
Skeleton-Based Shape Deformation Using
Simplex Transformations

Han-Bing Yan1, Shi-Min Hu1, and Ralph Martin2

1 Dept. of Computer Science and Technology, Tsinghua University, P.R. China
yanhb02@mails.tsinghua.edu.cn,

shimin@tsinghua.edu.cn
http://cg.cs.tsinghua.edu.cn

2 School of Computer Science, Cardiff University, U.K.
Ralph.Martin@cs.cardiff.ac.uk

http://ralph.cs.cf.ac.uk

Abstract. This paper presents a novel skeleton-based method for de-
forming meshes, based on an approximate skeleton. The major difference
from previous skeleton-based methods is that they used the skeleton to
control movement of vertices, whereas we use it to control the simplices
defining the model. This allows errors, that occur near joints in other
methods, to be spread over the whole mesh, giving smooth transitions
near joints. Our method also needs no vertex weights defined on the
bones, which can be tedious to choose in previous methods.

1 Introduction

Mesh deformation is widely used in computer animation and computer modeling.
Many techniques have been developed to help artists deform body shapes for 2D
and 3D characters, such as free-form deformation (FFD), differential methods,
simplex transformation methods, and skeleton-based methods.

The latter use a ‘skeleton’, in which two or more ‘bones’ meet at each joint, to
control shape deformation. This allows intuitive control, naturally describing the
way in which many objects, e.g. animals, deform: the muscles and other tissues
follow motions of the underlying bones. Such methods are usually controlled by
an user-specified skeleton, rather than the exact medial axis. However, traditional
skeleton-based methods are widely criticised for requiring a tedious process of
weight selection to obtain satisfactory results. Seemingly, there is no criterion
for weight selection which is universally applicable to all cases.

This paper presents a novel mesh deformation method which combines the
skeleton-based method and the simplex transformation method, with two main
differences from traditional skeleton-based methods. Firstly, we use the skeleton
to drive the transformation of simplices, rather than vertices as in previous
methods. Secondly, we avoid the use of any weights, yet our approach still gives
high quality results.

Our approach can be applied to 2D and 3D meshes. Our inputs are the initial
mesh, the initial skeleton—a set of straight line segments connected together at
joints, and the deformed skeleton. The output is the deformed mesh.

H.-P. Seidel, T. Nishita, and Q. Peng (Eds.): CGI 2006, LNCS 4035, pp. 66–77, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Skeleton-Based Shape Deformation Using Simplex Transformations 67

The main steps of our method are as follows:

– Decide which bone of the skeleton controls each simplex.
– Find the transformation relating the initial and final position of each bone,

and apply it to the simplices under its control.
– Use optimisation to stitch the simplices together while keeping each simplex

transformation as close as possible to the value calculated above.

Our main contribution is to provide a skeleton-based deformation method
which does not require a tedious weight adjustment process, yet which gives
very good results. Our key new idea is to use the bones to control mesh sim-
plices instead of mesh vertices, and hence to take advantage of the connectivity
information between vertices. To achieve this, we also present a segmentation ap-
proach to determine the correspondence between mesh simplices and the bones.

2 Related Work

One of the best known methods for carrying out deformation, widely used in
commercial software, is FFD. The classic FFD method [1] encloses a shape in
an elastic control lattice, such as a Bézier volume, or a more general lattice [2],
then deforms the volume by moving the control vertices: as a result, the shape
inside is deformed.

Differential deformation methods have recently become popular [3, 4, 5, 6].
Laplacian coordinates [3] are used to represent surface detail as differences from
the local mean. Poisson mesh methods [6] manipulate gradients of the mesh’s
coordinate functions and then reconstruct the surface using the Poisson equation.

Simplex transformation is another approach to deformation and morphing.
The use of global transformations combined with matrix decomposition was
proposed in [7] as a means to carry out morphing. This method was extended to
local transformations by [8], in which meshes are stitched using an optimization
method. Simplex transformation has also been used with surface triangle meshes
to perform deformation learnt from existing examples [9, 10].

