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Abstract— Mesh parameterization is a fundamental technique
in computer graphics. The major goals during mesh param-
eterization are to minimize both the angle distortion and tre
area distortion. Angle distortion can be eliminated by use of
conformal mapping, in principle. Our paper focuses on solvig
the problem of finding the best discrete conformal mapping tlat
also minimizesarea distortion.

Firstly, we deduce an exact analytical formula to represent
area distortion by curvature change in the discrete confornal
mapping, giving a dynamic Poisson equation. On a mesh, the ©
vertex curvature is related to edge lengths by the curvaturamap.
Our result shows the map is invertible, i.e. the edge lengthsan be  Fig. 1. There are an infinity number of conformal parameteriza-
uniquely determined from prescribed curvatures under disgete tions of a given surface. We minimize the area distortiorhimit
conformal mappings. Furthermore, we give the explicit Jacbi the conformal mappings.

matrix of the inverse curvature map. figure

Secondly, we formulate the task of computing conformal paren-

eterizations with least area distortions as a constrained anlinear

optimization problem in curvature space. We deduce expli¢i in Fig. 1. The central problem of the optimal parameterarati
conditions for the optima. can be stated as follows:

Thirdly, we give an energy form to measure the area distortins, HOw can we find the best conformal mapping that have the least
and show it has a unique global minimum. We use this to design area distortion?

an efficient algorithm, called free boundary curvature diffusion, . .
which is guaranteed to converge to the global minimum; it has N this paper, we present a set of theoretical tools as well as
a natural physical interpretation. practical algorithms to tackle this problem.

This result proves the common belief that optimal parameter
zation with least area distortion has a unique solution and an

be achieved by free boundary conformal mapping. A. Background

Major theoretical results are deduced using symbolic compta- Parameterization methods have become a fundamental tool in
tion, for which proofs are given as Maple source code. Praatal graphics, and a significant amount of research has focused on

algorithms are presented for optimal parameterization bagd jt Here, we only briefly overview the most related works and
on the inverse curvature map. Comparisons are conducted \ter readers to [1] and [2] for wider surveys

with existing methods and using different energies. Novel g
rameterization applications are also introduced. The thewetical A common approach for parameterization is to minimize aaiert
frameW(_)rk of the inverse curvature map can be applied to furher energy to control the distortion. Levy et al. [3] defined aerery
study discrete conformal mappings. to approximate the Cauchy-Riemann equation; Desbrun ¢t]al.
Index Terms— Mesh, Conformal Parameterization, Poisson, Met- optimize_ D.irichlet_ener_gy. Variations of harmqnic en_eq;iare
fic, Curvature, Inverse map also optimized using discrete Laplace-BeItram_l operaioifd]—
[10]. More general energy forms can be found in [11]-[16].9¥10
linear methods apply a convex Dirichlet-type boundarytuér
. INTRODUCTION boundaries are applied in [17] and [16] to absorb distostion
introduced by the convex boundary conditions. Alternadyivis],
Surface parameterization is the process of mapping a sutéac [4] apply Neumann boundary conditions by only fixing a few
a planar region, it has broad applications in graphics. rRara vertices. Karni et al. [18] discuss the design of geomdtyica
terizations introduce distortions between the originafae and complex boundary conditions with constraints. Zayer ef¥9]
its planar image, which can be separated iatwle distortion applies discrete tensorial quasi-harmonic maps to impitee
andarea distortion[1] and [2]. In theory,angledistortion can be boundary and reduce the distortion.
eliminated completely by conformal mapping, but it is imgibte
for conformal mappings to further eliminate tlagea distortion
completely.

One of the most prominent characteristics of conformal map-
ping is that it preserves angles. Angle based flattening adeth
(ABF) [20] utilizes this property to produce high qualityeusio-

For a given surface, we can define infinitely many differem-co conformal mappings. They derive the discrete conformalpirep
formal mappings which have different area distortion, asash by minimizing the ABF energy which is defined as differences
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between the corner angles of faces on the original mesh ang show that the curvature map is bijective in the conformal
their images on the parameter plane. During the process thapping. We give an analytical formula for thererse curvature
boundary evolves freely to further reduce the distortiome T map by explicitly computing its Jacobian, which is revealed as
method has been improved by applying efficient and robust nam dynamic Poisson equation (see Section Il). Therefore, ame c
linear optimization in [21]. easily compute the radii from the prescribed curvatures.

Another characteristic of conformal mapping is to map inéisic Discrete conformal parameterization can be treated asnfindi
mal circles to infinitesimal circles and preserve theirrigéetion configuration of radii such that all curvatures are zerosepkc
angles. This inspired the circle packing method in [22].cféir those at the boundaries and cone singularities. All curgatu
packings and circle patterns replace infinitesimal ciraléth configurations corresponding to parameterizations fornaféine
finite circles. In the limit of refinement the continuous carmhial subspace, we call it as thaedmissible curvature spaceéirea
maps are recovered [23]. Collins and Stephenson [24] hadlistortions can be measured by various energy forms defined o
implemented circle packing in their softwa@rclePackwhich the configurations of radii. Optimal conformal parametaian
only considers combinatorics. The connection betweenlecirds equivalent to minimizing the specific energy in the adibiss
packing and smooth surface Ricci flow [25] was discovered urvature space, therefore, it is a nonlinear optimizagioyblem
[26]. The discrete Ricci flow method was introduced in [27] fowith linear constraints.

