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A OVERVIEW
This supplementary materials contains the following contents

that strengthen our contributions:

• Section B: The details of computing the nearest wall 𝑣 (1)
and the second nearest wall 𝑣 (2) with respective distances
𝑑 (1) and 𝑑 (2) in the section 4: Dominant Objects.

• Section C: The minor concerns that we addressed to achieve
real-time performance and plausibility in practice, including
collision avoidance, priority blocks, filtering object, etc.

• Section D: Figure 5, 6, 7 and 8 present the open-source
platform of this paper for conducting experiments.

• Section E: More details on the qualitative and quantitative
comparisons between three baselines and ours, including
PlanIT [2], 3D-Front [1] and the Geometry-Based Approach
[3]. The qualitative comparisons are shown at the end of this
document.

• Section F: The statistical analysis with respect to the exper-
iments in section 7.2 and 7.3 in the main paper.

• More qualitative results are attached separately through the
online submission system.

• A demo video is attached separately through the online sub-
mission system, to show the proposed framework.
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B THE CALCULATION OF NEAREST WALLS
We devise Algorithm 1 to find the nearest vector 𝑣 (1) and the

second nearest vector 𝑣 (2) of Λ and the respective distances 𝑑 (1)
and 𝑑 (2) . Since no other subordinate object or wall object is inserted
before, the intersection point for placing dominant object is required
to touch the ground 1, i.e., Λ = (𝑥Λ, 0, 𝑧Λ). Thus, we use Γ = (𝑥Λ, 𝑧Λ)
to denote the intersection point on the ground.

We filter out wall vectors with inappropriate 𝑇𝑤𝑖𝑐𝑒𝐼𝑛𝑛𝑒𝑟 (Γ, 𝑣),
which returns the inner product of (𝜈1 − Γ) and (𝜈1 − 𝜈2) as shown
in Eqn. 1, where 𝜈1 and 𝜈2 are endpoints of walls. The reason of
term𝑇𝑤𝑖𝑐𝑒𝐼𝑛𝑛𝑒𝑟 (·) is shown in Figure 1. It is obvious that the wall
with green vector is the nearest wall to the desk, but according to
𝑇𝑟𝑖 (·), the wall with red vector results in the lowest triangle area.
Next, we computes distances of Γ with respect to the remaining
wall vectors, where 𝑤𝑎𝑙𝑙𝐷𝑖𝑠 = 𝑇𝑟𝑖 (Γ, 𝑣)/|𝑣 |. 𝑇𝑟𝑖 (Γ, 𝑣) is the area
of the triangle formed by 𝜈1, 𝜈2 and Γ. We use Heron’s formula
1In real dataset, grounds in room meshes are not guaranteed to coincide with the XoZ
plane, which requires a pre-alignment in practice.

ALGORITHM 1: Finding the indices and distances of the nearest
wall and the second nearest vector (wall).

Input: Cursor Γ, Shape of the room as vectors {𝑣𝑖 |𝑖 = 1, 2, ..., 𝑛}.
Output: The nearest vector(wall) 𝑣(1) and the second nearest

vector 𝑣(2) , the nearest distance 𝑑 (1) and the second
nearest distance 𝑑 (2) .

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑊𝑎𝑙𝑙𝑠 = [];
for Each vector 𝑣𝑖 do

𝑡 = TwiceInner(Γ, 𝑣𝑖 );
if 0 <= 𝑡 and 𝑡 <= |𝑣𝑖 | then

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑊𝑎𝑙𝑙𝑠 .push(𝑉𝑖 );
end

end
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 = [];
for Each vector𝑉𝑖 in 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑊𝑎𝑙𝑙𝑠 do

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 .push(wallDis(Γ,𝑉𝑖 ));
end
𝑤𝑎𝑙𝑙𝐼𝑛𝑑𝑖𝑐𝑒𝑠 = argSort(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠);
𝑣(1) = 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑊𝑎𝑙𝑙𝑠 [𝑤𝑎𝑙𝑙𝐼𝑛𝑑𝑖𝑐𝑒𝑠 [1] ];
𝑣(2) = 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑊𝑎𝑙𝑙𝑠 [𝑤𝑎𝑙𝑙𝐼𝑛𝑑𝑖𝑐𝑒𝑠 [2] ];
𝑑 (1) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [𝑤𝑎𝑙𝑙𝐼𝑛𝑑𝑖𝑐𝑒𝑠 [1] ];
𝑑 (2) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [𝑤𝑎𝑙𝑙𝐼𝑛𝑑𝑖𝑐𝑒𝑠 [2] ];
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for 𝑇𝑟𝑖 (·) in Eqn. 2, where the additional 𝑅𝑒𝐿𝑈 (𝑥) = max(0, 𝑥) is
for numerical stability. Therefore, after sorting distances from the
lowest to the highest with 𝑎𝑟𝑔𝑆𝑜𝑟𝑡 and achieving𝑤𝑎𝑙𝑙𝐼𝑛𝑑𝑖𝑐𝑒𝑠 , the
results are indexed accordingly using𝑤𝑎𝑙𝑙𝐼𝑛𝑑𝑖𝑐𝑒𝑠 .

