, orientations and translations of an
object w.r.t its nearest walls. For each pair of objects, there
are often multiple edges connecting them, because they
may co-exist in different scenes. In the following prior learn-
ing stage, we will remove edges that suggest an implausible
transformation (relative translation and rotation) between

Fig. 4. The pipeline of our system.
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the two furniture objects and consider the remaining edges
as “discrete” and “exact” priors since we do not intend to fit
any statistical model.

Centering an object oi, the kth edge ei;j;k 2 E from vi to vj

is valued by a quadruple ðpi;j;kx ; pi;j;ky ; pi;j;kz ; pi;j;ku Þ representing
the kth relative translation and orientation of oj w.r.t oi. We
leverage Ei;j to indicate the set of edges formed from vi to
vj, where vi is the corresponding vertex in V of object oi.

As far as we know, 3D-Front [40]1 is the only suitable
large-scale data set for the research of scene analysis and
synthesis, besides SUNCG. 3D-Front contains 34 catego-
ries, 9,992 3D models, 70,000+ rooms, and 1,260,168 co-
occurrences between furniture objects. However, most of
objects have only fewer than 10 co-occurrences with
another instance. This is too sparse to extract reliable pat-
terns between two objects. On the contrary, SUNCG con-
tains 175 categories, 2,266 models (non-furniture objects
such as doors and windows are not included), 520,000+
rooms, and 54,844,805 co-occurrences. Therefore, the data-
set we utilized in this paper is a combination of 3D-Front
and SUNCG. More specifically, for 3D-Front, 30 catego-
ries of 9,317 objects have their corresponding categories
in SUNCG. Thus, based on these categories, we first
coarsely cluster objects. Then, based on visual similarities
as illustrated in Fig. 9, we enable relation sharing from
objects of SUNCG to objects of 3D-Front. After combining
them, 175 categories of 11,583 objects are achieved with
55,889,558 co-occurrences, in which only 9,317 objects
from 3D-Front have geometric models. Eventually we
construct G with this combined dataset. Based on G, we
measure spatial relations between objects in Section 4,
and learn layout priors in Section 5.

4 SPATIAL STRENGTH GRAPH

Before actually extracting a template from datasets for each
pair of objects, a question naturally arises: do we require
templates for all pairs? As shown in Fig. 2, the plots of rela-
tive translations of two objects with high co-occurrence
could be very messy, with the transformations between
them rather independent of each other. This motivates us to
learn a spatial strength graph (SSG) so that a multitude of
pairs of objects that have low relations of spatial strength is
ignored when arranging furniture objects. This helps us
synthesize more plausible scenes but also accelerates the
synthesis process.

Formally, an SSG is a weighted graph defined as �G ¼
ð �V ; �EÞ, where �G denotes an entire graph with �V ¼ V repre-
senting all objects in the dataset and �E being the edges with
the associated weights to encode the spatial strength
between objects. Here the question becomes how to mea-
sure the weights from a large-scale dataset with highly
diverse co-occurrences regarding spatial relations, leading
us to assemble the aforementioned tests for CSR. There exist
several methods of tests for CSR, including using the
Diggle’s function [21], [41], distance-based methods [37],
[42], [43], angle-based method [44], [45], etc. In this paper,
we follow [44] to test CSR by means of angles. If P and Q
are two nearest points to point O, angle u of point O is
defined as the smaller of two possible angles between OP
and OQ, clockwise and counterclockwise, and it is thus
always between 0 and p. Therefore, we measure the weights
of �E by Equation (1), which is the “d-value” in [44] within
the domain of tests for CSR [21]

d ¼ ffiffiffiffiffi
m

p
supjFcðuÞ � FeðuÞj: (1)

Here, Fc and Fe are respectively a cumulative distribution
function (CDF) and an empirical distribution function
(EDF) w.r.t angle u, which is subject to uniform distribution
[44].m is the number of points formulating Fe. For each pair
of objects oi and oj, the weights �Ei;j are set to di;j subject to
random samples from Ei;j in a ratio of 10 percent, as sug-
gested in [44] and [46]. If all points are randomly distributed
(i.e., following a plannar Possion distribution), the upper
bound of the EDF minus the CDF of uniform distribution
should be close to zero. As shown in Fig. 5a, a wardrobe
and a coffee table are spatially independent, so their d-value
is low. Although considerable noises exist in Fig. 5b, the
d-value of a dining table and a chair is still reasonably high.
Finally, Fig. 5c shows clear patterns between a bed and a
nightstand.