h lic parameterization. . . . . T
yperbolic p Energies with good properties, such as differentiabilityjque

Circle patterns based on the variational principle in Bden global minimum, simple forms of gradient and Hessian, are
and Springborn [28] have been applied for parameterizaition highly preferred in practice. We discovered an energy fonat t
[29]. The method supports very flexible boundary conditionsieets all the requirements (see Section IlI-E). Furthegmar
ranging from free boundaries to control of the boundary shagimple curvature flow algorithm with free boundary condigds

via prescribed curvatures. The method can also incorpa@ie guaranteed to converge to the global minimum.

singularities to further reduce the distortion. L . — .
The pipeline of optimal parameterization system is as fadlo

Our work differs from the previous work in the following agp& 1. Mesh preparation (Section 1lI-A)

To the best of our knowledge, our method is the only one with Computing the initial circle packing metric (Section-B)

a rigorous proof that it can achieve a unique global optimurg. Selecting the singular vertex set (Section 1lI-C)

Similar to [29], our method works for meshes with arbitraryt, Compute the optimal circle packing metric (Section I)-D
topologies. Our method can compute parameterizations thath 5. Isometric embedding (Section II-F)

the target curvature and target area distortion satisfyesspecific

equations as shown in Fig. 8. Furthermore, our method can be . . .
applied for optimizing arbitrary energies with arbitragnstraints The .'fheoretlcal results of inverse curvature map are enm:liaiij |g
on curvatures and area distortions. Section Il. Each step of the algorithm pipeline Fig. 3 is @late

in Section lll. The experimental results are demonstrated i
Springborn [30] shows that in theory, circle packing andleir Section IV. We conclude our work and point out the future
patterns are equivalent. We choose to use circle packingoi@ss direction in Section V. Detailed theoretical proof in ce@acking
our results as it simplifies the theoretical steps and algoit  setting using symbolic computation is in the Appendix A, iircle
implementation. We prove our major theorem in the setting ghttern setting is in the Appendix B.
circle pattern in Appendix B.

Il. INVERSEDISCRETECURVATURE MAP
B. Overview
In this section, we introduce the inverse curvature mapclwvis

Most of the preVioUS works minimize some energy forms Whicthe key ingredient of our Opt|ma| parameterization_

measure both angle distortion and area distortion. In thagkw . o . .

we take the approach similar to those in [4], [19] to separa-lré‘e d|scu53|_on is based on general triangular meshes viith ar
these two criteria. As shown in Fig. 1, we only minimize thd"ary topologies. We denote a meshMy= {V,E,F}. A vertex, an

area distortion within the conformal mappings, which efiate ©€dge and a face are denotedvasvi, vjl, [vi, v}, W], respectively.
the angle distortions. A meshM embedded irR® has a naturally induced Euclidean

metric, which is determined by each edge length. The vertex
We address the angle distortion by using the discrete cowfor cyryatures are defined as follows. For an interior verter, th
mappings based onircle packing The given mesh is covered cyryature equals 72 minus the sum of angles between edges at
by circles, each of which centered at a vertex as shown in Figie vertex, whereas for a boundary vertex, itisninus this sum.
2. A circle centered at a vertex is tangent to or intersectd WiThe discrete Gauss-Bonnet theorem states that the totatate

another circle centered at its neighbor vertex. We appratém g 2rx (M), wherex (M) is the Euler number of the mesh.
the conformal mapping by varying the radii while preservihg

intersection angles among the circles. (see Section II).

With circle packing, we can establish the mapping from th@- Circle Packing Metric
configuration of radii to the configuration of the curvatyrtdee

i i i each verteth a circle
so calledcurvature map K Given a triangular mesh, we associate q

with radius ;. On edgesg;, the two circles intersect at the angle
K : {configuration of radi} — {configuration of curvatures of @;, as shown in Fig. 2.
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Mesh Preparation‘%’Compute the Initial CP Metriq@—>’ Select the Singular Vertex S%gf» Optimizatior Embedding

Fig. 3: Algorithm pipeline.
figure

The derivative maplK : TMy(u) — TQk(K), satisfies the discrete
Poisson equation,
dk = A(u)du, 1)

whereTM(u) is the tangent space 6, at the pointu, T Qg (k)
is the tangent space @I at the pointk, andA(u) is a positive
definite matrix when restricted t6M(u).

Therefore, the curvature map and the inverse curvature @ap c
be represented as

ug k1
ko= [ “Adn, u-uo= [ "AE)E @)
Fig. 2: Circle packing metric. Uo ko

figure
g A detailed proof can be found in the Appendix. Here we give an

intuitive picture using aifferential network flow models shown

in Fig. 4. We treat the mesh as a network. Curvature flows along
the edges when vertex radii change. Suppgsandv; are two
adjacent vertices, that the logarithms of the radii chang®d

gnd du; respectively, and the conductivity (weight) for the edge
is wij > 0, which depends on the current vertex radii.