𝑇𝑤𝑖𝑐𝑒𝐼𝑛𝑛𝑒𝑟 (Γ, 𝑣) = (𝜈1 − Γ) · (𝜈1 − 𝜈2) (1)

𝐴 =
1
4

√︁
𝑅𝑒𝐿𝑈 (4𝑎2𝑏2 − (𝑎2 + 𝑏2 − 𝑐2)2) (2)

C OTHER PRACTICAL CONCERNS
Collision Avoidance. The first concern is collision detection

since a tiny collision may destructively influence results. Especially,
the results of 3D scene synthesis are subjective to human. Thus,
we should restrict the cursor from suggesting objects that may
collide with existing objects in the scene. In our framework, three
types of collisions are considered: “Object-Object”, “Object-Wall”,
and “Object-Door/Window”. First, a collision detection between
a pair of objects is conducted based on their bounding boxes of
constituent components. For example, to detect a potential collision
between a desk and a office chair, the desk is formed by several
components such as the desk top and legs. The chair is decomposed
similarly. Each component has its own bounding box. As a result,
they collide only if any component of the desk intersects one or
more components of the chair. Second, we detect collision of a wall
with an object by casting a ray from one endpoint 𝜈1 of the wall to
another endpoint 𝜈2. The ray is generated over half the height of the
object. The object is also decomposed into bounding boxes of com-
ponents. Therefore, they collide only if any component of the object
collides with the ray. Third, we also detect collision between objects
and doors/windows, since we deal with indoor scenes. As shown
in Figure 2, windows and doors are first represented as cube ob-
jects elevated in the normal direction of their corresponding walls,
followed by the aforementioned collision detection between two ob-
jects. For windows, we introduce a hyper-parameter𝑊𝑐𝑢𝑡 that cuts
off them from their bottom, because objects such as corner/side ta-
bles can overlap windows partially without entirely blocking them.

Figure 1: The problem of finding a nearest wall: based merely
on “triangle area” to compute nearest walls is defectivewhere
the nearest vector is computed incorrectly as the red one.

In our experiments, we set𝑊𝑐𝑢𝑡 = 0.5which allows cursors to over-
lap half of windows from their bottom. After collision detection, if
a collision happens between a suggested object and the scene, the
suggested object is removed and the cursor should attempt next
iteration.

Priority Blocks. As our framework suggests subordinate ob-
jects before dominant objects if an intersection is associated with
both sub-priors and dom-priors, this may “block” suggestions of
dominant objects. As shown in Figure 3, a TV stand is sufficient for
the coherent group led by a double bed, thus another suggestion of
TV stand blocks the suggestion of a new corner/side table which is
intuitively a more reasonable suggestion. We fix this problem by
restricting the quantity of subordinate objects of coherent groups.
If the number of copies of a subordinate object 𝑜𝑠𝑒𝑐 increases to a
threshold 𝑇𝑠𝑒𝑐 ∈ [1, +∞], the pattern of 𝑜𝑠𝑒𝑐 is removed from the
prior base until the number of copies decreases.

Instance Swapping. Instance swapping is optional to end users
and we do not swap instances if computers take the control of the
cursor. By right-clicking, a new candidate will be chosen among ob-
jects with the same category of the current suggestion. However, a

Figure 2: Window-blocks (Blue) and door-blocks (Green) for
avoiding barricading paths of them.

Figure 3: Priority Blocks. LEFT: after placing a TV stand, the
pattern suggests another TV stand. MIDDLE and RIGHT: by
restricting maximum quantities of copies of subordinate ob-
jects, priors of subordinate objects no longer block inference
of other coherent groups.



category in datasets typically contains hundreds of 3D models with
high-quality textures, which may cause memory and I/O overflow.
Furthermore, it is likely that end users simply want to compare sev-
eral candidates and choose one instead of exhaustively traversing
the entire dataset. To address this, we design a swapping strategy
as shown in Figure 4. We maintain a queue for each category when
performing our method. Each time of right-clicking, an alternative
object is selected, from the front to the end of the candidate object
list. When a queue is completely traversed, a new model is inserted
to the queue and a new traversal starts from the next right-click.
An additional cache is maintained for loading shapes and textures
in the background. A new model is selected from the cache prior
and loaded from the database. Besides, we also allow end users to
claim a particular instance if needed.

Object Filtering. Occasionally, due to various shapes and priors
of objects, a small neighborhood of a ray-casted position may in-
volve multiple objects. If the cursor has a tiny movement, emerged
objects are swapped abruptly in-between, which may influence
user experiences because end users would have to spend time on
tuning the cursor in order to acquire the expected object. Therefore,
we allow end users to specify a certain object. Our method then
filters out all other unrelated priors. Note that this is no longer
applicable if the cursor is taken control by the computer, which
simply calculate an absolute position.