Fig. 6 statistically suggests the differences between tests
for CSR and co-occurrences, where we plot the two meas-
urements for all pairs of objects, where pairs including an
air-conditioner typically co-occur frequently but air-condi-
tioners are placed independently to most of other furniture
objects according to the common sense.

Fig. 7 shows a quantitative and intuitive comparison
between using co-occurrence and using tests for CSR to
measure the strengths of relations between several common

Fig. 5. Several results of tests for CSR. Fig. 5a plots relative positions
between a wardrobe cabinet and a coffee table, Fig. 5b plots relative
positions between a dining table and a chair, and Fig. 5c plots relative
positions between a bed and a nightstand. Axes are aligned to walls,
and the former object is centered.

Fig. 6. The diagram plots the CSR value and co-occurrence of every pair
of objects. Two objects might co-occur in many rooms, while the strength
of their spatial relation could be low, vice versa. For example, the bed
and the nightstand have low co-occurrence, but they are spatially related
according to human intuitions.

1. https://tianchi.aliyun.com/specials/promotion/alibaba-3d-
scene-dataset
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furniture objects. The results are normalized respectively
due to different scales. The upper triangular part depicts co-
occurrence and the lower part corresponds to the results
from tests for CSR, which alleviate the unreasonableness
caused by co-occurrence. It is obvious that placing a sofa is
independent of arranging a double-bed, but they have a
high frequency of co-existence in different rooms of various
types. Such unreliable relations potentially confuse scene
synthesis algorithms. Applying tests for CSR for them is
able to decouple them spatially. It is a similar case for many
other objects preferring independent layouts with most of
the others, such as a white dryer, a wardrobe and a brown
stand.

5 PRIOR LEARNING

Patterns are priors suggesting how we arrange objects in
real-life layouts. Fig. 8c shows a pattern of a laptop w.r.t an
office chair. Since the relative translations are incorporated,
patterns can inherently avoid unreasonable situations such
as collisions. However, it is obvious that we cannot adopt a
unified model for all patterns, since the patterns can have
arbitrary shapes. To extract arbitrarily-shaped patterns in a
discrete representation, we adopt the approach in [23],
which clusters vectors of dimension D, where D >¼ 1,
according to r (Equation (2)) and d (Equation (3)). The indi-
cating function Ifd�dcg returns 1 if d � dc and 0 otherwise.

rk ¼
X
k0

Ifd�dcgðdk;k0 Þ; dc ¼ dðhK2Þ; (2)

dk ¼ mink0:rk < rk0 ðdk;k0 Þ: (3)

Given a set of edges Ei;j from vi to vj in G where all relative
translations, i.e., attributes of edges (Section 3), are plotted
as shown in Fig. 8a, we first calculate pairwise euclidean
distances dk;k0 between all edges ei;j;k 2 Ei;j using their
translations trk ¼ ðpi;j;kx ; pi;j;ky ; pi;j;kz Þ, i.e., dk;k0 ¼ ktrk � trk0 k.
For each edge ei;j;k, rk is counted as the number of other
edges with their distances to it less than dc. Taking K ¼
jEi;jj edges, dc is the hK2-greatest value among all pairwise
distances with h ¼ 0:015 as suggested by [23]. dk represents
the minimal distance from a set of ei;j;k

0
with higher rk0 than

rk. As a result, despite arbitrary shapes, merely edges with
high rk form a potential pattern, and each edge with high rk