Definition 2.1 (Circle Packing Metric)A circle packing metric
for a meshM is defined agM,I",®), whereM represents the
triangulation,I : V — R™ is the circle radius functiongo: E —
[0, 7] is the edge angle function. The discrete metric is detershin

by Iij = \/yi2+y]-2+2y.y,-cosrnj.

i _Then the curvature flux frony; to v; along the edge i®kjj =
Now, the mesh edge lengths can be determined by the cirgle 5y,  5y;). Each vertex has several edges connected to it, s
radii and the intersection angles with the cosine laws,degiin e et edge curvature flux equals the overall curvature gghan

Fig. 2. Since the edge lengths determine the angles on eeeh fa ihe vertexgk; = 3, 8k;j. Therefore, the Laplace matrix has an
the circle radii determine the vertex curvatures. We degigthe explicit form: A = (d;j)

mapping from the configuration of radii to the configuratioh o

the vertex curvatures as tleirvature map -wij  i# ], wVv]€eE
dj=< Skwk i=]j (3
0 i # .,V ¢E

B. Inverse Curvature Map
We now explain the geometric meaning of the edge weight. On

Two circle packing metrics of the same mekh {M,I;,®;} each edge, two circles intersect and share a common choal (or
and {M, I, ®,}, areconformalto each other, ifP; equals®,. common tangent). For each face, three common chords interse
Each conformal equivalence class of circle packing mefdosis at one point,the center of the facas shown in figure 2. Then

a space which we call eonformal discrete metric spacdenoted the weight for a halfedge equals the ratio of the distancenfro
by U. Upon fixing the edge angleg;, a discrete circle packing the center to the halfedge and the current length of the digefe
metric can be represented by a vectoe (u,---,un), where The edge weight is the sum of those of its halfedge weights. Th
U =logy, Ui € (—,+), andn is the number of vertices. Eachedge weight depends on the current curvature (or, equivalie
conformal discrete metric space is homeomorphi®toBecause radii), and therefore the Laplace-Beltrami operator isaiyit.
scaling does not affect the curvature, we normalize theazardl This fact makes the whole theory more complicated.

metrics by requiringy; ui = 0, which is a hyper-plane in thR"
which we denotd1,. The discrete curvatur& maps eactu to
a curvature functiork = (kg, ko, -+, k), and the image o€y :=
K(My) is a convex polytope [26].

The curvature mapgK from the conformal metric space to the
curvature spac : Ny — Qy is bijective; both the map and the
inverse map have an infinite degree of smoothness. Furtiheymo |
the curvature map is real and analytic (so it can be repredent 3kj = 5; kij Skij = wij (duj —duy)
as the summation of an infinite series.)

Fig. 4: Differential network curvature flow model. The curvature
Theorem 2.2 (Inverse Curvature MapJhe curvature mapK flux along edgedk;j is driven by the gradient odu. The change
from a conformal class of circle packing metri€s, to the Of curvature at a vertegk; equals the divergence of the curvature
curvature spaceé) is a C* diffeomorphism, furthermore, it is flow.

real and analytic. figure



SUBMITTED TO IEEE TVCG 4

Error reduction of different models

—e— Kitten

Dog
—e— Gargolye

max(k)

2
iteration step

Fig. 5. Discrete conformal parameterizations usingerse Curvature Map([#v, #f, execution time (sec)] are (20660, 41118, 6.3),
(29923, 59417, 11.2), (20224, 40118, 5.8), (20618, 40808, &nd (10219, 20438, 2.5), respectively with Pentiun8GRz with
2GB memory).

figure

The algorithm for computing the discrete conformal metrifor I1l. OPTIMAL SURFACE PARAMETERIZATION

the prescribed curvaturk is as follows: Algorithm 1 can be ) ) ) _ o o
This section explains the algorithm pipeline for the optation

Algorithm 1 Inverse Curvature Map — K—l(IZ) zi/:;errgszzcstir\l/cé\lf;n in Fig. 3, each subsection corresponds to one

Compute the initial circle packing metrigv,I", ®}
Compute initial curvaturek

U <= Up, U is the initial circle packing metric. A. Mesh Preparation
while |k—k| > ¢ do
Computew;j (u) to form the Laplace matrif(u). In practice, the initial circle packing metric requires e edge
du <:A(u)*1(k—k) angles to be acute, so that the Jacobi matrix of the curvature
Uu<u-+du map is positive definite (equivalently, the Ricci energy E.is
k < K(u) convex). In order to meet this requirement, we remesh thatinp
end while models using the algorithms described in [31] and [32] fdtige
U<u the faces close to equilateral triangles.

applied for conformally parameterizing general meshesctly. g Computing the initial Circle Packing Metric
Fig. 5 demonstrates some parameterization results usiisg th

algorithm. Then, we use a simple method for the initial circle packingriog
described in Algorithm 2.

