
A Fast Algorithm for Computing Reeb Graph of
2-Manifold

JEAN-BAPTISTE DEBARD ♠
Tsinghua University

and

HU SHI MIN ♣
Tsinghua University

This paper presents an algorithm to compute the Reeb graph of a given Morse function over a
compact connected oriented 2-manifold without boundary. After introducing the motivations for

such a new algorithm, we will give the details of the algorithm for simplicial complex, prove its

correctness and discuss its complexity and its running time.

Categories and Subject Descriptors: []:

1. INTRODUCTION

The notion of Reeb graph is part of the Morse theory which provides an analysis of
the relationship between the topology and the geometrical information of a space
given by a suitable function, a Morse function. Until recently, the main drawback
for using Reeb graph analysis was the incapacity of constructing adequate Morse
functions. Before the work of Ni et al. [2004], the used Morse functions gave rise to
many unnecessary critical points, making the construction and the analysis of the
Reeb graph expensive. The work presented in [X. Ni and Hart 2004] now allows
us to precompute Morse functions with just the required number of critical points
in time linear relative to the size of the model. An algorithm which computes a
Reeb graph in a time that depends on the number of critical points would thus be
appreciated. This paper presents such an algorithm, which in most cases runs in
O(n + m. log(m)) time, where n is the number of vertices and m the number of
critical points.

1.1 Related Work

Reeb graphs have already been put into practice many times for surface compression
and reconstruction [S. Biasotti and Spagnuolo 2000b], and for surface understanding
[Y. Shinagawa and Kergosian 1991] [S. Biasotti and Spagnuolo 2000a] [M. Hilaga
and Kunii 2001]. Reeb graphs are also an interesting tool for the visualization of
space-time scientific data [H. Edelsbrunner and Pascucci 2004]. It is above all the
work of Wood [2003] in the domain of topological simplification which motivated our
research: in this work, Wood constructs a graph similar to a Reeb graph to find the
handles in a compact connected oriented 2-manifold without boundary and remove
them. She uses two kinds of functions (not necessarily Morse functions), a height
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function and a distance function, and uses some tricks in order to avoid handling
unnecessary critical points. This does not always work well and can be very slow
because of the computation of the distance function1 even if done on a limited part
of the mesh. Now, if we use a suitable Morse function that introduces very few
critical points and a fast algorithm to compute the Reeb graph, we can do the same
in a much shorter time. Besides, the only work which focuses on the properties and
the computation of a Reeb graph has been done by Cole-McLaughlin et al. [2004].
The authors, after stating some major theoretical results, describe an algorithm for
computing Reeb graph which theoretically runs in O(n. log(n)) time, where n is the
number of edges in the simplicial complex.

1.2 Contribution

The algorithm introduced in [K. Cole-McLaughlin 2004] is very fast in practice (as
we are going to show in this paper) because the a priori slowest part is a sort of
all the vertices of the simplicial complex. However, in the event of a low density of
critical points, situation which arises when using a well-controled Morse function,
we describe an algorithm faster than the above mentioned.

2. MORSE THEORY

For details about Morse Theory, we refer the reader to the work of Milnor [1963].
The theory of Reeb graphs of smooth functions on 2-manifolds has been introduced
by George Reeb [1946]. This section reviews some basics of Morse theory for smooth
functions on a 2-manifold and their adaptation to piecewise linear functions on a
simplicial-complex.

2.1 Smooth Theory

For all the following, let M be a connected smooth oriented 2-manifold without
boundary.

Definition 2.1. (Critical Point) Let h : M → R be differentiable on M ,
p ∈M is a critical point if dh(p) = 0

Definition 2.2. (Hessian Matrix: ) Let h : M → R be 2-differentiable on M ,
p ∈M and (U, (x, y)) a chart of M s.t. p ∈M . The Hessian matrix of h at p is:

H(p) =

(
∂2h
∂x2 (p) ∂2h

∂x∂y (p)
∂2h

∂x∂y (p) ∂2h
∂x∂y (p)

)
Remark 2.3. The Hessian matrix does not depend on the local parametrization.

Definition 2.4. (Degenerate Point) Let h : M → R be 2-differentiable on M and
p a critical point of h. p is degenerate if the Hessian matrix of h at p is singular.

Definition 2.5. (Morse Function) Let h : M → R be 2-differentiable on M , h is
a Morse function if all its critical points are non-degenerate and if for two distinct
critical points x 6= y then h(x) 6= h(y)

1Dijkstra algorithm, O(n. log(n))
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Definition 2.6. (Level Set) A level set of the Morse function f is the preimage
of a constant value f−1({t}).

