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Abstract

We give a new, simple algorithm for simultaneous degree elevation and knot insertion for B-spline curves. The
method is based on the simple approach of computing derivatives using the control points, resampling the knot
vector, and then computing the new control points from the derivatives. We compare our approach with previous
algorithms and illustrate it with examples.
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1. Introduction

Several methods have been given for degree elevation of B-spline curves (Cohen et al., 1985; Liu and
Wayne, 1997; Prautzsch, 1984; Prautzsch and Piper, 1991; Pigel and Tiller, 1994), the fastest of which is
Prautzsch and Piper’s algorithm (Prautzsch and Piper, 1991). Unfortunately, their algorithm suffers from
being complicated and hard to implement. On the other hand, Piegl and Tiller's (1994) algorithm is more
straightforward, and easier to understand. It splits the B-spline curve into Bézier curve pieces, raises the
degree of each piece, and then recombines the degree-elevated Bézier curves to produce the new B-spline
curve. Liu's algorithm (Liu and Wayne, 1997) has the benefits of being both simple to implement and
fast. It takes the approach of computing the new control points using a series of knot insertions followed
by a series of knot deletions.
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We give here a new fast, simple method for degree elevation of B-spline curves, which can also simul-
taneously insert knots. Our approach is based on the well known fact that a polynomial curve is uniquely
determined by its value at a given point together with the values of all its derivatives at that point. This
observation can be generalised to B-splines which are piecewise polynomials, and hence B-spline curves:
each curve segment over the knot interfvalz; . 1] is determined by the value of the curve and its deriv-
atives at the knot;. We have already used this observation to devise a knot adjustment algorithm for
B-splines (Tai et al., 2003).

The derivatives of a B-spline can be computed efficiently using a variety of approaches (Ferrari et al.,
1994; Wang et al., 1996). It has been shown that using the inverse approach leads to a knot refinement
algorithm (Sankar et al., 1994) which is significantly faster than the usual Oslo algorithm (Cohen et al.,
1980).

In a similar vein to (Sankar et al., 1994), this paper gives a hew degree elevation algorithm based on
representing a B-spline using derivatives, and converting it back to the usual piecewise polynomial form.
Our new algorithm has the following advantages:

e our algorithm is more efficient than existing algorithms,

e our algorithm is simple to implement, with a readily understood conceptual basis,

e our algorithm can handle unclamped B-spline curves, whereas previous algorithms only work in the
clamped case,

e our algorithm can be generalized to perform knot insertion.

Section 2 outlines various B-spline formulae we need later. Section 3 describes our new algorithms.
Section 4 provides examples and a comparison with other approaches. We close the paper with some
conclusions and a discussion.

2. B-splineformulae

Here we summarize various relevant B-spline formulae. A B-spline curve of éridedefined by a
linear combination of B-spline basis functions as:

n
P(I)ZZPiNi,k(l), b1 <t <ty (1)
i=0

where theP; are control points, ant¥; ,(¢),i =0, ..., n, are B-spline basis functions defined recursively
on the knot vectofl” = [1, ..., t,4«] as (Piegl and Tiller, 1997):

1 it <t <t
Nia(t) = {0 otherwise, o
r—1t tivp —t
Nix(t) = ———Ni1(t) + ———Niy14-1(0). 3)
litk—1— 1 litk — lit1

(By convention, if Q0 appears in the formula, we replace it by 0.)
We could explicitly require that. > 1 if #,., =1, this leads taV; ; () = 0, resulting in a B-spline
curve which splits into two separate B-spline curves. However, there is no need to impose this condition,
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and Eqg. (1) is still valid with this choice of knot vector. This fact is important becausékthep)th
derivative of a B-spline curve may not satisfy the condition thgt > #;, but it is still convenient to treat
it as a single B-spline curve.

