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2. MAIN RESULTS
In this paper, subdivision methods for rectangular Bézier

A rectangular Bézier surface of degree n 3 m can besurfaces are generalized to subdivide a rectangular Bézier sur-
face patch of degree n 3 m into two rectangular Bézier sur- represented by
face patches of degree n 3 (m 1 n), while the parameter do-
main of the Bézier surface is decomposed into two trapezoids.
As an application, a conversion from rectangular Bézier sur-

P(u, v) 5 On
i50

Om
j50

Pij Bn
i (u)Bm

j (v), 0 # u, v # 1,faces to triangular Bézier surfaces is presented.  1996 Academic

Press, Inc.

where Bn
i (u) 5 (n

i)u i(1 2 u)n2i are univariate Bernstein
polynomials of degree n, and Pij (0 # i # n, 0 # j # m)
are control points of P(u, v). Without loss of generality,1. INTRODUCTION
we consider the trimmed surface patch defined on the

The Bézier surface is a very useful tool in surface model- domain D1 (see Fig. 1).
ing [1, 2]. Subdivision algorithms for Bézier surfaces are First of all, we introduce some operator symbols for a
very important in rendering and curve–curve, curve– Bézier curve P(t) with control points Pi(0 # i # n).
surface, and surface–surface intersection calculations

1. The invariant operator I: IPi 5 Pi ,[3, 4]. It is well known that, subdivision algorithms for rec-
tangular Bézier surfaces, which decompose a rec- 2. The shifting operator E: EPi 5 Pi11 ,
tangular patch into two rectangular patches of the same

3. The difference operator D: DPi 5 (E 2 I)Pi 5degree, splitting its parametric domain into two rec-
Pi11 2 Pi ,tangles, are based on the subdivision of Bézier curves.

If we split the parametric domain of a rectangular 4. The degree elevation operator An:
Bézier surface into two trapezoids, the surface is again
decomposed into two surface patches. Can these
two trimmed surface patches be represented as rectan-
gular Bézier surface patches? How do we obtain the new
control points from those of the original surface
patch?

These questions are considered in the second section.
By using parameter transformations, we show that the
control points of these two rectangular Bézier patches
can be obtained from those of the original surface patch.
A corner-cutting algorithm is developed in the third
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section, which decomposes a rectangular Bézier patch
of degree n 3 m into two rectangular patches of degree
n 3 (m 1 n).

(1)

The paper concludes with an application using the gener-
alized subdivision algorithm to split a rectangular Bézier
patch of degree n 3 m into two triangular Bézier patches More details about E, D, and Aq(q 5 n 1 1, n 1 2, . . . for

Bézier curves of q degree) can be found in [5–7].of degree m 1 n.
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Proof.

(I 1 stD)nP0 5 ((1 2 s)I 1 s(I 1 tD))nP0

5 On
i50

B n
i (s)(I 1 tD)iP0 . n

LEMMA 2. (I 1 (bt 1 a(1 2 t))D1)iP0j 5 oi
k50((1 2 a)

I 1 aE1)i2k((1 2 b)I 1 bE1)kB i
k(t)P0j .

Proof.

(I 1 (bt 1 a(1 2 t))D1)iP0j

5 ((1 2 bt 2 a(1 2 t))I 1 (bt 1 a(1 2 t))E1)iP0j

5 (((1 2 a)(1 2 t) 1 (1 2 b)t)I 1 (bt 1 a(1 2 t))E1)iP0j
FIG. 1. Decomposition of the domain.

5 (((1 2 a)I 1 aE1)(1 2 t) 1 ((1 2 b)I 1 bE1)t)iP0j

5 Oi

k50
((1 2 a)I 1 aE1)i2k((1 2 b)I 1 bE1)kBi

k(t)P0j . n
With the help of the above notation, we have

THEOREM 3. The trimmed surface patch of P(u, v)((u,
P(t) 5 On

i50
B n

i (t)Pi v) [ D1) can be represented as a rectangular Bézier sur-
face P̃(s, t) of degree n 3 (m 1 n), and its control points
P̃ij(0 # i # n, 0 # j # m 1 n) are determined by

5 On
i50
Sn

iD t i(1 2 t)n2iE iP0 (2)

5 ((1 2 t)I 1 tE)nP0

5 (I 1 tD)nP0 . 1
P̃i0

P̃i1

.

.

.

P̃i,m1n

2 5 Am1n Am1n21 ? ? ? Am1i11 1
Hi0

Hi1

.

.

.