Definition 2.7. (Reeb Graph) The Reeb graph RG of f is the quotient space of
M , with the usual quotient topology, defined by the equivalence relation: x ' y iff
f(x) = f(y) = t and x and y belong to the same component of f−1(t).

(The example of Figure 1 may help to visualize)

Fig. 1. A 2-manifold (left) and its Reeb Graph according to a height function along the z-axis

The proofs of the following two lemmata can be found in [Milnor 1963].

Lemma 2.8. (Morse Lemma) It is possible to choose local coordinates (x, y)
at a critical point p ∈M , so that h takes the form: h(x, y) = ±x2 ± y2

Lemma 2.9. Let f : M → R be a smooth function. Let a < b and suppose that
the compact set f−1([a, b]) contains no critical points. Then f−1({a}) is diffeomor-
phic to f−1({b}), furthermore f−1({a}) is a deformation retract of f−1({b}), so
that the inclusion map f−1({a})→ f−1({b}) is a homotopy equivalence.

Although based on the two preceding lemmata, the following theorem is not a
direct corollary of them, but we do not deem it necessary to introduce the proof
as the theorem is quite intuitive and its proof rather tiresome. The proof of the
theorem 2.10 follows the proof given by Milnor in [Milnor 1963][theorem 3.2].

Theorem 2.10. (Topology of the Level Set) Let h : M → R Morse function
on M . Sweeping the level set of h from +∞ to −∞, the changes of topology of the
level set occur only at critical points in the following way (cf Figure 2):

—sweeping through a Maximum induces a new component for the level set
—sweeping through a Top Saddle point makes the concerned component split into

two components
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—sweeping through a Bottom Saddle makes two concerned components merge into
one

—sweeping through a Minimum makes the concerned component collapse

Fig. 2. Evolution of the level set passing through a critical point

We can now understand the structure of a Reeb graph as a graph whose nods
are the level set components that contains a critical point and whose arcs give the
connectivity of the level-set. We end the part about smooth theory with a theorem
which depicts one of the great interests of a Reeb graph (its proof can be found in
[K. Cole-McLaughlin 2004]).

Theorem 2.11. The Reeb graph of a Morse function over a connected orientable
2-manifold of genus g without boundary has g loops

2.2 Piecewise Linear (PL) Theory

In the PL theory, the 2-manifold is still connected without boundary, but it is no
longer a differential manifold. The manifold is described by a simplicial-complex.
With appropriate definitions of a critical point and of a Morse function, the notion
of Reeb graph still makes sense and the two above theorems hold in this case.

Definition 2.12. A k-Simplex is the convex hull of k + 1 affinely independent
points S = {v0, v1, ..., vk}. The points in S are the vertices of the simplex. In R3 a
simplex can be a point, a segment, a triangle or a tetrahedron.

Definition 2.13. (Face, Coface) Let σ be a k-simplex defined by S = {v0, v1, ..., vk}.
A simplex θ defined by T ⊆ S is a face and has σ as a coface. The relationship is
denoted with σ ≥ θ and θ ≤ σ

Definition 2.14. A Simplicial-Complex K is a finite set of simplices such that
σ ∈ K , θ ≤ σ ⇒ θ ∈ K and σ, σ′ ∈ K ⇒ σ

⋂
σ′ ≤ σ, σ′. The dimension of K is

dimK = max{dimσ|σ ∈ K }

Definition 2.15. The Underlying Space |K | of a simplicial complex K is |K | =⋃
σ∈K σ

Remark 2.16. |K | is a topological space.

Definition 2.17. The Star of a vertex is the set of its cofaces in K

St(σ) = {η ∈ K |σ ≤ η}
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Definition 2.18. The Closure Ā of a set A of simplices in K is the smallest
sub-complex of K which contains A

Definition 2.19. A Function over a simplicial-complex K is a piecewise linear
function of |K | defined by assigning a value to each vertex of K .

The following definitions are given for K , a 2-simplical-complex whose underlying
space |K | is an oriented connected compact 2-manifold.

minimum monkey saddle
(degenerate point)

saddleregular

Fig. 3. The four types of critical points

Definition 2.20. (Critical Point) Let σ be a vertex of K , we define 3 subsets of
Lk(σ) = St(σ)− St(σ):

Lk+(σ) = {η ∈ Lk|∀µ ∈ η, h(µ) > h(σ)}
Lk−(σ) = {η ∈ Lk|∀µ ∈ η, h(µ) < h(σ)}
Lk=(σ) = {η ∈ Lk|∀µ ∈ η, h(µ) = h(σ)}

Then, σ is Critical if the number of components of Lk+(σ) is different from 1 or if
the number of components of Lk−(σ) is different from 1 or if Lk=(σ) 6= ∅
cf Figure 3

Definition 2.21. (Degenerate Point) A critical point is degenerate if Lk=(σ) 6= ∅
or if the number of components of Lk+(σ) and of Lk−(σ) is different from 2 (cf
Figure 3 -monkey saddle-)

Derived from the smooth theory, we now have exactly the same notion of Morse
function and Reeb graph on K . Furthermore, as proved in [Banchoff 1970], lemma
1 and lemma 2 still hold and with them, theorem 2.10 and theorem 2.11.