None of the above methods take into account the way in which shapes’ features
are naturally controlled. However, the shape and movement of an animal is
determined by its skeleton, so the latter provides an intuitive approach to control
the deformation of animal-like shapes. Such concepts are also referred to as
skinning, envelopes or skeletal subspace deformation [11].

Existing skeleton-based algorithms define the final position of a point as a
weighted sum over its initial position projected into n moving coordinate frames,
corresponding to the n bones. Its position p′ after deformation is:

p′ =
n∑

k=1

wkpMk, (1)

where p is its initial position, Mk is a transformation matrix that transforms
bone k from its initial position to its new position, and wk is the weight of

68 H.-B. Yan, S.-M. Hu, and R. Martin

this point relative to bone k. Because each point is controlled by several bones,
careful choice of weights wk is needed to avoid self-intersections, especially near
the joints, and to keep the surface smooth. Appropriate weight selection is an
extremely tedious problem if done manually. Much research has focused on how
to calculate appropriate weights [12, 13], or how to learn weights from exam-
ples [11, 14], but no single method works well in all cases [15]. As a result, [15]
proposes that each component of the matrix Mk is given a separate weight to
provide maximum flexibility, instead of a single weight for the whole matrix.
Clearly, this means even more weights must be adjusted, To do so, this method
calculates weights from a class of basic deformation shapes.

The underlying problem here is that each point is updated independently
using Eqn. 1, which requires the wi to be carefully chosen to avoid gaps and
artifacts. However, the points are embedded in a shape, and are related; the
mesh provides connectivity information, but it is not directly used. We do so, to
our advantage. By retaining skeleton-based control, we still have a natural and
easily-understood approach. By using the connectivity information, we avoid the
above weight adjustment problem and instead solve a linear equation to perform
a similar task. This simpler approach still gives high quality results.

There has been much work on skeleton construction and segmentation, ei-
ther independently, or doing both at once [16, 17, 18, 19]. We focus on how to
segment the model from a given skeleton, as often artists wish to create the
skeleton themselves. [19] proposed creating the skeleton and segmentation itera-
tively, but this changes the skeleton during iteration. [17] showed how to derive
a segmentation from a given skeleton using space-sweeping method, but this
does not work well if the skeleton is coarse. We give a new effective method to
segment the model which considers both spatial distance, and the shortest path
distance in the mesh, between each simplex and the bones.

We provide basic concepts concerning simplex transformations and skeletons
in Section 3. We first apply our method to 2D triangle meshes in Section 4, then
3D triangle meshes in Section 5. We give conclusions in Section 6.

3 Simplex Transformations and Skeletons

Simplices are triangles in 2D and tetrahedra in 3D. Given two simplices S1 and
S2 in some space, there exists a unique transformation that changes S1 into S2.
In 2D, this can be written as: vi = Rui + T , where the matrix R represents
rotation and shape change information, T is a translation vector, ui are the
vertices of S1, and vi are the corresponding vertices of S2. R and T can be
calculated from the vertex coordinates of S1 and S2, by first finding R using
R = V U−1, where in 2D, V =

[
v1 − v3 v2 − v3

]
, U =

[
u1 − u3 u2 − u3

]
, and

in 3D, V =
[
v1 − v4 v2 − v4 v3 − v4

]
, U =

[
u1 − u4 u2 − u4 u3 − u4

]
. Having

found R, T can now be calculated.
The mathematical skeleton, or medial axis, is generally quite complex even for

simple 3D shapes, and is sensitive to small perturbations of the shape boundary.
It can also contain sheets rather than lines. For simplicity, most skeleton-based

Skeleton-Based Shape Deformation Using Simplex Transformations 69

deformation methods use an approximate skeleton to control deformation, con-
sisting of articulated straight lines or bones. As noted, often, artists prefer to
create the skeleton by hand since this is easy to do interactively, and allows
appropriate control. The skeleton can also be generated automatically [16, 17].

4 2D Triangle Mesh Deformation

We first consider the case of deforming a 2D triangle mesh in the plane.