C. Relation with Discrete Ricci Flow Algorithm 2 Compute the initial Circle Packing Metric
¥or all facesf € F do
for all cornersc; € f do
V(o) — Bt
end for
Supposeug is the initial metric with the curvatur&g, suppose  end for
k is the prescribed curvature, the corresponding metric tisen for all vertexv; €V do

Inverse curvature map can be also deduced from the theory o
discrete Ricci flow [26]. The fact that curvature mEp u — k
is invertible is proven in the following way.

we can define the followingliscrete Ricci energy y; — max{y(c)|c is attached tov; }
T end for
Eric(U) = / (k—k)Tdp. (4) for all edgese= [vi,v|] € E do
Ju 2 _ 2\
° @j = min{cos? i 2;‘; VJZ,’—ZT}, where |j is the Euclidean

From discrete Ricci flow theory, thE(u) is convex in the sub-
affine spacey u; =0, andu is the unique global minimal point.
The target metrial can be obtained by minimizing the energy,
the steepest descent method

edge length
end for

In experiments, this algorithm guarantees to get acuteecorn

du _ —OEric(u) = —(k —k), angles, and the initial circle packing metrics are very etbso
dt the induced Euclidean metric of the mesh.
is the discrete Ricci flow. Therefore, the curvature nm&pis

invertible. ) _
. o C. Selecting Singular Vertex Set
In order to compute the optimal parameterization, we need an

explicit form of the Jacobi matrix of the curvature map, whis In order to reduce the area distortion, it is very helpful to
related to the Hessian matrix Bkic(u). This is key for nonlinear concentrate curvatures on a subset of vertices, we call them
optimization algorithm. a singular vertex setFor example, in general, if a mesh has
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boundaries, all of the boundary vertices are in the singudatex
set.

In step 4 of our algorithm pipeline Fig. 3, we select the slagu

Then the optimal parameterization problem is equivalerdpi-
mizing some energy forrk (k) in the admissible curvature space.

Optimal Parameterization Problem: Compute the minima of

vertex set using algorithm 3, which is similar to the one usetie energyE (k) in the admissible curvature spafk:

in the circle pattern work [29]. Intuitively, we let the cature

be uniformly distributed on all vertices, then we measure th

area distortion, and pick the critical points of the areadadt®n
function. The algorithm is described in Algorithm 3. Fig.
demonstrates the algorithm using the Stanford Bunny model.

Algorithm 3 Compute the Singular Vertex Set
ki — 0,v; € oM,

ki — Z’TX—(M_),vi ¢ dM, n is number of interior vertices

u«— K~*(k) using algorithm 1
S« dMU{local minima ofu}

L.

Fig. 6: Singularity selection process: (a) and (b) depict the area
distortion of the bunny model without any singular vertexe W

select critical points in ear tips and the point between duts of
the ears. (c) shows the area distortion after computingriverse
curvature map with the selected singular vertices. Theoumity
of the area distortion is greatly improved.

figure

D. Compute the optimal Circle Packing Metric

mingE(k),s.t.k € My.

Basically, we compute the gradient Bfk) w.r.t k, denoted as

6DkE, and project the gradient to the affine subspatig and

updatek along the projected gradient direction, until the projecte
gradient equals to zero. Namely, at a critical pointegk), OkE

is orthogonal to the admissible curvature space. This poee
can find one local minimum and does not guarantee we find
all the minima, neither the global minimum. In next subsacti
we design a special energy with unigue minimum, therefoie th
algorithm can reach the global minimum.

Algorithm 4 Optimal Discrete Conformal Parameterization
Randomly select & € My
repeat
u -« K=1(k)
Compute the gradieril,E
OkE < A(u)*04E
for all vi € N do
kE <= OkE— < OkE, g > g

end for
OKE «— OkE— < OkE,d > #
k —k—-AOE

until |OE| < €

whered is a vector, whera; = 0 for normal vertices and; =1
for singular vertices.

Theorem 3.2:Supposek is an interior point ofly, also an
optimum for a energy formE(u), then all the components of

In the following, we explain the process to compute the opgtimOgE corresponding to the singular vertices are equal.

circle packing metrics in step 4 in the algorithm pipelineFig.
3.

There are two methods for the optimization, the projectedlignt

Proof If k is an optima ofE(k), then OE_LMy. Supposey; is a
normal vertex, the normal to the hyperplafie = 0} is &, the
normal to the plangyy,cskj = 2mx (M)} is d, whered; =0 for

method described in Section IlI-D.1 and the free boundarwrmal verticesy; andd; =1 for singular vertices. Therefore

curvature diffusion method described in Section IlI-E.

1) Projected Gradient Method for OptimizatioWe can define

various energy forms to measure the area distortion. Theggne
can be defined either in the conformal metric space or in the c

vature space. In terms of computational complexity, twohoes
are equivalent. We decide to define the energy in curvatuaeesp

OkE = Aig + ud,

where i is a real number]

u

The common energy forms used in the literature are:

the main reason is that the curvature space is a convex affind) Angle Based Flattening energy defined in [20]: this energy

subspace, if there energy is convex, then there exists amly o

optimum, it is easy to handle both theoretically and pratic

The possible solutions must be a valid parameterizatiomeha
all curvatures are zeros except the singularities.

Definition 3.1 (Admissible curvature spacepiven a meshM,
the vertices are divided to two se&and N. S represents the

singular verticesN represents regular vertices. The admissible
curvature space is an affine subspace defined as the iniensect

of the following hyper-planes

M= () {k =0} { zskj = 2mmx (M) } () Q«

vieN

©®)

measures the differences between the original and thettarge
angles at all the corners, (a corner is determined by a face
and one vertex adjacent to it).

Eagr(k) = ;(9(k) —0(ko))?,

where 8(ko)'s are the original corner angles.