3. ALGORITHM

3.1 On a Smooth Manifold

In this part, let M be a smooth connected compact oriented 2-manifold without
boundary. The algorithm works on the simple observation that we do not need to
maintain the level set while sweeping from +∞ to −∞, as we know when and how
the changes in the topology of the level set occur (cf Theorem 2.10), we simply need
to maintain the connectivity of the level set between two following critical points.
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3.1.1 Pseudo-Code. .
define type Region

begin: The critical point which starts the Region
end : The critical point which ends the Region
surface: The surface spanned by the Region

end define

Graph ReebGraph(Manifold M , MorseFunction h)
let RG a Graph whose nodes are indexed by the critical points
let T be the table of all the critical points

sorted by decreasing values of h
let s be the size of T
let Q = ∅ a queue of Regions
let c be a counter
for i = 1 to s− 1 do

if T [i] is a Maximum
then
put a new Region in Q which starts with T [i]
and whose surface is the region stricltly between h(T [i]) and
h(T [i + 1]) which is connected to T [i]

end if
if T [i] is a Top Saddle

then
put 2 new Region in Q which both start with T [i]
and whose respective surfaces are the two disconnected regions
stricltly between h(T [i]) and h(T [i + 1]) which are connected to T [i]

end if
if T [i] is a Bottom Saddle

then
put a new Region in Q which starts with T [i]
and whose surface is the region stricltly between h(T [i]) and
h(T [i + 1]) which is connected to T [i]

end if
c← 0
for each Region R ∈ Q do

expand the surface of R with the connected surface stricltly
between R.begin and h(T [i + 1]) and connected to the previous
surface of R
if R is connected to T [i + 1]

then
link R.start and T [i + 1] by an Edge in the Reeb Graph RG
delete R from the queue Q
increment c

end if
end do
if T [i + 1] is a Saddle
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then
if c = 1

then T [i + 1] is a Top Saddle
end if
if c = 2

then T [i + 1] is a Bottom Saddle
end if

end if
end do
return RG

3.1.2 Proof of the Algorithm

Definition 3.1. (Region) Let h be a Morse function on M , a Region R of h on
M is a maximal connected subset of M which verifies the following conditions: its
image by h lays strictly between the image by h of two critical points x and y, it is
connected to x and y and does not contain any critical point.
In this case, we say that the Region connects x and y and if h(x) > h(y), we say
that R begins with x and finishes with y. (cf. Figure 4)

Remark 3.2. According to the properties of a Region, {x}
⋃

R
⋃
{y} is connected

in M .

Fig. 4. Example of a region (red) between a Top Saddle and a Bottom Saddle on a smooth
manifold (left) on a triangular mesh (right)

It is intuitive that a one-to-one correspondence between the Regions of M and
the arcs of RG exists. Furthermore, if there is an arc connecting two nodes corre-
sponding to the critical points x, y, then there exists a Region which connects x
and y. From this statement, it is now easy to prove the algorithm.

Theorem 3.3 Loop Invariant. At each step of the main loop:

—For each Region which finishes with cp2 an edge is created in the graph.
—All the Regions which begin with x such that h(x) ≥ cp1 and which finish with y

such that h(y) < cp2 are in the queue Q
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Proof of the Loop Invariant. It is sufficient to prove that all the Regions
which begin with cp1 do not exist before the current loop and that they are all
created during this loop.
As a Region is only connected to two critical points (the one which begins it and
the one which finishes it), then no other critical point before cp1 in the table T
can begin the Region beginning with cp1. Thus, at the beginning of the loop, the
Regions which begin with cp1 are not in the queue Q.
By Theorem 2.10, all the Regions begining with cp1 are put in the queue Q during
the current loop.