As some knots with consecutive subscripts may be equal, for the sake of convenience, we rewrite the
knot vector in another form as follows:

T = [IO’ ---’tk72’ u07ul’ "'7ul’ u27 ""u27 "'7uS71’ ---’qulauS’ t}’l+27 "'7t}’l+k]’ (4)

71 22 i5-1
wheretg < -+ <tz Suo, Us <ty < -+ <y, and{u; }i—o,... s IS @ strictly increasing sequence, with
{zi}i=1....s—1 being a positive integer sequence giving the multiplicities of each of the knets; X k;
i=12,...,5— 1. The multiplicity of eachy; is z;.
Let P®(r) denote thdth derivative of P(¢). Then

n—I
POy =" P/ Niprxai(0), (5)
i=0
whereN;,, ,—;(t) are the B-spline basis functions defined over the knot vector given by Eq. (4), and the
P! are defined recursively by:
P; if 1=0,
Pl =] o (P =P ifI>0ands g > tiy, (6)
if { >0andt;, =t.

Alternatively, we can comput®’-; from P/~* and P! by a rearrangement of Eq. (6):

tivg — t;
Pil;].1=Pi171+ +,’;_l+lpil- )

We call P,.j thederivative coefficientef the B-splineP (). When a B-spline curve has only simple knots,
Wang (Wang et al., 1996) gives the following formula to compute(the 1)th derivatives at the knots
using theP; as follows:

P V) =Pt 8)

For curves having multiple knots, we now give a similar formula:

Theorem 1.
POu)=P), k-z<j<k-11<i<S—1, ©)

whereg; =3 "_; 2.

Proof.
n—j n—j
PO ()= Z P! Niyji—j(u;) = Z P! Niyji—j(tg1i-1)
i=0 i=0
Bitk—j-1
= Y P/NigjujUpii-2)
i=pi
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= P} Npjk (tp i1 (10)
= P};l_, (11)
Eq. (10) follows fromu; = tg,1+—1 =t;+; and Eq. (11) follows from
Bi+k—j—1
Novik-iUpie-D =Y Nigjujltgu-)=1 O
i=pi
Knot vectors of B-splines can be classifiedd@mpedor unclamped(Piegl and Tiller, 1997). The
knot vector of a clamped B-spline curve satisfigs=1, =--- =t,_o =ug andug =t,,0 = -+ = t,44.
We may also say thaP(r) is left-clampedif 7o =7 = --- = #,_1. It is well known that a left-clamped
B-spline curveP (¢) satisfies
PPugy=PJ, 0<j<k—-1 (12)

Existing degree elevation algorithms (Liu and Wayne, 1997; Prautzsch and Piper, 1991; Pigel and
Tiller, 1994) can only handle clamped B-spline curves, so existing approaches to raising the degree of an
unclamped B-spline curve first clamp its knot vector by means of a clamping algorithm (Piegl and Tiller,
1997). As an alternative, we use a knot adjustment algorithm (Tai et al., 2003) for this purpose; it can
easily be combined with our new degree elevation algorithm to obtain greater overall efficiency.

3. Degree elevation
3.1. Degree elevation of a clamped B-spline curve

Since a B-spline curve is a piecewise polynomial curve, it is possible to raise its degreé foom
k +m, wherem is an integer greater than or equal to 1. Thus, there must exist control jghirasd a
new knot vectoiT = [io, ..., 71 i+m] SUch that

Pt)=0@) =) Nikm(®)0i, (13)

i=0

where7 is the number of control points a®(¢), and N; ;... (t),i =0, ..., 7, are the B-spline basis
functions of ordek -+ m defined on the knot vectd¥.

The curvesP (r) and Q(¢) have the same geometry and parameterization. The computatiorOef
andT is referred to asaising the degre®f the curve (Pigel and Tiller, 1994).

The knot vectofT and# can be computed as follows. Assume tifaiakes the form given in Eq. (4).
Since degree elevation preserves continuityt) has continuity of ordeC*=% atu;, and the new knot
vector must take the form

T =1ug, ... 0o, Uly oovs UL, UDy ooy UDy ooy ST, ooy US—1s US, .., US], (14)

k+m z1+m z2+m z5—1+m k+m

sothati =n + S x m.
We now consider how to find th@;.