and high dk indexes to a potential pattern, which is analo-
gous to a cluster center in [23]. In contrast, noises tend to
have high values of d while their local density r is distinctly
low. As a result, we only discard noises and keep the
remaining patterns ~Ei;j, as illustrated in Fig. 8b. The rest of
accurate patterns form a discrete templates ~Ei;j, which are
already fully usable to our framework. Although we do not
fit models and we use the discrete and exact priors for scene
synthesis in our framework, our learnt priors are scalable to
other works for 3D indoor scene synthesis. To incorporate
our model in other works, e.g., MCMC [10], [22], our priors
can be easily fitted to distributions such as using non-
parametric kernel density estimation based on Gaussian
kernels, as shown in Fig. 8c. Similar to the visualization of
dense optical flows [47], we apply the system of hue, satura-
tion and value (HSV) to represent orientations, where
angles are normalized within ð0; 2pÞ as hue, probability
densities are represented as saturation, and values are all
set to 1. Fig. 10 shows some other representative results of
learnt priors. Since height differences for most objects do
not vary significantly, we plot the two channels ðpi;j;kx ; pi;j;kz Þ
and orientations pi;j;ku to make the visualizations of learnt
priors more intuitive.

We also perform similar prior learning tasks for indi-
vidual objects with regard to their nearest walls where
dk;k0 becomes the differences of scalars. In doing so, we
keep the values tkw and ukw with both high values of rk and
dk, where tkw and ukw are respectively plausible distances
and orientations to the nearest walls of furniture object k.
Consequently, each furniture object is assigned a set of tkw

Fig. 7. A comparison between values from tests for CSR and co-occur-
rence. The CSR test values better reflect the dependency between
objects compared with co-occurrence.

Fig. 8. The overall process of prior learning. (a) Is the input with consider-
able noises. (b) Is the de-noised result, which is readily to use in our
framework. (c) Depicts the further generalization of our templates into fit-
ted models, which are applicable for other frameworks such as MCMC.
Different colors in the HSV color space represent different orientations
of objects, as shown in the inset.

Fig. 9. Reusing existing templates for new objects of similar geometry.
Given a previously unseen office chair (Left), we achieve the layout strat-
egy of it w.r.t a desk (Right) by merging templates of objects geometri-
cally similar to the chair (Top and Bottom).
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and a set of ukw plausibly as attributes to its corresponding
vertex in G.

Next, we further generalize our templates to make them
reusable and extensible. We observed that objects with the
same semantics and similar geometries share layout strate-
gies. As shown in Fig. 9, given a new object without the cor-
responding priors learnt from our datasets, we find its
similar models by comparing 3D shapes of models using
[48], which uses the shape edit distance skshed 2 ½0; 1� to mea-
sure the degree of similarity, where skshed ¼ 0 indicates two
identical models. We select the top-K results and take the
union of theK templates as the template for the new object.

6 SCENE SYNTHESIS

In this section, we incorporate the learnt SSG and priors to
synthesize room layouts. Our synthesis process is a two-
step approach: a heuristic arrangement, followed by an
optimization. Given a set of input objects Ô, we first decom-
pose them into several groups according to the SSG, and
arrange objects within each group, where relative transfor-
mations are immediately indexed by the templates. Finally,
we apply a global optimization to satisfy layout strategies of
objects in Ô. Note that our framework is capable of expan-
sion by easily incorporating methods of object selections
such as [10], [49], [50] or user suggestions [22], [33].

6.1 Heuristic Layouts With Formulated Groups

We first construct an unweighted graph, whose vertices cor-
respond to input objects Ô. This graph is described by an
adjacency matrix Madj, whose entries are determined by �G
in Section 4. More specifically, if d-value du;v � �, where du;v

is the result of a test for CSR, then we set Mu;v
adj ¼ 1, where �

is typically equal to 1.628 as suggested in [44]. After con-
structing Madj, we iteratively create disjoint groups g 2 Gr
of objects by finding connected components of the graph
represented by Madj. Fig. 11 shows examples of resulting
groups. It is common to see a group containing only one
object, such as wardrobe, cabinet or shelf, since their place-
ment usually does not require the consideration of other
objects. Such single-object groups greatly ease the subse-
quent optimization process.

Based on a given room shape (including the position of
doors and windows), partitioned groups, and learnt tem-
plates, we then generate proposals for pending scenes, i.e.,
objects are immediately placed and oriented w.r.t their
groups and walls. Intuitively, we heuristically initialize the
scene using the learnt templates instead of totally randomiz-
ing it. The discrete priors are considered multinomial distri-
butions where each sample directly suggests an exact

transformation between two objects. However, directly
sampling the discrete priors only guarantees plausible
transformations for each pair of furniture objects while rela-
tive transformations among furniture objects require the
further optimization in the following subsection.