4.1 Correspondence Between 2D Triangles and Bones

In our approach, each simplex is controlled by one bone, so we need to segment
the model according to the given skeleton: deciding which bone controls each 2D
triangle is the first step of our algorithm. Only after doing this can we decide
how each triangle should deform. We determine the controlling bone as follows:

1. Calculate the minimum effective distance with penalty from the simplex to
those bones for which it is within range.

2. Decide if the minimum effective distance with penalty is less than a threshold.
(a) If so: the bone with the minimum effective distance with penalty controls

this simplex.
(b) Otherwise: calculate the shortest path distance from the simplex to those

bones for which it is within range. The bone with the shortest path
distance is the control bone.

We now explain the details. Normally, a skeleton lies within the volume defined
by the mesh. However, we require that free ends of bones (i.e. ends not connected
to other bones) must lie just outside the mesh, to ensure that each bone properly
controls all the triangles in its control domain, as explained later.

Consider Fig. 1. AB, AC, and AD are three bones connected at the articulat-
ing joint A. We use range lines to define the border of each bones’ control domain.
The control domain for each bone determines which simplices that bone may
control. If the centroid of a simplex lies within a given bone’s control domain,
the bone is a candidate for the control bone for that simplex; note that the

Fig. 1. Range lines Fig. 2. Range planes

70 H.-B. Yan, S.-M. Hu, and R. Martin

centroid of a given simplex may lie within the control domain of several bones.
First, we construct range lines for each bone. For free ends of bones, like B, the
range lines are perpendicular rays, like BG and BH . Where several bones meet,
we determine the adjacent bones in both clockwise and anticlockwise directions,
and draw bisecting rays between the current bone and the adjacent bones to give
the range lines, like AE and AF . Each such range line divides the plane into 2
parts, one on the same side as the bone, and one on the opposite side. Given
any point (or simplex), and a bone, if the point (or centroid of the simplex) lies
on the same side as the bone for all of the bone’s range lines, we say the point
(or simplex) is within the range of this bone. We can now determine for which
bones each simplex is within range.

If a given point J is within the range of some bone, we define its effective
distance to the bone as follows (see Fig. 1). We find the corresponding point I
on the bone AB as explained next; we call line IJ an effective line for bone AB.
The direction of ray IJ is found by interpolating the normals of range lines AE
and BG using Eqn. 2 where N denotes the normal to a line:

[(1 − tI)NAE + tINBG] × [(1 − tI)vA + tIvB − vJ] = 0. (2)

Here, t parameterises the bone from 0 at A to 1 at B; tI is its value at I. Solving
Eqn. 2 for tI gives the position of point I. We call the distance from J to I the
effective distance from point J to bone AB, or from the corresponding simplex
if J is its centroid.

Deciding which bone has minimum effective distance from a simplex is not by
itself sufficient to decide which bone should control a simplex. For example, if
a man stands with hands by his sides, a point on his waist may have a smaller
effective distance to a hand bone than to any spine bone, but clearly waist
points should be controlled by spine bones. We overcome this problem by using
a penalty δ, equal to twice the overall mesh size. We determine how many outer
edges of the triangulation the effective line IJ intersects, by constructing a binary
tree for the whole mesh using ideas from [20]. We now define the effective distance
with penalty deffpen as deffpen = deff +nδ, where n is the number of intersections,
and deff is the effective distance.

Suppose point J is within the range of several bones, each giving a value for
deffpen. If deffpen from J to some bone is smaller than δ, i.e. IJ does not intersect
the boundary of the mesh, we say point J can be seen from the bone. If J can
be seen by at least one bone, we select the bone that has the minimum deffpen
as the controller of point J , and hence the corresponding simplex.

If the minimum deffpen of J is larger than δ, this means IJ intersects the mesh
boundary. To determine the controller of point J , we calculate the shortest path
from J to each join, using Dijkstra’s algorithm across the mesh, after first finding
the nearest mesh vertex to J and to the end of each bone. (This distance is not
sensitive to the exact connectivity of the mesh). We select the bone with the
minimum shortest path distance, amongst the bones that the point is within the
range of, as the controller of the point. The red lines in Fig. 1 show the shortest
paths from J to bone AB and to bone DK. The controller of point J is bone
DK, since the shortest path distance from J to bone DK is smaller.