2) Area distortion energy defined in [4]: this energy measure
the ratio between the original face area and the face area
on the parameter plane,

Eno(k) = Z( st (k)

St (ko)

~17, (6)
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where st (ko), st (k) are the areas of the face under the The curvature entropy energy is closely related to the asgu
original metric and the target metric. This energy is thenergy defined in 7,
most direct measurement for area distortion. u
3) u-square energy: this energy is just the normupfvhich E2(u) :/ (u—up)TIdu,
are the logarithms of the change of circle radii, because the to
mean ofu is zero, this energy can be treated as the variangghere| is the identity matrix. If we replaceé by A(u)~ in the

of u, which is a measurement of the uniformity @t above formulae, we will get the curvature entropy energy
E (k) = |u(k) —u(ko)|?, 7 u k
u2( ) | ( ) ( 0)| ( ) EEN(U):/ (U—UO)TA(U)fldUI/ (U—Uo)Tdk.
whereu(ko) is the initial circle packing metric. Uo ko

The gradient of a energ w.r.t. u is OuE, which is related to BothA~1(u) andI are positive definite. Therefore u-square energy
OkE by and curvature entropy energy are equivalent for the purpdse

OE = A (u)O,E. measuring the uniformity of the area distortian

This energy can be directly optimized using the projectedignt
method. The gradient of the curvature entropy is very simple

OkEen(u) = u—uo.

It can also be minimized by the followingurvature diffusion
method.

Algorithm 5 Curvature Diffusion with Free Boundaries
while max; en|ki| > € do
for all vi e N do
du < —k;
Ui < Ui +Aduy
end for
co Zvi‘\e/\‘/ Ui
for all vertexv; €V do
U <— U —C
Fig. 7: Approximating conformal mappings by circle packing. end for
The circle radii are changed while tangency relations age pr end while
served. The second column shows a circular boundary congliti
the third column shows a free boundary condition. For the fre
boundary condition, all circle radii on the boundary vesticare Intuitively, the algorithm set%‘t‘ = —k, then according to the Eq.
equal. (1), the curvature will evolve like a heat diffusior%—'? = —Ak.
figure The singular vertices absorb all the curvature flux, and thelev
surface deforms to be flat in the most natural way. Because in

the heat diffusion process, the entropy increases, we naise t
E. Curvature diffusion with free boundary conditions energy as curvature entropy.

The energies introduced in the above are not satisfactory We show that when the algorithm terminates, the deformaiion
practice. Firstly, it is unclear whether they have uniquebgl the singular vertices are uniform.

minimum; secondly, their gradient has complicated fornereh
fore it is expensive to compute using the projected gradie
method.

ln?mma 3.4:Supposeu is the solution of the free boundary
curvature diffusion algorithm, them — uio =constVy, € S

. o o
In this part, we introduce a novel energyurvature entropywhich Proof For all boundary vertices, at th% beginniog— ui's are
overcomes the shortcomings of other energies. It has a enidif'°S: At each normallg’atlon step,—u;’ change by the same
global minimum; its gradient has the simplest formit can be amount. Thereforey; —u;'s are always equalJ

computed efficiently with methods other than projected igratd T.he thirducolumn in Fig. 7_demonstrates thi's fact that allhlf t
method. circle radii of boundary vertices are equal (this is becdbseadii

o for all vertices in the initial circle packing metric are edju This
Definition 3.3 (Curvature Entropy Energy)the entropy energy result is consistent to theorem 3.2, the gradient of theature

IS K entropy isu, and this algorithm leads to a solution where all
Een(k) :/ (u—up)"dk. u’s are equal on the singular vertices. Therefore, this élyor
ko minimizes the entropy in a different approach.
The curvature entropy energy is the Legendre dual of discret ) ]
Ricci energy Theorem 3.5:The curvature entropy energy is well defined

Erc(U) /U (namely, the value is independent of the choice of the iat&yn
Ric =
u

(k —ko) " du. , - - .
o path)and has unique global minima point in admissible durea
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space. The free boundary optimization algorithm leads ® th
global minima.

Proof In order to show the energy is well defined, we need to
show the 1-forny (u —u?)dk is closed. Namely, the matr()%”:)

is symmetricA is symmetric, therefora=1 = (3—2) is symmetric
also.

We can directly compute the gradientidn (k), OxEen(k) =u—
Uo. The necessary condition of the optima pointiis- u’ = const
for all singular vertices.

We further compute the Hessian matrixEgy, which is directly
A~1(k). Because\ is positive definite, therefora=? is positive
definite. ThereforeEgy is a convex energy. On the other hand
the admissible space &fis a convex affine space, the energy h
unique global minima on it.