For each group g 2 Gr, layouts of g are heuristically
generated by sampling a posterior probability distribu-
tion CGj ~EðgÞ expressed in Equation (4), given templates
~E (Section 5).

CGj ~EðgÞ ¼
aðgÞ �F ~EjG¼gð ~EmÞR
aðgÞ �F ~EjG¼gð ~EmÞdg ; (4)

¼ aðgÞ �Pm

Q
t2g f ~EmjT¼tð ~Em;t; tmÞR

aðgÞ �F ~EjG¼gð ~EmÞdg ; (5)

where aðgÞ denotes the probability of each object t 2 g being
the dominant object tm in g. Let degðtÞ denote the degree of
t w.r.t Madj, and is essentially the number of objects con-
nected with it according to the tests for CSR (Section 4), and
dmax ¼ maxt2gdegðtÞ. The likelihood f ~EmjT¼tð�Þ is a multino-
mial distribution formed by the given template ~Em;t of t w.r.
t tm, while it is equal to a constant when t ¼ tm.

aðgÞ ¼
1

jftjt2g;degðtÞ¼dmaxgj ; if degðtmÞ ¼ dmax

0; otherwise;

�
(6)

When samplingCGjQ¼Ô, we first randomly decide tm of g.
Equation (5) implies that ff ~EmjT¼tð�Þjt 2 gg are independent
of each other, so the transformations of objects are sampled

Fig. 10. Several representative results of learnt priors. The color coding for orientation is the same as Fig. 8.

Fig. 11. Formulating functionally coherent groups of objects using the
tests for CSR.
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according to their own templates, respectively. In practice, if
an object has a relatively low d-value to tm, we further
decompose the group and assign a new dominant object to
it. In some cases, this heuristic strategy could sample a suffi-
ciently plausible layout even without a further optimiza-
tion. However, the heuristic strategy may still results in
unreasonable conditions such as collision between groups,
objects out of room boundaries, etc. Next we show how we
adjust objects so that a plausible layout of objects is eventu-
ally presented.

6.2 Template Matching

After the heuristic layout, we do template matching to opti-
mize the placement of furniture objects and thus make their
arrangement more plausible. As discussed in the previous
subsection, heuristic layout is a way to initialize scenes con-
sidering merely transformations between furniture objects.
In this subsection, we globally optimize entire rooms to
achieve more plausible transformations among them.

Equation (7) mathematically formalizes template match-
ing, where we are trying to minimize the summation of the
Hausdorff distances dH between all objects w.r.t their tem-
plates. Xi indexes the transformation of object oi and ~E is a
set of sampled transformations in Section 5.

X� ¼ argmin
X

LðX; ~EÞ (7)

¼ argmin
X

X
i;j

Mi;j
adjdHðXi; ~Ei;jÞ þ ColðX; rÞ; (8)

dH is a Hausdorff metric between an element to a set of
transformations, derived by the distance function dh under
the space of translation and rotation. The reason for assem-
bling the Hausdorff distance is that it directly tackles sam-
ples instead of distributions. As explained previously, it is
unlikely to mathematically express a unified distribution to
model arbitrary layout patterns. In contrast, if we could
extract samples of arbitrary shape, the Hausdorff metric
enables pipelines to skip model fitting and to optimize
directly using refined samples.

dHðx; SÞ ¼ minv2Sdhðx; vÞ; (9)

dhðx; sÞ ¼ kxp � vpk þ expðoriðxu; vuÞÞ; (10)

oriðu; u0Þ ¼ minð2p� ju � u0j; ju � u0jÞ; (11)

Equation (12) represents the artifacts among objects and
between objects and walls, where pðx; kÞ returns the kth cor-
ner position of the rotated bounding box of furniture object
x. Ideally, if there is no collision and no object out of bound-
ary, ColðX; rÞ should be equal to 0.