Proof of the Algorithm. As the number of critical points is finite, the al-
gorithm necessarily terminates. At the end of the algorithm, according to the Loop
Invariant, all the Regions which finishes with a critical point have been handled
except for the Regions which finish with the first critical point. But, as the first
critical point is necessarily a Maximum, there is no Region finishing with it. Thus,
at the end of the algorithm, all the Region of the manifold M have been considered
and all the associated edges in the graph have been created. As there is a one-to-
one correspondence between the Regions of M and the Edges of RG, all the Edges
of RG appear in the created graph. Lastly, as RG = {[x]|x ∈ C }

⋃
{E ∈ E}, the

created graph is the true Reeb Graph of M .

3.2 On a Simplicial-Complex

On a 2-simplicial-complex K , whose underlying space |K | is a compact oriented
connected 2-manifold, the algorithm is exactly the same except that the definition
of a Region has to be modified.

Definition 3.4. A Region between two critical points x and y (h(x) < h(y)) is the
maximal set of open simplices which intersect h−1(]h(x), h(y)[), does not contain
any critical point and whose spanned surface is connected and connected to x and
y. cf Figure 4

Now, it is no longer true that a region is connected with only two critical point,
it can be connected with more than two. Furthermore, two Regions can overlap
and the collection containing the Regions together with the level sets of the critical
points is no more a partition of |K |.
However, it is still true that there is a one-to-one correspondence between Regions
of K and Edges of RG and we only need one last lemma to prove the rightness of
the Loop Invariant.

Lemma 3.5 End of a Region. The critical point which finishes a Region R
beginning with y is the critical point x such that:
h(x) < h(y) and ∀z ∈ C s.t. {z}

⋃
R is connected, then h(z) < h(x)

Proof. Let us assume there exists a critical point z ∈ C , such that {z}
⋃

R is
connected and h(x) < h(z) < h(y). Then, the vertex z is a simplex connected to
R and one which belongs to h−1]h(x), h(y)[. As R is maximal, then z ∈ R which
leads to a contradiction since R does not contain any critical point.

Proof of the Algorithm. As the critical point which begins a Region is al-
ways known, and by the Lemma 3, the Loop Invariant given for the smooth case
Submission for Geometric Modeling and Processing, January 2006.



Fast Algorithm for Computing a Reeb Graph · 9

is still true for the PL case. The reasoning of the proof for the algorithm in the
smooth case still holds in the PL case.

3.3 Complexity

3.3.1 Worst Case. Finding the m critical points takes O(n) time (n is the num-
ber of vertices), sorting them takes O(m. log(m)). Growing a Region takes the
size of a Region in time and as a face could belong to every Region, then grow-
ing Regions takes O(n.m) time in the worst case. The whole algorithm thus takes
O(n.m + m. log(m)) worst case in time and obviously O(m + n) in size.
This worst case can eventually come about as shown in Figure 5 (infinitely many
blue triangles can be ”glued” to the mesh and, with a height function as given
Morse function, the blue triangles then belong to more than m/2 Regions)

Fig. 5. Example of a worst case situation

3.3.2 Is it that bad in practice?. The worst case complexity is pessimistic and
the table 6 presents the results when we experimentally count the average number
of Regions a face belongs to.

The average number of Regions for a face is still reasonable and far smaller than
the number of critical points. Furthermore, this number increases with the density

Mesh nb faces nb cp mean

eight 25334 6 1.050
chetha 9996 74 2.290
chetha’ 9996 36 1.459

budha 10K 21152 304 8.997

Buddha’ 10K 21152 138 2.287
Buddha 30K 62224 450 8.086

Buddha’ 30K 62224 198 2.082
David head 63618 260 3.127

David head’ 63618 336 4.571

dragon leg 95410 224 3.032

Fig. 6. Experiment on the mean number of Regions a face of a mesh belongs to (the prime ’
means the model has been tested with two different Morse functions, nb cp is the number of
critical points for a given model and a given Morse function)
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Mesh nb v nb cp running time of GR running time of SLS

eight 20K 6 CP: 20ms GR: 40ms SORT: 30ms SLS: 40ms

chetha 5K 74 CP: 10ms GR: 20ms SORT: 10ms SLS: 20ms

buddha 10K 138 CP: 20ms GR: 60ms SORT: 30ms SLS: 40ms
30K 198 CP: 80ms GR: 150ms SORT: 70ms SLS: 150ms

60K 230 CP: 190ms GR: 240ms SORT: 140ms SLS: 270ms

David 40K 336 CP: 50ms GR: 260ms SORT: 70ms SLS: 170ms
Dragon Leg 40K 172 CP: 70ms GR: 190ms SORT: 100ms SLS: 200ms

Fig. 7. Comparison of the running time for the GR-algorithm and the SLS-algorithm

of critical points, and highly depends on the choice of the Morse function. Thus,
when precomputing a good Morse function, we can hope to greatly reduce the two
numbers.