Fig. 8: Mesh parameterization with the inverse curvature map
¥r a topologically complicated model: The David head model
to have four boundaries, as shown in (a) and (b). Four differe
The free boundary optimization algorithm can reach onécaltit configurations are depicted in (c)-(f), each of which has auter
point of Egy andEgy has only one unique critical point, therefore poundary and three inner boundaries in the parametric space
the free boundary curvature optimization algorithm carchethe €ach case, the parameterization is obtained by using tieesiev
global minima.d curvature map by specifying the sum of target curvatures for

. . ) ) . an outer boundary asr2and the sum of target curvatures for
Comparing to the projected gradient algorithm SectioDlil; the  ooch inner boundary as27t andkie Y is constant for boundary
curvature diffusion algorithm doesn't need to solve thesBon o tices.

equation, it is simple and direct, and easy to implementhin tfigure
algorithm pipeline Fig. 3step 4can apply the curvature diffusion
algorithm directly.

angle differences [21]. As shown in Table I, all of the method

) minimize the angle distortion and hold the conformality el
F. Embedding

The area distortions are measured with two different amres
The final step in our algorithm pipeline Fig. 3 is to isomedtig  Our optimization approaches provide the best results fer th
embed the mesh on the plane using the circle packing metgimplicated models, such as the horse and camel. ABF++ gives
obtained from the optimization. the small area distortions in many cases, however it carirfall

We first compute a cut on the mesh to slice the mesh to an oﬁgﬁ Iocr:]al n_1in|imum in the case of a complilcated model (seT Fig.
topological disk. Several algorithms [33], [34] can be gl 11). The circle patterns provide comparable good resuliis al

directly. Then we embed the open mesh isometrically onto tIIfJeSted models.

plane using the optimal circle packing metric. For meshe wi

less than 3K faces, we select a face near to the center of the o st(k) \ 2
mesh as the root face and directly embed it, then flatten tesfa Log area distortion Z (Iog Sf(ko))
adjacent to it. We propagate the embedding face by face until

we have flattened the whole mesh. For large scale meshes, the . . - .
propagated errors accumulate, so instead, we use a methibak si 53;?;2”?'2?22{3: ?22 F'?(lj?gsrgm tggznzfg%e)zzy Jl_sh%r?;atl

to [21]. Basically, we form a linear system using the finatlirg Ip 9 h kq d ined b. h b
packing metric, and approximate the parameter positionsdoh a linear sparse system whose rank Is determined by the number

vertex in the least square sense. The result was always frmun thmnesthtterrtli%es(;j. 'Aﬁ]_snthe Lz\s;\f)lace ma:lm |stposr|t|(\j/?a r?ter:m':ﬁ q
be a valid embedding for all of our experiments. en constrained ofiMy(u), we use conjugate gradie etho

to solve the linear system, which is time and space efficiést.
shown in Fig. 5, our parameterization with inverse cunatmap
1IV. IMPLEMENTATIONS AND EXPERIMENTAL RESULTS is Comparable to those of ABF++ and circle pattern methots. T
error deduction is very fast as in the convergence chart.t Mos
In this section, we give the experimental results of our @lgms models can be parameterized within 4 steps in Algorithm 1.
and compare our methods with the state-of-the-art teclesiq
including LSCM [3], ABF++ [21], and circle patterns [29]. Fo
fair comparison, we tested the previous methods with theso
which are available in the websites of the original authors.

L1:or optimal parameterization, the free boundary curvatlife
Jusion method (Algorithm 5) is much more efficient than the
projected gradient descent type method (Algorithm 4). Tkis
because the latter need to compute inverse curvature map for
Table | summarize the statistics of our experiments on séveeach iteration step, this is very time consuming when theggne
models as shown in Fig. 9, Fig. 10, Fig. 11. The angle distorti function is tiny deceased near the minima. The curvatufasidn

and area distortion are judged by various energies respicti method can get to the minima much more directly. Take the
We measure the angle distortions with the three differena-me30k vertices horse model (Fig.11) as example: the ICM egtrop
surements; conformality [3], L2 shear [21], and squared sim method cost several minutes, whereas the curvature diffusi
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method only takes 21s to get the comparable result. For othesed Maple to derive various formulae. In order to save spaee
energy (ABF, Area Distortion U2), the gradient form is morenly give the Maple source code and omit the calculationltgsu
complicated than curvature entropy energy, thus cost nmiore. t returned by Maple.

Experiments show that the optimizations of curvature emytro
energy and ABF energy lead to parameterizations with high
qualities than other energies. The area distortion enermgy(®
has the local minima.

emma 5.1:For a Euclidean trianglelvi,vo,v3] with a cir-
cle packing metric with radiiyi, 5, y3, and intersection angles
M2, @23, P31, the three common chords intersect in one p@nt
which we call the center.

Proof We first compute the three edge lengthslj,lx are the

V. CONCLUSION AND FUTURE WORK edge lengths opposite to verticesv;, v respectivelf/:
In this work, we introduce a set of rigorous theoretical soahd > 1K= sqrt(r_"2+r_j2+2 *r_ixr_j «phi_ij);
> |_ii= sqrt(r_j2+r_k"2+2 *r_j *r_k *phi_jk);

practical algorithms to solve the optimal conformal parteria

- > |_j:= sqrt(r_k"2+r_i"2+2 *r_K *r_i *phi_ki);
zation problem.