S50167-8396(04)00127-X/FLA AID:907 Vol.eee(eee) [DTD5] P.5 (1-15)
COMAID:m2 v 1.32 Prn:14/12/2004; 10:12 Cagd907 by:ML p. 5

Q.-X. Huang et al. / Computer Aided Geometric DeSigh (eeee) eee—see 5

3.1.1. The new degree elevation algorithm
Theorem 2. The derivative coefficients @&f(z) and Q(¢) are related as follows

Ql=P{, 0<j<k-1, (15)
Qfipm=Ps» 1<p<S—1 k—z,<i<k—-1, (16)
Qﬁp+pm+] Qﬂp+pm’ 1<p<<S-11<j<m. @

Proof. Theorem 1 gives that,

PO(up)y=P,, 0<i<k—1,

0¥ uo)=Qh 0<i<k—1,

P“)(up):P,gp, QU)(M,,):Q;;P, 1<p<S—1 k—z,<i<k-1
As P(t) and Q(¢) have the same geometry and parametrlzation, so do their derivatives, which proves
Egs. (15) and (16).

Consider one segment of the knot vectog [u,, u,1). It is well known that at most + m of the

B-spline basis functiond/; ., (t) are nonzero in this knot segment; more precis®lyy. ,,(¢) iS nonzero
onlup,u,r1) wheng, + (p —1m —k+1<i < B, + pm — k. Consider théth derivatives ofP () and

Q(t). As the degree oP () is k — 1, itskth derivative equals zero, and thus so doesithaderivative of
0(1), so that:

n+S-m Bptpm—k
0=PP0)=0"0 =Y Ofipm®= > Offim(®). (18)
i=0 i=Bp+(p—Dym—k+1

Eq. (18) allows us to deduce th@t =0, 8, + (p — D)m —k+ 1< i < B, + pm — k, and as a result we
can deduce Eq. (17):

7 — 1
k=1 _ k-1 i+k+m i+k ~k
Q=0+ 7Q

) O
i+1 — (k+ ) _

Remark. It is obvious that Theorem 2 holds as longR&) and Q(¢) are just left-clamped; it does not
matter if the curve is right-unclamped. To do degree elevation for an unclamped curve, we can turn it into
a left-clamped curve using the knot adjustment algorithm mentioned earlier.

For a giveri in Egs. (6) and (7), we can see that division by a common fact@t ef/) is needed for
all i, so from a software engineering point of view, it simplifies matters if we define instead

J
=P/ /T]k-D,
=1
J
=0l /Tt +m -0,
=1

which lets us rewrite Egs. (6) and (7) in simpler form:

1 Nji—1
~. Pt p/
Pl:’—i’*l R (19)
Livk — tiyl
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Pit=pit B 20

i1 — 4 + (ti+k - ti+l) i ( )

Egs. (15)-(17) now become

J

~ k—1 ~

]= 7P]s Oggk—l’ 21
s g(k+m—l)° j (21)
~ L k=1 .

Qﬁp+pm:]_[(m)13ﬂp, 1<p<S—1k—z,<j<k—1, (22)

=1
Qﬁp+pm+l Qﬁpﬂ,m, 1<p<S-1 1<i<m. (23)

This leads to greater efficiency. For example, in the case where the knBi{g)cdre not repeated, then
]'[, 1(k+m ;) can be computed a priori, so while Egs. (15) and (16) add a furthawltiplications,
Egs. (19) and (20) save a totalmofk — 1) multiplications andnn(k — 1) divisions respectively.
Based on the equations developed above, we now give a procedural method for degree elevation of a
clamped B-spline curve as follows:

Algorithm 1. Raise a clamped B-spline curve from degkee degreek + m.