Skeleton-Based Shape Deformation Using Simplex Transformations 71

(a) (b) (c) (d) (e)

Fig. 3. (a) 2D Cartoon character (b) Skeleton (c) Skeleton control domain (d) De-
formed 2D skeleton, (e) Deformed cartoon character

Fig. 3(a) shows a 2D cartoon character, Fig. 3(b) shows an appropriate 2D
skeleton and Fig. 3(c) shows, using corresponding colors, which bone controls
each triangle, as determined by the method above.

4.2 Transformation for 2D Bones

Given the initial skeleton, and user-determined deformed skeleton, the transfor-
mation matrix for each bone can be calculated. Fig. 4 shows a bone at A1B1 in
the initial skeleton, and at A2B2 in the deformed skeleton. Normally the bone
transformation matrix does not involve scaling, but later we show how to take
it into account if required.

We translate A1B1 so that A1 is at the origin, the translation vector being
T1. A1B1 is then rotated around the origin to lie in the same direction as A2B2,
θ being the anticlockwise angle of rotation. We then translate A1B1 so that A1
coincides with A2, the translation vector being T2. This transformation process
can be expressed as v

′
= R′(u′ +T1)+T2, where u′ is a point on the bone before

deformation, and v′ is the corresponding point afterwards. The transformation
matrix of this equation is R′, given as usual by

R′ =
[

cos θ − sin θ
sin θ cos θ

]
. (3)

If scaling is desired, we translate A1 to the origin as before, then rotate A1B1
to lie along the x axis using a rotation R1. we then scale A1B1 until it has the
same length as A2B2, using a scaling matrix S:

Fig. 4. 2D Bone transformation Fig. 5. 3D Bone transformation

72 H.-B. Yan, S.-M. Hu, and R. Martin

S =
[

α 0
0 β

]
. (4)

Here, α represents the scaling along the direction of the bone, determined by
the relative lengths before and after deformation, whereas β represents scaling
in the direction perpendicular to the bone. The animator will usually choose this
to be 1.0, or the same as α, according to his needs. Finally we rotate A1B1 into
the same orientation as A2B2, using a matrix R2 and translate A1B1 until A1
coincides with A2 as before. Overall, we can write v′ = R2SR1(u

′
+ T1) + T2

where the transformation matrix in this step is given by S′ = R2SR1.
We can write the overall transformation matrix between bone A1B1 and A2B2

as the combination of a rotation part and a scaling part:

M ′ = S′R′. (5)

4.3 2D Triangle Mesh Deformation

If every triangle were to transform rigidly in the same way as its controlling
bone, gaps would arise between the triangles controlled by adjacent bones, caus-
ing tears in the object. We must enforce vertex consistency requirements to
prevent this. We do so using an optimization method, while trying to keep each
simplex transformation as close as possible to that of its control bone. For sim-
plicity, as in previous work on simplex transformations [8, 9], we only take into
account the non-translation part of the transformation, and in practice, doing so
provides good results for the deformed shape. An error function is used to repre-
sent the difference between the actual simplex deformation and the deformation
determined by the control bone:

E =
n∑

i=1

Ai‖Mi − M ′
i‖2

F , (6)

where F is the Frobenius norm, Ai is the area of the ith triangle, n is the
number of simplices in the mesh, Mi is the actual transformation matrix for the
ith triangle, given by Section 3 and M ′

i is the ideal transformation matrix of this
triangle, given in Section 4.2. We minimize E to get the best deformation results
while ensuring mesh connectivity: the variables in the minimization problem are
the vertex coordinates of the deformed mesh.