o We next compute the inner angle\at 6
Inverse curvaturg map represents the exact analytlgailmelg stheta i= arccos(( "2+ K'2-_i2)/2 A ek
between area distortion and curvature as a dynamic POISSQkbta j:= arccos((l_k'2+1 i"2-| j"2)/2 1k *1i);
system. This enables us to find the conformal parameteasizati>theta k= arccos((l i"2+_j"2-I_k2)/2 «i o+
Wlth the I_east_ area d|stort|9n using nonI|r_1e_ar opt|r_n_|zrattech- Let the coordinates of the three vertiogsy;, vic be (xi,¥i), (X, Y;)
niques with linear constraints. The explicit conditions the zng (X Vi),
optima are deduced from the variational principle. A specia | )
. . L . >x_i =0 ; y_ii=0;
energy form to measure the area distortion is investigattesl, >xj =LKk ;Y =0
so-called curvature entropy, which has a unique globalmunh  >x k :=lj «cos(theta_i); y_k:=I j « sin(theta_i):
and can be optimized using curvature diffusion algorithnthwi
free boundaries. Our experiments on complicated mesheg®gup ' ' '
our theoretical discoveries. >C_I= (X-X_i)"2+(y-y_i)2-r_i"2;
>C_ji= (X-X_J)"2+(y-y_i) 2-1_j"2;

The inverse curvature map theorem is deduced for meshes wiehk:= (X-X_K)"2+(y-y_k)"2-r_k'2;
Euclidean geometry, namely, the mesh is formed by gluinthe equations of the three common chords are
Euclidean triangles. We believe the inverse curvature nwgsh L o

. . . >s ij:= simplify(c_i-c_j);
for meshes with hyperbolic and spherical geometry, andslea;i ik:= simplify(c_ j-c_K);
to novel hyperbolic and spherical parameterization algors. >s kii= simplify(c_k-c_i);
Hyperbolic and spherical parameterizations play impartates We first compute the intersection poifito,yo) of the common
for shape analysis and geometric modeling. chordss; ands, ’

The three circles are

Although we solved the optimal parametrization problem fofx_o:=solve(s_ij,x);

given singular vertex set, it remains challenging problemn fY_0:=solve(subs({x=xo},s_ik).y);
determine the optimal singular vertex set. The common bfelie Finally, we verify (Xo,Yo) is also onsi,
choosing singular vertices is to pick the critical pointsiué area
distortion function, as our algorithm Section 1lI-C. In theure,
we will apply our theoretic tools to continue the exploratmlong The result is zero, which means the three common chordseter

>simplify(subs({x=x_o,y=y_o},s_jk));

this direction. at one point[]
Lemma 5.2:For a triangle with the circle packing metric, the
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Lemma 5.3:For a triangle with the circle packing metric, the
APPENDIXA: PROOF OFINVERSE CURVATURE MAP following equations hold:
THEOREM
96,06 ©
In this appendix, we give a detailed proof of the main theorem ouj oy’

in this paper. The proof is based on analytic geometry. We hav
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Model Methods  |conformality Angle | L2 L2 log area
distortion shear stretch |distortion

camel |LSCM 0.00002 0.002030.0511185.809(11.84310
#v: 20773ABF++ 0.0001% 0.0013%0.0453 5.1039 0.74653
#f: 40384|CirclePatterns 0.00008 0.0014%0.0472 8.5819 0.70627
Free Boundary 0.00032 0.003970.0699 5.1496 0.68069

Optimize U2 0.0012% 0.003740.0691 5.4908 1.92130
Optimize entropy  0.00019 0.002910.0613 5.4141 0.74996
Optimize ABF 0.00020 0.002780.0596 5.4812 0.73377

horse [LSCM 0.00017 0.000810.0310 16.8601 7.45106
#v: 3140qABF++ 0.0000% 0.000470.0256 1.5570 0.86409
#f: 61588CirclePatterns 0.0000% 0.000460.0262 1.6924 0.40167
Free Boundary 0.00034 0.0019%0.0502 1.6968 0.40979

Optimize U2 0.00051 0.001670.0465 1.3928 0.36636
Optimize entropy  0.00028 0.001610.0458 1.7169 0.42591
Optimize ABF 0.00027 0.001560.0454 1.6462 0.40199
oliverhandLSCM 0.00024 0.000340.0216 3.2283 3.97385
#v: 5660|ABF++ 0.00007 0.000180.0162 1.0274 0.05258
#f: 10782CirclePatterns 0.00012 0.000380.0228 1.0278 0.05314
Free Boundary 0.00117 0.003530.0641 1.0383 0.06702
Optimize U2 0.0007T 0.002630.0569 1.0766 0.13460
Optimize entropy  0.0009% 0.002640.0584 1.2530 0.39787
Optimize ABF 0.00081 0.002490.0543 1.0363 0.06675
Optimize AD 0.00104 0.002940.0587 57.0863 6.40391
woodfish|LSCM 0.00022 0.0003¢0.0209 3.2104 3.33530
#v: 4457|ABF++ 0.00008 0.000210.0152 1.0126 0.02515
#f: 8449 |CirclePatterns 0.00008 0.0002%0.0192 1.0135 0.02689
Free Boundary 0.00162 0.0033(00.0664 1.0171 0.02832
Optimize U2 0.00108 0.002270.0571 1.0217 0.03755
Optimize entropy  0.00158 0.0031%0.0649 1.0167 0.02803
Optimize ABF 0.00128 0.0021%0.055% 1.0167 0.03056
Optimize AD 0.00066 0.002670.0620 3.8291 2.09491