Use Eq. (19)tocomput€o, 0<j<k—1landP; ,1<p S—1k—z,<i<k-—1
Use Eq. (14) to computé and seti ton + S x m.

Use Egs. (21)—(23) to g@o, 0<j<k—1, Qﬁ +pmo Qﬁp+pm+]

Use Eqg. (20) to compute new control pon@§

3.1.2. Example

We now give a numerical example showing how our algorithm works. Fig. 1 shows a clamped B-spline
curve. The original curveP (¢) is an order 4 B-spline curve with knot vector {0, 0, 0, 0, 0.5, 0.5, 1, 1,
1, 1} and control points {(260, 100), (100, 260), (260, 420), (420, 420), (580, 260), (420, 100)}. The
curve Q(t) after degree elevation is an order 5 B-spline with knots {0, 0, 0, 0, 0, 0.5,0.5,0.5, 1, 1, 1, 1,
1} and with control points {(260, 100), (140, 220), (180, 340), (280, 420), (400, 420), (500, 340), (540,
220), (420, 100)}. The differential coefficients of the two curves are presented below together with the
relations from Theorem 2:

3~ ~0 1~ ~ 1~
4Pl’ Qg:EPZO’ QO__P??’

~0  ~p ~0
QOZPO’ Q 372

1~ ~3 1~ ~ o~ ~
0}=35P7  03=3P, 03=05  03=03
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Fig. 1. Degree elevation from order 4 to order 5.

Differential coefficients ofP (¢):

P2(260,100) P2(100, 260) P2(260, 420)
P}(—320 320 PL(320, 320 P}(160Q,0)
P2(128Q0) P2(—320,—640)  P2(320,—640
P3(—320Q —1280  P3(320, —640) P3(—320Q 1280
P2(420, 420 P2(580, 260) P2(420,100
P1(320,—320) PL(—320 —320

P2(—128Q 0).
Differential coefficients ofQ (¢):

05(260,100 09(140,220 05(180,340 03(280,420
03(—240 240 01(80, 240 03(200 160 0%(120,0)
03(640,0) 0%(240, —160) 03(—160—320  (03(160 —320
03(—800,—320  03(—800 —320  Q3(160 —320 03(—800, 320
04(0,0) 04(0,0) 0%(0,0) 04(0.0)
09(400, 420 02(500, 340 02(540, 220 09(420,100
01(200, —160) 0L(80, —240) 0L(—240 —240

03(—240,—-160)  Q%(—640,0)
03(—800, 320).
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3.2. Degree elevation of an unclamped B-spline curve

The above method can readily be generalised to the case of an unclamped B-spline curve. This is done
by considering the appropriate knot adjustment and degree raising results in turn, and combining them.

3.2.1. Problem statement
Let P(t) =Y ', Ni«(t) P; be a B-spline curve defined on the knot vector

T = [IO, ---,tk—2, uo,ug, ..., U1, ..., Us1, "'5”5—1’MS5tn+2’ ""tn—‘rk]'

21 75-1

We wish to raise the degree of this B-spline fr@gnto k + m, and compute an appropriate new knot
vector. We denote the final curve Ig}(¢), with knot vector of the form:

T - [IO’ ey tk+m727 uO’ ul’ ey ula sy usfl’ ey usfla uSa tn+Sm+2a sy tn+(S+l)m+k]~

z1tm i5-1

As before{io <11 < -+ < frm—2 < uo} and{us < fyysmiz < - .. < hrs+nmek) @re input values which
may be chosen by the user.