ColðX; rÞ ¼ ColwallðX; rÞ þ ColobjðXÞ
¼

X
i;k

Y
r

tRðpðXi; kÞ; pðR; rÞ; pðR; rþ 1ÞÞ

þ
X
i;k;j

Y
l

tLðpðXi; kÞ; pðXj; lÞ; pðXj; lþ 1ÞÞ:
(12)

Colwall measures whether or not objects are out of walls,
whilst Colobj calculates overlaps among objects. Truncated
by tRð�Þ and tLð�Þ, gð�Þ represents the “to-left” test of
computational geometry [51], such as the utilization in [52].
In addition to given objects, we place doors and windows
with the fixed transformations to avoid blocking them.

tRðp1; p2; p3Þ ¼ maxð�gðp1; p2; p3Þ; 0Þ; (13)

tLðp1; p2; p3Þ ¼ maxðgðp1; p2; p3Þ; 0Þ: (14)

Since the underlying metrics are factorized as quadratic
terms, we optimize Equation (9) by utilizing position-based
dynamics (PBD) [53], which is also detailed in [33]. Incorpo-
rating heuristic approaches in Section 6.1, the synthesis
requires 10 iterations to converge on average after heuristic
attempts.

7 EXPERIMENTS

In this section, we conduct several experiments including
comparisons to the state-of-the-art techniques to verify the
effectiveness of our framework. Formulating functional
groups using CSR enables us to generate hybrid rooms
without manually providing a predefined room type at the
beginning of synthesis [19], [20]. Fig. 12 shows various syn-
thesized results. Please find more results in the supplemen-
tary materials, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2021.3050143.

7.1 Tests for CSR

We conducted a user study to measure how tests for CSR are
consistent with the intuitions of humans. We sorted pairwise
relations by tests for CSR and co-occurrence (COO), respec-
tively. For each sorted list of pairs, from their respective

Fig. 12. Examples of various synthesized results.
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highest values, we systematically sample 500 templates at a
fixed interval in order to achieve a set of templates with their
values of COO and CSR in complete ranges that the dataset
can derive. Typically, for SUNCG [5], we choose the interval
int ¼ 120. Then four subjects were invited to judge whether
or not two presented sets of templates were consistent with
real-life layout strategies. All subjects are university students
with the typical common sense of arranging furniture. Note
that “common sense” refers to daily layouts that are com-
monly seen, instead of professional interior design. The pre-
sented templates are rendered according to Fig. 10, where a
major furniture object is rendered from a top view and placed
in the center of each image. The participants were told to
decide if possible transformations of another secondary object
in the image could happen in real life. For example, given a
coffee table, should we place another chair in the suggested
positions and orientations? If the participants are confused
about several templates, secondary objects will be also ren-
dered as shown in the supplementary materials, available
online. Table 2 lists the proportions of reasonable templates
suggested by all the participants, where pairwise relations are
classified according to their room types (e.g., “double-bed &
night-stand” belongs to the Bedroom) since we want to show
the accuracy of tests for CSR in different room types. The
results suggest that the values generated by co-occurrence
containmore pairs that are rather spatially independent.

7.2 Efficiency

Our work is able to synthesize scenes efficiently due to the
usage of the Hausdorff metric and position-based dynamics
[53], which is verified [33] to be faster than using MCMC. In
this section, we conduct an experiment to show the
achieved performance gain. We compared ours with two
state-of-art frameworks [10], [22], since they have the same
input and output as ours when arranging furniture objects,
i.e., to arrange a set of furniture objects in a specified room.
Note that “same output” means results only introduce
transformations to furniture objects instead of brand new
instances. Weiss et al. [33] also have the same input and out-
put to ours. However, our work is different from [33] since

ours is data-driven and does not require user-specified con-
straints for each synthesis.

Statistically, arrangements are not guaranteed to be iden-
tical with each other. Consequently, since this section com-
pares efficiency, we focus on the time-consumption while
arrangements are merely considered “done” or “not done”.
[19] is also a state-of-art work, but as discussed in Section 2,
their object selection and arrangement are coupled with each
other. Thus, wewill compare ours with [19] in Section 7.3.

All the methods are used to synthesize the examples cho-
sen from Fig. 12. For fair comparison, we do heuristic
arrangement for both [10] and [22] to speed up their work.
The time costs are shown in Table 3, where the values with
“greater-than signs” denote examples requiring more than
20,000 iterations. According to our experiments, the reason
why MCMC is slow is three-fold. First, each proposal move
of MCMC is randomly performed. It could help to escape
from local minima, but might also move away from reason-
able results. Hence the number of iterations is usually large.
Second, MCMC requires to evaluate a costly objective func-
tion to judge whether a proposal can be accepted or not.
Thus even rejecting a proposal is also expensive. Third, it is
hard to find a good termination condition for MCMC in
practice. Either simple thresholding or no further decay of
the loss function cannot guarantee a good layout. In con-
trast, our discrete priors suggest more reasonable proposals
for each iteration, and thus our method is more efficient.