TABLE |: Comparison of different conformal parameterization mdtho
table

292224

Fig. 9: Comparison of different parameterization with the Woodfisbdel: (a) initial, (b)-(e) optimizing ABF, AD, entropy, driJ2,
respectively, (f)-(h) LSCM, circle patterns, and ABF++peetively

figure

The original proofs of this lemma can be found in [26] and [24} d_ij:= diff(theta_i,r_j) *r_j;
For the sake of completeness, we give the following prooflaim > d_ji:= diff(theta_j,r_i) *r_i;
to that in [26]. > simplify(d_ij"2-d_ji"2);

Proof The proof is direct: The result is zerod
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Fig. 10: Comparison of different parameterization with the Oligeliand model: (a) initial, (b)-(e) optimizing ABF, AD, enpy
and U2, respectively, (f)-(h) LSCM, circle patterns, andFAB-, respectively
figure

Lemma 5.4:For a triangle with the circle packing metric, theonly the diagonal elements are positive. Using linear akgelb

derivative of 6 satisfies: can be shown thal has a one dimensional null space, spanned
hy h; by t=(1,---,1), and J is positive definite constrained on the
de = *E(du —duy;) — W(du —du). (10)  complement space.

In the tangent space of admissible curvature space, becduse

Proof Because the face is a Euclidean triangies+ 6; + 6 = the Gauss-Bonnet theoremk is orthqgonal a, i.e.5;dk - 0.
7, and therefored & /du; + 36} /du; + I6,/du; = 0. Because of In the tangent space of the normalized conformal metric espac

symmetry in Eqn. 996,/du; = —8,/du; — 6, /du,. Therefore, because of the normalization ccl)nditioju. ig orthoggnal ta, i.e. .
yidy = 0. Therefore, the Jacobian matrix in invertible. According

dg = g—ﬁ:du + g—g;duj + g—idu( to the inverse function theorem, the curvature nkapl, — Qg
_T_:(du—duj)—%(du—dl.k). is invertible.

By direct computation, the Jacobian matrix is differerigakbo
infinite degree, and so is its inverse. Therefore the curgamnap
Now, we are ready to prove the main theorem, is aC* diffeomorphism. Furthermore, the explicit formula for the
Jacobian shows that its element are elementary functioribeof
u;, and therefore the map is real and analyfic.

O

Theorem 5.5 (Inverse Curvature Mapyhe curvature mapK
from a conformal class of circle packing metri€s, to the
curvature spacé is a C* diffeomorphism, and furthermore,
it is real and analytic.

The derivative maglK : TM(u) — TQk(k), satisfies the discrete
Poisson equation,
dk = A(u)du, (11)

whereTTy(u) is the tangent space 6f, at the pointu, TQ(k)
is the tangent space @I at the pointk, andA(u) is a positive
definite matrix when constrained @, (u).

Fig. 12: Circle pattern metric

Proof We consider the one ring neighborhood of a vertex
Let an adjacent face b, vj,w], where we useeiJk to denote
the angle atv; within the face. Then from the definition of

discrete curvature and from Egn. 10 in the lemma 5.4, we get
dk = — 3y v, ueF deilk = Sy jceW; (dy — duj), wherew; is APPENDIXB: INVERSE CURVATURE MAP THEOREM IN

CIRCLE PATTERN SETTING

figure

the edge weight as defined in Eqn. 8. If edgev;] is adjacent

to two fi(;?ks[vi’vl’vk} and [vj,vi,w], then its weight is equal We used the symbols in [29] for our argument. The configunatio

96/ : . . o
to wij = -+ gy In [22], Thurston gave a geometric proofof circle pattern is shown in figure V, two facés,v;,v] and
to show thatg—fj! is positive if the center is inside the triangle,[Vj,Vi;vi] sharing an edge = [v;,vj]. The face circum-circles
which is guaranteed if all edge angleg are acute. Therefore centered atijx and cji with radii yj and yj, intersecting at
all edge weightsw;; are positive. In our work, we require all of 2N @nglede. Let pij =logyj, pji = logy;i, then
the edge angles to be acute. The Jacobian matrix in Egn. 1 has 1 SinBe

' _
the following characteristics: summation of each row iozand % =tan & —cosBe’ 12)
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wherex = pjjx — pji - Then the curvature of fadec T is defined [12] P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe, ttfexmapping

as

o =21—Y 2¢, (13)
t e% %

Theorem 5.6 (Inverse Curvature Map in Circle Pattern):

SupposeM is a closed mesh with a circle pattern. If the edg84l

weights 6. € (0,1) are fixed, then the face curvature map

®: {p} — {®} with the constraints .t ot = 0 is bijective and [15]

real

Ok

op

Similar to Lemma 10, the following holds

analytic.

B % B sinB.e*
Ok (& —coshe)?(1+

70 > 0,when6, € (0, 1)
(ex—cosze)Z)

ok
K _ _
d(pe - dPI (dpk dp|)7

then from equation 13, the Jacobian map is

d® =A(p)dp

is positive definite ]

The projected gradient optimization algorithm 4 and curat (21]

diffu
setti

(1]

[2] A. Sheffer, E. Praun, and K. Rosélesh Parameterization Methods [25]

(3]

(4]

(5]

(6]

(7]

se algorithm 5 can be directly translated to the cigdétern
ng.
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