3.2.2. Degree elevation algorithm
First, we change the knot vector 6f(z) to its left-clamped form

T1=[M05"'5”0’141,---,M].;---,MS—l,---5”5—15”S’tn+15~~~5tn+k]~

k 2 Z5-1

The new curveR(t) defined onT; has control pointsk;,i =0, ...,n. By considering the derivative
coefficients ofP () and R(¢) arising in the knot adjustment algorithm, we have

REI=PIIRL , =P ,, O0<I<k-2 (24)
E" =Fl’, 1<p<S—1 k—z,<i<k-1, (25)
R’_Rf+1 (tisx — )R, i=0,...,k—=3—1,1=k—3,...,0. (26)

We now use the degree elevation algorithm for a clamped B-spline curve to raise the deR(eeasf
desired. Let the result b€ (z) with control pointsU; and knot vector

T2 = [an e U, UL, U, U1, US—1, Ug, tl’lJrSerZ’ ey [n+(S+1)m+k]~

k+m z1+m 5-1

The relations between th%,.’ and theﬁij are given by Egs. (21)—(23) where we replatdy R and Q
by U.

Finally, we change the knot vect®@p to T and findQ(¢). By considering the derivative coefficients of
U(@) andQ(t), and asQf = Ul.l =0,! > k from the knot adjustment algorithm, we have

Ohyiom=Uhppme L<P<S—1 k=2, <j<k-1, (27)
Qﬁpﬂ,mﬂ o5 +pm—U§Pjpm+l—U§jpm, 1<p<S—1 1<i<m, (28)
Oniic1j=Upcay 1<j<k=1 Of'=Uf" 1<i<m, (29)
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N — 0 g by A+l . -
Q) =0l 4 — (tiskem —lirj30 Q" i=0,...,k+m—2—j, j=0,.... k-2 (30)

These may readily be cast into algorithmic form as before.
3.3. Combining knot insertion and degree elevation

3.3.1. Problem statement
In this section, we only consider the case of a clamped B-spline curve? (tgt= Y _, P; N« (¢) be
a B-spline curve defined over the knot vector

T =lug,...,uo, Ut, ..., UL, U2, .., UDy .o  US 1, ., US_1, US, ..., Us]

k 21 22 z5-1 k
as before. We now wish to raise its degree frbto £ + m, and also to insert a set of new knoetseach
with multiplicity y;:

(50, « vy 80, STy e vy STy envsStyee.s S (32)
—_—— — — —_———
Yo yi i

We denote the final curve b@(¢). We may express the final knot vector as:

T =[uo, .., U0, Uy o ey ULy e ey UI[A]s - - o s UI[A]s « -+ s DI[S]—1s « - - » UI[S]—1s UI[STs - - - » UI[s]]s (32)

k+m 721 21 Z[s]-1 k+m

wherei; ;) =u;, 0<i < S, are the knots of original curve and the knots

(U1, ooy ULy oo UL =1y o oo WI[L]=1s WU[L]s - o WI[A]s -+« o s WI[S]=15 -+ - » Ui[S]—1] 33
(1 (1 (1 (1 (5] [s] (33)

2 Zi[-1 [ —z1—m 2s)-1

are the ones inserted. Thus, the number of new knaissis: + Sm + ! _, y;, whereY™!_, y; is the
number of knots being inserted. Here Eq. (33) gives another way of expressing Eq. (31).

3.3.2. Combining knot insertion and degree elevation

Existing degree elevation and knot insertion algorithms use different approaches which are hard to
combine. However, our degree elevation algorithm and the knot insertion algorithm proposed by (Sankar
etal., 1994) use the same idea, i.e., computing derivatives from control points, resampling the knot vector,
and computing new control points from derivatives. It is thus possible to combine the two algorithms.
The resulting algorithm is more efficient than performing degree elevation and knot insertion separately.
The following theorem describes the relations between derivatives of the curve before and after degree
elevation and knot insertion.

Theorem 3
Qh=P, 0<j<k-1, (34)
O =P/, k—z<j<k—-1 1<i<S—-1, (35)
ﬂ[[v] ﬁl
_ ~ 1<i<S-1,
04t =Pt 0<H I -1l @

0< Jj < mln(zl[, +h — 1, m)
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él:é{ o k+m—§h<]:<k—2 ?fh;él[l:], 37)
Bu BuntGe—m—1-%—j) k+m—-7,<j<k—z;—1 ifh=I[].