Hi,m1i

2 ,

Similarly, we introduce operator symbols E1 , E2 , D1 , D2

for the rectangular Bézier surface P(u, v) by

i 5 0, 1, . . . , n, (4)E1 Pij 5 Pi11, j , D1 Pij 5 Pi11, j 2 Pij ,

E2 Pij 5 Pi, j11 , D2 Pij 5 Pi, j11 2 Pij . where

Then P(u, v) can be represented by

Q (i)
kj 5((12a)I1aE1)i2k((12b)I1bE1)kP0j

i 5 0, 1, . . . , n

j 5 0, 1, . . . , m

k 5 0, 1, . . . , i,
(3)P(u, v) 5 (I 1 uD1)n(I 1 vD2)mP00

(5)
By using the parameter transformation

T : Hu 5 s(bt 1 a(1 2 t))

v 5 t Hil 5 OOm i

j50 k50
j1k5l

Sm
j DS i

kD
Sm 1 i

j 1 kD
Q (i)

kj 5 Oi

k50
S i

kD
S m

l 2 kD
Sm 1 i

l DQ (i)
k, l2k

(see Fig. 2), we have the following results.
i 5 0, 1, . . . , n

l 5 0, 1, . . . , m 1 i.
(6)

LEMMA 1. (I 1 stD)nP0 5 on
i50 B n

i (s)(I 1 tD)iP0 .
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FIG. 2. Transformation of the domain.

Proof. the identity

Oi

k50
S i

kDAk 5 Oi21

k50
Si 2 1

k DAk 1 Oi21

k50
Si 2 1

k DAk11 , (7)P(u, v) 5 (I 1 uD1)n(I 1 vD2)mP00

5 (I 1 s(bt 1 a(1 2 t))D1)n(I 1 tD2)mP00

we have
5 On

i50
B n

i (s)(I 1 (bt 1 a(1 2 t))D1)i(I 1 tD2)mP00

5 On
i50

B n
i (s) Oi

k50
((1 2 a)I 1 aE1)i2k

Hil 5 Oi

k50
S i

kD
S m

l 2 kD
Sm 1 i

l DQ (i)
k, l2k

((1 2 b)I 1 bE1)kBi
k(t) Om

j50
B m

j (t)P0j

5 On
i50

B n
i (s) Oi

k50
Om
j50

B i
k(t)B m

j (t)Q (i)
kj 5 Oi21

k50
Si 2 1

k D S
m

l 2 kD
Sm 1 i

l DQ (i)
k, l2k

5 On
i50

B n
i (s) Om

j50
Oi

k50

Sm
j DS i

kD
Sm 1 i

j 1 kD
B m1i

j1k (t)Q (i)
kj

1 Oi21

k50
Si 2 1

k D S
m

l 2 (k 1 1)D
Sm 1 i

l D Q (i)
k11, l2(k11) (8)

5 On
i50

Om1i

l50
HilB n

i (s)B m1i
l (t).

5
m 1 i 2 l

m 1 i Oi21

k50
Si 2 1

k D S m
l 2 kD

Sm 1 i 2 1
l DQ (i)

k, l2kBy using the degree elevation operators Aq(q 5 m 1 i 1
1, m 1 i 1 2, . . . , m 1 n), Eq. (4) can be obtained. n

3. THE SUBDIVISION ALGORITHM

In addition to the fact that Eq. (4) and (5) can lead to 1
l

m 1 i O
i21

k50
Si 2 1

k D S
m

l 2 k 2 1D
Sm 1 i 2 1

l 2 1 DQ (i)
k11, l2k21 .

corner-cutting algorithms, we would like to point out that,
Hij can be computed by a recursive process. By use of
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Obviously, Eq. (8) shows that Hij can be calculated by a ing, and it is always an interesting problem to study the
internal relations between two types of Bézier surfacerecursive process. Then, a generalized subdivision algo-

rithm for rectangular Bézier surfaces can be derived as patches. Brueckner [8] showed a conversion from triangu-
lar patches to rectangular patches which defines the trian-follows.
gular patch as a trimmed surface of the rectangular patch.ALGORITHM.
Goldman and Filip [9] presented a conversion formula

1) Calculation of Q (i)
kj (0 # i # n, 0 # j # m 0 # that precisely splits an integral rectangular Bézier patch

k # i). of degree n 3 m into two integral triangular Bézier patches
of degree m 1 n. As an application of the generalizedFor i 5 0, 1, . . . , n

Set P (0)
kj 5 Pkj k 5 0, 1, . . . , i, j 5 0, 1, . . . , m subdivision algorithm presented in the third section, we

show that a rectangular Bézier patch can be split into twoFor k 5 0, 1, . . . , i
For j 5 0, 1, . . . , m triangular Bézier patches by a corner-cutting algorithm.