This classical quadratic optimization problem can be transformed into a linear
equation by setting the gradient of E to zero, giving

K ′X ′ = d′. (7)

This set of equations can be separated into 2 independent groups corresponding
to the x and y coordinates of the deformed mesh. Furthermore, the coefficient
matrix for each group is the same, providing a more efficient solution than by
treating them as a single system: KX = dx, KY = dy. Here X and Y are the
x and y coordinate vectors of the deformed mesh, of size m, where m is the

Skeleton-Based Shape Deformation Using Simplex Transformations 73

number of vertices in the mesh. K is a sparse m × m matrix, and dx and dy are
vectors with dimension m. Generally, m is small enough that LU-decomposition
provides an efficient solution method. In order to ensure a unique solution, at
least one vertex position should be fixed in advance.

Fig. 3(d) shows a deformed skeleton and Fig. 3(e) the resulting deformed mesh
for the cartoon character in Fig. 3(a). The character’s legs are scaled using a
factor of 2 both along and perpendicular to the the bone, while other parts are
unscaled. The corresponding mesh has 251 vertices, and 0.12s were required to
calculate the result on a 2.4Ghz Pentium 4 machine.

Local self-intersection seldom happens in our method, because the errors near
the joints, which often arise in traditional skeleton-based methods, are spread
from the joints to the neighboring domain by our optimization method.

5 3D Triangle Mesh Deformation

The method used for a 2D triangle mesh can also be extended to a 3D volume
tetrahedron mesh, but in practice surface triangle mesh models are far more
widely used. Furthermore, the latter have far fewer elements than tetrahedron
models and thus require much lower processing times.

5.1 Correspondence Between 3D Triangles and Bones

As in 2D, we use the minimum effective distance with penalty and the minimum
shortest path distance to decide the controlling bone for each triangle.

We now create range planes for bones in 3D, instead of range lines in 2D. In
Fig. 2, AB, AC, AD are three bones connected at joint A. At free ends of bones,
such as B, we create a range plane like P1, through B, and perpendicular to
bone AB. At other ends of bones, such as A, we create a bisection range plane
like planes P2 and P3 corresponding to each other bone meeting at this joint.
Each bone may now have a varying number of range planes, unlike the 2D case
where each bone has exactly 4 range lines.

Again we calculate the effective line from point J to bone AB. We create a
plane P4 that passes both through bone AB and point J . This plane intersects
the range planes in many rays. At each end of the bone, we select the nearest
ray to point J as the range line: these are AE and BG in the example. Thus,
at each joint of the bone we now have one range line. We now interpolate the
effective line from the range lines as before.

Having found the effective line IJ , we can calculate the effective distance with
penalty between the triangle S and the bone as in 2D. The intersection count
n in 3D in computing the effective distance with penalty does not include the
current triangle itself. If the minimum deffpen of J is smaller than δ, we can
decide the controlling bone for this triangle directly by selecting the bone with
minimum deffpen. If the minimum deffpen of a triangle is larger than δ, we calculate
the shortest path distance across the mesh from the triangle to those bones for
which it is within range. The bone with minimum shortest path distance to the
triangle is selected as its controller.

74 H.-B. Yan, S.-M. Hu, and R. Martin

(a) (b)

Fig. 6. Skeleton (a) and control domain (b) of Dinopet

Fig. 6(a) shows a skeleton for the Dinopet, and Fig. 6(b) shows the control
domain of each bone.

5.2 Transformation for 3D Bones

We now consider how to calculate the transformation matrix for bones in 3D. In
Fig. 5, suppose A1B1, A2B2 represent a bone in 3D before and after deformation.
We translate A1B1 so that A1 coincides with the origin. We then create a unit
vector N based at the origin, perpendicular to A1B1 and A2B2 and rotate A1B1
around N until A1B1 is in the same direction as A2B2; let θ be the rotation
angle. Finally we translate A1B1 until A1 coincides with A2. The transformation
matrix R′ (ignoring the translation) can be calculated in a similar way to the
2D case and is found to be:

R =

�
�

a2 + (b2 + c2)cosθ ab(1 − cosθ) + csinθ ac(1 − cosθ) − bsinθ
ab(1 − cosθ) − csinθ b2 + (a2 + c2)cosθ bc(1 − cosθ) + absinθ
ac(1 − cosθ) + bsinθ bc(1 − cosθ) − absinθ c2 + (a2 + b2)cosθ

�
� (8)

where N = (a, b, c). If scaling is also required, we can determine the scale matrix
S as in Section 4.2; the transformation matrix has the same form as Eqn. 5.