7.3 Aesthetic and Plausibility

In this subsection, we evaluate the aesthetic and plausibility
of the results generated by our method. Two experiments
have been conducted to demonstrate the strength of ours
compared with the ground truth and PlanIT [19]. First, we
re-arrange objects from the ground-truth, i.e., the scenes
originated from the dataset [5] and compare our results
with the results of the original datasets. Since the evalua-
tions of 3D indoor scenes are subjective, we conduct a per-
ceptual study to analyze them. In the first experiment, 97
subjects were invited from universities and the society. Sub-
jects are all elder than 18 so that they have the necessary
appreciation of beauty for room layouts.

We ask each subject to grade each presented room lay-
out. We show each subject in total 20 rooms, and she/he
would see several different layouts of a same room but
without knowing which layouts are generated. They rank
each layout in the range from level-1 (poor) to level-5 (per-
fect). As listed in Table 4, the scores of our results and the
ground-truth are comparable, indicating the aesthetic and
plausibility of our results.

Second, we compare our method with PlanIT [19], a
state-of-the-art method for indoor scene synthesis. See the
visual comparisons in Fig. 13. Similarly, we run a perceptive

TABLE 2
User Study: Evaluations of Tests for CSR and Co-Occurrence

Metric Bedroom Living Room Bathroom Dining Room Balcony Hall Garage Total

Tests for CSR 93.31% 85.47% 96.67% 92.42% 86.36% 89.47% 76.17% 88.55%
Co-occurrence 32.26% 43.81% 86.67% 45.76% 23.08% 38.46% 36.84% 43.53%

Each number represents a proportion of a plausible prior.

TABLE 3
Time Consumption (in Seconds) of Different Methods for Syn-

thesizing the Scenes Similar to Those in Fig. 12

# of Objects Yu et al. [22] Qi et al. [10] Ours

Bedroom 9 > 299.27s 229.76s 0.28s
Living Room 25 > 2135.30s 1790.65s 1.88s
Bathroom 8 > 313.54s 216.20s 0.29s
Hybrid-1 13 > 714.60s > 481.35s 0.64s
Hybrid-2 35 > 2313.38s > 1667.03s 2.31s
Hybrid-3 28 > 1351.15s 1122.63s 1.24s
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study to evaluate the results quantitatively and another 49
subjects are invited from the society similar to the first
experiment. However, the comparison is inherently diffi-
cult. As discussed in Section 2, PlanIT couples the object
selection task with the arrangement task. Consequently, to
make the same input and output of two frameworks, we
take the object selection results by PlanIT as input and re-
arrange them using our method. Finally, given 20 rooms,
we conduct the second perceptive study similar to the first
one. As shown in Table 4, our rearranged results (the last
row) receive consistently higher scores than those by PlanIT
(the second last row). Note that a fair comparison of compu-
tational time with PlanIT would be difficult since PlanIT
performs furniture object selection and arrangement
together using neural networks, while our work requires
furniture objects to be given. The running time of PlanIT
depends on how crowded the rooms. It typically requires at
least one minute for a single layout generation.

Although deep learning based approaches have demon-
strated convincing performance on many problems, they
inherently strive to learn the mapping/distribution from
training sets, and thus the performance largely depends on
how the data is prepared. For PlanIT, the relation graph of
its training set is heuristically derived from the SUNCG
dataset in the sense that several handcrafted rules with
thresholds are defined to extract ‘support edges’, ‘spatial
edges’, and ‘superstructures’ (cf. Section 4.3 in [19]). More-
over, to make its neural network model effective on the rela-
tion graph, PlanIT prunes a great number of ‘insignificant’
edges, and keeps only those with strong object co-occur-
rences (cf. Appendix A.2 in [19]), which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TVCG.2021.3050143/.
Hence the resulting training set mainly reflects co-occur-
rences and some other object-wall relationships, so as the
trained neural network. On the other hand, our method
explicitly measures the strengths of spatial relations based
on CSR tests. This allows us to directly integrate discrete yet

more accurate spatial relations into the room layouts,
instead of using the relations implicitly learned by a neural
network.