Interactive Thresholds. When applying our method for ar-
ranging objects, we introduce three hyper-parameters respectively:
𝑇𝐻𝑅𝐸𝑆𝑑𝑜𝑚 , 𝑇𝐻𝑅𝐸𝑆𝑠𝑢𝑏 , 𝑇𝐻𝑅𝐸𝑆𝑤𝑎𝑙𝑙 . Different thresholds are actu-
ally trade-offs between layout accuracy and user satisfaction. If we
set thresholds too small, it does increase the plausibility since we
want objects to strictly follow the priors. However, it limits the
available area for user interactions, i.e., end users need to carefully
tune their cursors in order to get a plausible suggestion. Thus, we
set thresholds depending on scenarios. 𝑇𝐻𝑅𝐸𝑆𝑑𝑜𝑚 equals to 0.1 in
automatic mode, 0.6 when end users control the cursor, and 1.5
when filtering objects.𝑇𝐻𝑅𝐸𝑆𝑠𝑢𝑏 equals to 0.05 in automatic mode,
0.6when end users control the cursor, and 1.5when filtering objects.
𝑇𝐻𝑅𝐸𝑆𝑤𝑎𝑙𝑙 equals to 0.1 for all scenarios. Setting the thresholds
is empirical, and the choices of thresholds are not limited to the
above values that are used in our experiments.

D THE OPEN-SOURCE PLATFORM
Figure 5, 6, 7 and 8 show different features of our platform. In

addition to basic interactions, our platform also supports global

Figure 4: Each time of swapping instances, a new object is
selected according to a list. The list is populated if it is tra-
versed entirely to alleviate I/O traffic.

Figure 5: The overview of our platform. Our platform support
rendering scenes with both local and global illuminations.
The former is for efficient manipulations at the front-end.
The latter is run in the back-ground and yield more photo-
realistic results.

Figure 6: Searching objects. Users can search objects by key-
words or shortcut buttons.

Figure 7: Manipulating objects. Objects can be manipulated
by a roulette (Middle) or a panel (Top-Right), including trans-
lation, rotation and scale on three axis respectively. The for-
mer is more intuitive, where objects are transformed follow-
ing the cursor. The latter is more numeric, where objects are
set according to specific values.

illumination in the background. The code of this platform together
with the proposed method will be publicly available.



Figure 8: By clicking the “auxiliary mode” button, our
method is run in the background and various objects are
emerged with the cursor. See also the demo video. The source
code will be publicly available.

E QUALITATIVE AND QUANTITATIVE
COMPARISONS

The qualitative comparisons are shown in the end of this supple-
mentary document. Each row of images show results of 3D-Front
[1], PlanIT [2], GBA [3] and ours respectively. The measurement of
scene quality is multi-modal. Thus, we first conduct the qualitative

comparisons from the user feedback to illustrate the common con-
cerns, e.g., the “leftover space", “room capacity" and “unexpected
object-object relation". Subsequently, we also conducted a user
study to analyze quantitative ratings on general aesthetics and
plausibility according to user experience.

F STATISTICAL ANALYSIS
Table 1 and 2 show the Kruskal-Wallis H-Test with respect to

the experiments in the main paper (See Section 7.2 and 7.3 of the
main paper). According to the Kruskal-Wallis H-Test, there are sig-
nificant statistical differences between our method and completing
baselines.
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Table 1: User Satisfaction and Interactive Efficiency including the Kruskal-Wallis H-Test.

Measurement Traditional Ours Kruskal-Wallis H-Test

Interactive Satisfaction 3.51 (1.06) 3.52 (1.09) 0.022 (0.882)
Result Satisfaction 3.74 (0.96) 3.75 (0.83) 0.061 (0.804)
Time Consumption 835.21 (523.05) 437.6 (301.78) 16.655 (0.0)

Table 2: The Kruskal-Wallis H-Test for the Aesthetics and Plausibility.

Methods 3D-Front with Ours PlanIT with Ours GBA with Ours

Master Bedroom 1.545 (0.214) 104.718 (0.0) 68.153 (0.0)
Second Bedroom 5.641 (0.018) 202.653 (0.0) 30.473 (0.0)
Kids Room 4.905 (0.027) 148.489 (0.0) 71.612 (0.0)
Living-Dinning Room 18.053 (0.0) 135.059 (0.0) 161.005 (0.0)
Living Room 5.003 (0.025) 159.961 (0.0) 110.913 (0.0)
Dinning Room 2.397 (0.122) 156.882 (0.0) 77.251 (0.0)
Total 3.711 (0.054) 884.731 (0.0) 492.114 (0.0)
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