5.3 3D Triangle Mesh Deformation

The 3D triangle mesh case is very different from the 2D triangle mesh case,
because a triangle is not a simplex in 3D, nor is there a unique transformation
matrix for changing one triangle into another. [9] gave a clever way of extend-
ing simplex transformation methods to a 3D triangle mesh by constructing a
tetrahedron for each triangle. We follow these ideas, except that we put the new
vertex above the centroid of the triangle rather than over one of its vertices.

We add a fourth vertex to each triangle of both the initial and deformed mesh
to give a tetrahedron. For the initial mesh, the fourth vertex is added in the
normal direction over the triangle’s centroid. Let v1, v2, v3 be the vertices of a
triangle on the initial mesh. The fourth vertex is placed at

v4 =
(v1 + v2 + v3)

3
+

(v2 − v1) × (v3 − v2)√
(v2 − v1) × (v3 − v2)

.

Skeleton-Based Shape Deformation Using Simplex Transformations 75

Fig. 7. Armadillo model

Fig. 8. Dinopet model

Table 1. Statics and timing

Armadillo Dinopet

Mesh Vertices 50852 13324
Segmentation time (seconds) 22.26 3.12
Deformation time (seconds) 68.63 7.83

Note that the above equation is only used to calculate v4 in the initial mesh. v4
in the deformed mesh are determined by the optimisation process.

The 3D triangle mesh is now deformed using the same process as for the 2D
triangle mesh in Section 4.3; Eqn. 7 in 3D separates into 3 independent groups:
KX = dx, KY = dy, KZ = dz. The dimension of the vectors in Eqn. 7 is now
m + k for a mesh with m vertices and k faces. We use the conjugate gradient
method to efficiently solve these large sparse linear equations.

Figures 7–8 illustrate 3D deformation results obtained using our technique.
The first model in each Figure is the original model; others are deformed results
by our method. All results were calculated on a 2.4Ghz Pentium 4 machine.
Table 1 shows the timings of 3D models presented in this paper.

6 Conclusions

We have presented a novel mesh deformation method which combines the
skeleton-based and simplex transformation approaches. We first determine the
transformation for bones of the skeleton, and then transfer each bone’s

76 H.-B. Yan, S.-M. Hu, and R. Martin

transformation matrix to those simplices it controls. The correspondence
between simplices and bones is determined automatically. We use an optimiza-
tion method to eliminate gaps between triangles controlled by different bones,
while keeping the mesh deformation as close as possible to the deformation of
the skeleton.

The main advantage over earlier skeleton-based methods is that we directly
use the connectivity information in the mesh while they do not. As a result, our
method is much simpler since no weight selection nor any arbitrary parameters
are needed, yet we can achieve high quality results.

We currently only take into account the non-translation part of the transfor-
mation. Although this provides good shape results, we need to arbitrarily fix
one vertex to decide the final position of the deformed model. It would be more
useful to make the deformed mesh automatically follow the deformed skeleton,
and we are investigating including the translation in the Equation system as a
way of doing this.

Our method can be easily adapted to control deformation by moving a few
chosen line segments or vertices embedded in the object, rather than a skeleton.
It can also be extended to twist part of the mesh if required, by defining twist
axes. Space precludes demonstration of these capabilities.

Acknowledgements

We would like to thank Gwenael Allard, Shuai Xin and Yu Zang for kind
help, and C. Gotsman, T. Ju, R. Sumner and J. Popovic for helpful discus-
sions. This work was partially supported by the Natural Science Foundation of
China (Projects 60225016, 60333010, 60321002) and the National Basic Research
Project of China (Project 2002CB312101).