3.3.3 Comparisons. The fastest algorithm provided by [K. Cole-McLaughlin
2004] is proved to run in n. log(n) and is extremely fast in practice: the algo-
rithm maintains the level set of the given Morse function while sweeping the level
from −∞ to +∞. Thus, it relies on an pre-ordering of all the vertices of the mesh
according to the given Morse function which can be done with a quick sort. The
implementation of the data structure for the level set components can be done us-
ing chained lists. This allows querying, inserting and removing an edge in constant
time and merging and splitting in time the size of the list. But as these two last
operations happen only at saddle points, we can hope them to be relatively rare and
thus not so costly (this is verified in practice). We thus obtain an algorithm which
performs a sort in n. log(n) expected time and the sweep line in (almost always)
linear time. In practice, this algorithm is very fast because the a priori slowest
part is the sorting of all the vertices which can be done with a quick sort.
The table 7 presents the comparison of the running time for the ‘growing region’
(GR) algorithm and the ‘sweeping level set’ (SLS) algorithm, CP is the time to
compute critical points and sort them, SORT is the time for sorting all the vertices
of the mesh. In the tests, our algorithm is hardly faster than the one of [K. Cole-
McLaughlin 2004] and even slower when the density of critical points is high. Nev-
ertheless, it is worth considering two remarks: first, no other code optimization can
be expected for the sweep algorithm as the slowest part of the algorithm relies on
a sorting and sorting algorithm have been optimized up to the highest degree. Sec-
ond, it is advisable to look at the evolution of the GR-algorithm running time when
the size of the mesh increases while the density of critical points does not. What is
shown in Figure 8 is the evolution of the two compared algorithms when the Morse
function gives the minimal number of critical points (one maximum, one minimum
and 2.g saddle points where g is the genus of the model) on meshes of increasing
size. The models used for the experiment pictured in the graph of Figure 8 are
all buddha models of different sizes and the Morse function is computed using the
method described in [X. Ni and Hart 2004].

3.3.4 Discussion. This algorithm is limited to oriented 2-manifolds without
boundaries, but it is possible to extend it to oriented 2-manifolds with bound-
aries and even to non oriented 2-manifolds. The main problem comes from the fact
that it is no more possible to predict the configuration of critical points only from
Submission for Geometric Modeling and Processing, January 2006.
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Fig. 8. compared running times of GR (red) and SLS (blue)

Regions that connect it from ‘above’: when the 2-manifold has boundaries, a Morse
function can give rise to saddle points connected with 4 Regions (cf Figure 9). When
the 2-manifold is non-oriented, a Morse function can give rise to saddle points con-
nected with only 2 Regions (cf [K. Cole-McLaughlin 2004]). However, we did not
feel the need to implement such an algorithm as the property of Reeb graphs given
by theorem 2.11, which motivated us holds neither for non-oriented 2-manifolds nor
for 2-manifolds with boundaries as shown in [K. Cole-McLaughlin 2004].

Fig. 9. Example of a saddle with four connected Regions on a 2-manifold with boundary
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4. CONCLUSION

We have presented a new algorithm for computing the Reeb graph of an oriented
2-manifold without boundary. We have shown that this algorithm does not achieve
the best complexity in the worst case but that a situation in which it is worth using
a Reeb graph, this algorithm is much faster than previous algorithms. The original
purpose of this algorithm was to capture the topology of scanned models (which
are or can easily be connected compact oriented 2-manifolds) to retrieve handles
and tunnels as did Wood in [Wood 2003]. One drawback of the Wood’s method
is that it computes a kind of graph whose ”Morse” function2 does not depend on
the model. This can lead to many useless critical points as shown in [X. Ni and
Hart 2004] and Wood consciously chose not to compute a true Reeb graph because
of this problem. Now, if the GR-algorithm is used with a Morse function which
minimizes the number of critical points (namely, for a connected compact oriented
2-manifold, one maximum, one minimum and 2.g saddle points), it can be extremely
fast (much faster than the Sweep-algorithm as shown in Figure 8). Such a good
Morse function can be computed in linear time, which depends on the size of the
mesh [X. Ni and Hart 2004]. The whole algorithm can then run in linear time in
most cases (g << n) and in O(g.n + g.log(g)) time in the worst case.
In conclusion, as our algorithm does not provide an improvement of the worst case
complexity, the complexity of O(n. log(n)) achieved by the algorithm of [K. Cole-
McLaughlin 2004] is still the best in the worst case and proving wether or not this
complexity is optimal remains an open question.
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