Let a 5 1, b 5 0, it is obvious that the rectangularFor r 5 1, . . . , i
For h 5 0, 1, . . . , i 2 r patch P(u, v) can be split into two degenerate rectangular

patches, and it is convenient to prove that these two rectan-If r # k
P (r)

hj 5 (1 2 b)P (r21)
hj 1 bP (r21)

h1l, j gular patches of degree n 3 (m 1 n) can be represented
as triangular patches of degree m 1 n. We present anIf r $ k 1 1

P (r)
hj 5 (1 2 a)P (r21)

hj 1 aP (r21)
h11, j algorithm for computing the control points of these trian-

gular patches. Without loss of generality, we consider theNext h
Next r surface patch defined on domain D1 . A proof of this algo-

rithm is given in the Appendix.Q (i)
kj 5 P(i)

0j

Next j
ALGORITHM.Next k

Next i
1) Compute the control points P̃ij(0 # i # n, 0 # j #

2) Calculation of Hil (0 # i # n, 0 # l # m 1 i). m 1 n) of P̃(s, t) by using the subdivision algorithm pre-
For i 5 0, 1, . . . , n sented in the previous section.
For l 5 0, 1, . . . , m 1 i

2) Calculate the control points P̂i, j,k(i, j, k $ 0, i 1 j 1Set f (0)
k, l2k 5 Q (i)

k, l2k k 5 0, 1, . . . , i
k 5 m 1 n) of the corresponding triangular patch P̂(u,For r 5 1, . . . , i
v, w).For k 5 0, 1, . . . , i 2 r

Set g (n)
ij 5 P̃ij i 5 0, 1, . . . , n; j 5 0, 1, . . . , m 1 nf (r)

k, l2k 5
m 1 r 2 (l 2 k)

m 1 r
f (r21)

k, l2k 1
l 2 k
m 1 r

f (r21)
k11,l2k21

For j 5 0, 1, . . . , m 1 n
Next k if j , m
Next r For q 5 n 1 1, n 1 2, . . . , m 1 n 2 j
Hil 5 f (i)

0l For i 5 0, 1, . . . , q
Next l

g (q)
ij 5

i
q

g (q21)
i21,j 1

q 2 i
q

g (q 2 1)
ijNext i

3) Calculation of P̃ij (0 # i # n, 0 # j # m 1 n). Next i
Next qSet H (m1i)

ij 5 Hij i 5 0, 1, . . . , n; j 5 0, 1, . . . , m 1 i
If j . mFor i 5 0, 1, . . . , n
For q 5 n 2 1, n 2 2, . . . , m 1 n 2 jFor q 5 m 1 i 1 1, m 1 i 1 2, . . . , m 1 n

For i 5 0, 1, . . . , qFor j 5 0, 1, . . . , q

g(q)
ij 5

q 1 1
q 1 1 2 i

g(q11)
i, j 2

i
q 1 1 2 i

g(q)
i21, jH (q)

ij 5
j
q

H (q21)
i, j21 1

q 2 j
q

H (q21)
ij

Next iNext j
Next qNext q

Next jNext i
Set P̂i, j,k 5 g(m1n2j )

ij for 0 # i 1 j # m 1 nSetP̃ij 5 H (m1n)
ij i 5 0, 1, . . . , n; j 5 0, 1, . . . , m 1 n

4. AN APPLICATION
Obviously, this is a corner-cutting algorithm; however,

an efficient conversion algorithm cannot be derived di-Triangular and rectangular Bézier surface methods to-
gether form one of the main techniques for surface model- rectly from the explicit conversion formula in [7].
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APPENDIX: A PROOF OF THE
CONVERSION ALGORITHM

P(u,v)

n 3 m degree

(u, v) [ D1

RT
P̃(s, t)

n 3 (m 1 n) degree

0 # u, v # 1By using the transformation

RT
21

P(u, v, w)

# m 1 n degree

0 # u, v, u 1 v # 1

T21 : 5s 5
u

1 2 v
5

u
u 1 w

t 5 v

,

Since P(u, v)((u, v) [ D1) can be represented as a trian-we have
gular Bézier patch of degree m 1 n, (shown in [7]), the
control points of P̃(s, t) must satisfy Eq. (9) for k 5Bm1n2j

i (s)Bm1n
j (t)

m 1 1, m 1 2, . . . , m 1 n, where qik 5 P̃ik , and this
completes the proof.

5Sm 1 n 2 j

i
DSm 1 n

j
D si(1 2 s)m1n2i2jt j(1 2 t)m1n2j
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