8 CONCLUSION

In this paper, we presented a framework for 3D indoor
scene synthesis based on the analysis of patterns. Instead of
using co-occurrence, we first incorporate tests for CSR to
measure more plausible spatial relations between furniture
objects. The state-of-the-art frameworks for 3D indoor scene
synthesis typically fit models for representing how to
arrange furniture objects, and depend on sampling that
causes implausible scenes. To alleviate this, we first learn
priors discretely by assembling density peak clustering [23].
The resulting priors are essentially a subset of original data
so that they express exact transformations between objects.
Our discrete priors subsequently enable the Hausdorff met-
ric without resorting to MCMC, thus accelerating it. In the
experiments, we verify the effectiveness and efficiency of
our framework.

This work suffers from at least the following limitations.
First, our way to learn priors is sensitive to the size and den-
sity of datasets. An ideal dataset should be both sufficiently
large and dense, where “large” refers to datasets containing
a considerable number (at least at the scale of thousands) of
rooms such as SUNCG [5], and “dense” refers to each object
being used by hundreds of layouts instead of one or two.
This is because density peak clustering [23] requires suffi-
cient data in able to detect noises. SUNCG [5] is a suffi-
ciently practical dataset for our method, but it still contains
the aforementioned cases as shown in Fig. 14. which exhib-
its the so-called “long-tailed distribution”. Tests for CSR
also suffer from the long-tail distribution problem, since we
can never do CSR tests using only one or two pieces of data.
We have attempted to solve the long-tail distribution prob-
lem by clustering furniture objects using shape similarities.
Nevertheless, shape similarity does not guarantee us to find
the most “exactly” similar object. As discussed by Huang
et al. [54], measuring the shape similarity is even subjective.
Furthermore, the way to learn priors is sometimes
“gullible” to datasets. For example, intuitively an office
chair is spatially independent of a wardrobe. However, if in
an entire dataset the chair is relatively transformed to the
wardrobe identically in all rooms, the test for CSR of them
could still pass. Note that a real-world dataset is also appli-
cable to our method if its size and density are reasonable to
ensure robust prior learning and noise removal. 3D real-
world datasets, e.g., SceneNN and ScanNet, still cannot be
used in our method, because most of the objects are

TABLE 4
User Study: Aesthetics, Where Ours-GT Uses Our Framework to Re-Arrange Furniture Objects in the Ground Truth (SUNCG) [5]

and Ours-RE Uses Our Framework to Arrange Furniture Objects From PlanIT [19]

Methods Bedroom Living Room Bathroom Dining Room Balcony Hall Garage Hybrid Room Total

Ground Truth 2.911 3.422 3.156 3.589 3.378 2.878 3.511 3.367 3.276
Ours-GT 2.944 3.292 2.989 3.344 3.344 3.061 3.256 3.317 3.194
PlanIT [19] 2.884 2.859 2.739 2.78 - - - - 2.834
Ours-RE 3.396 3.541 3.506 3.559 - - - - 3.522

Fig. 13. Comparisons between PlanIT [19] (Left) and our method (Right).
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incomplete or with redundant parts in geometry, leading to
inaccurate positions and bounding boxes, and difficulty in
shape similarity to share priors. In addition, acquiring
labeled data from real-world is extremely expensive and
current datasets are far below for prior extraction. For exam-
ple, SceneNN/ScanNet contains 100/1,513 scenes with
1,482/36,213 objects, and co-occurrences are very limited,
and more importantly there is no label of room belonging.

In the future, we are interested in performing finer com-
parisons of 3D shapes for generalizing our templates (e.g.,
by adopting 3DMatch [55]). Recently, improvements for
density peak clustering are also available [56], [57] for better
parameter selection and non-central node allocation. We
hope that our pipeline, learnt models and synthesized lay-
outs can contribute to automatic room layouts as well as
associated domains such as scene understanding [58].
Besides, the extracted spatial relation priors can also be
potentially used for interactive scene modeling tasks such
as a suggestive 3D scene modeling interface [59].
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