References

1. Sederberg, T., Parry, S.: Free-from deformation of solid geometric models. Com-
puter Graphics (Proc. SIGGRAPH1986) 20(4) (1986) 151–160

2. Coquillart, S.: Extended free-form deformation: A sculpturing tool for 3d geometric
modeling. Computer Graphics (Proc. SIGGRAPH1990) 24(4) (1990) 187–196

3. Alexa, M.: Differential coordinates for local mesh morphing and deformation. The
Visual Computer 19(2) (2003) 105–114

4. Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rössl, C., Seidel, H.P.: Differ-
ential coordinates for interactive mesh editing. In: Proceedings of Shape Modeling
International, IEEE Computer Society Press (2004) 181–190

5. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian
surface editing. In: Proceedings of the Eurographics/ACM SIGGRAPH symposium
on Geometry processing, Eurographics Association (2004) 179–188

6. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., GUO, B., Shum, H.Y.: Mesh edit-
ing with poisson-based gradient field manipulation. ACM Trans. Graphics (Proc.
SIGGRAPH2004) 23(3) (2004) 644–651

Skeleton-Based Shape Deformation Using Simplex Transformations 77

7. Shoemake, K., Duff, T.: Matrix animation and polar decomposition. In: Proc.
Conference on Graphics Interface ’92. (1992) 258–264

8. Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In:
Proc. SIGGRAPH2000. (2000) 157–165

9. Sumner, R.W., Popovic, J.: Deformation transfer for triangle meshes. ACM Trans.
Graphics (Proc. SIGGRAPH2004) 23(3) (2004) 399–405

10. Sumner, R.W., Zwicker, M., Gotsman, C., Popovic, J.: Mesh-based inverse kine-
matics. ACM Trans. Graphics (Proc. SIGGRAPH2005) 24(3) (2005) 488–495

11. Lewis, J., Cordner, M., Fong, N.: Pose space deformation: a unified approach to
shape interpolation and skeleton-driven deformation. In: Proc. SIGGRAPH2000.
(2000) 165–172

12. Bloomenthal, J.: Medial-based vertex deformation. In: Proc. 2002 ACM SIG-
GRAPH/Eurographics Symp. Computer Animation. (2002) 147–151

13. Mohr, A., Tokheim, L., Gleicher, M.: Direct manipulation of interactive character
skins. In: Proc. 2003 Symp. Interactive 3D Graphics. (2003) 27–30

14. Allen, B., Curless, B., Popovic, Z.: Articulated body deformation from range scan
data. ACM Trans. Graphics (Proc. SIGGRAPH2002) 23(3) (2002) 612–619

15. Wang, X.C., Phillips, C.: Multi-weight enveloping: least-squares approximation
techniques for skin animation. In: Proc. 2002 ACM SIGGRAPH/Eurographics
Symp. Computer Animation, New York, NY, USA, ACM Press (2002) 129–138

16. Verroust, A., Lazarus, F.: Extracting skeletal curves from 3D scattered data. The
Visual Computer 16(1) (2000) 15–25

17. Li, X., Woon, T.W., Tan, T.S., Huang, Z.: Decomposing polygon meshes for inter-
active applications. In: ACM Symposium on Interactive 3D Graphics 2001. (2005)
35–42

18. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts.
ACM Transactions on Graphics 22(3) (2003) 954–961

19. Lien, J.M., Amato, N.M.: Simultaneous Shape Decomposition and Skeletoniza-
tion. Technical Report, TR05-015, Parasol Laboratory, Department of Computer
Science, Texas A&M University (2005)

20. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
geometry : algorithms and applications. Springer (1997)

	Introduction
	Related Work
	Simplex Transformations and Skeletons
	2D Triangle Mesh Deformation
	Correspondence Between 2D Triangles and Bones
	Transformation for 2D Bones
	2D Triangle Mesh Deformation

	3D Triangle Mesh Deformation
	Correspondence Between 3D Triangles and Bones
	Transformation for 3D Bones
	3D Triangle Mesh Deformation

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