Proof. The ideas of the proof follow those of Theorem 2 and we omit them for brevity.

We may now give an algorithm for simultaneously raising the degree and inserting new knots, which
follows by analogy with Algorithm 1.

Algorithm 2. Simultaneous degree elevation and knot insertion for a clamped B-spline curve.
The order is being raised fromto k + m.

Use Eq. (19) to comput®’, 0< j <k — 1, andﬁip, 1<p<S—1,k—z,<i<k-1.
SetT by Eq. (32) and set =n + Sm + Y_,_, y; as above.
e Use Theorem 3 to geP), 0< j <k —1, @gl[_],k—zi <j<k—-1,1<i<S-1,and

N 1<i<S-1,
R
0< j <mMinZyijn — 1, m).

Use Egs. (20) and (37) to compute the new control paiifts

Our algorithm is very efficient. For a 2D B-spline curve with unique knots, we need ghly-3)
additions and & — 1) multiplications per inserted knot, while Bohm’s knot insertion algorithm (Goldman
and Lyche, 1993) takegB+ m — 1) additions and & + m — 1) multiplications.

4. Comparison and discussion
We now give the results of comparing our new algorithm with existing methods.
4.1. Degree elevation

Here we only consider the case of a clamped B-spline curve, as the algorithms proposed by Piegl
(Pigel and Tiller, 1994) and Prautzsch (Prautzsch and Piper, 1991) cover this case.

Firstly, we counted the number of operations needed by various algorithms. Prautzsch’s algorithm is
faster than Piegl’s for raising the order by one, but Piegl’s algorithm is more efficient when raising the
order by an arbitrary degree. Thus we compared our algorithm with Prautzsch'’s in the former case and
with Piegl’s in the latter. The following tables give the number of operations required, assuming all knots
are of multiplicity one; we consider knots with higher multiplicity later.

Tables 1 and 2 clearly show that for arbitraryk, andm, our algorithm takes less arithmetic opera-
tions.

Secondly, we experimentally tested and compared our algorithm to the algorithms considered above.
The following tests were performed:

e The growth rate as a function of using different starting degre¢s =2, 3, .. .).
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Table 1
Raising the degree by one
Operations Prautzsch’s algorithm Our algorithm
+,— (n—k+1)(10k —8) + k 6(n —k+ 1) (k—1) +2k(k — 1)
X (n—k+1)(5 —2)+ 2k n—k+1)(2k—-1) +k(k—1)/2
/ m—k+1)(2k—2) m—k+D*k -1 +k(k—-1)/2

Table 2
Raising the degree by
Operations Pigel's algorithm Our algorithm
+, - @n+Dk-—D+2k+xk)(n—k+1) 2m+2)(n—k+ 1)k —1)+2k(k —1)
X (m+Dk—-D+3k(*k—-1)/2)(n —k+1) n—k+21)tkm+ (k—m)) +k(k—1)/2
/ kK2(n —k +1)/2 (n—k+1)k—1) +k(k—1)/2

Table 3

Times (in seconds) taken to elevate the degree starting at order 3

Elevation Pigel’s algorithm Prautzsch’s algorithm Our algorithm

3to4 09432 07916 05338

3to5 09432 18412 0689

3to6 15162 31578 08352

3to7 18116 47107 09734

3t08 2108 65777 11446

3t09 23834 86342 13

e The growth rate as a function of the starting ordausing different elevations of ordek goes to
k+1,kgoestok+2,...).

In an attempt to be as fair as possible to previous methods, we used the previous authors’ own code
given in (Prautzsch and Piper, 1991) and (Pigel and Tiller, 1994). The hardware used was an Intel Pentium
IV, 1.4 GHZ computer. We ran each program 10000 times, and counted the total time taken in seconds.
Each test curve was a 2D B-spline curve with 20 randomly chosen control points and randomly distributed
knots.

These tests all led to similar conclusions; representative results for order 3 curves are shown in Table 3
and Fig. 2.

These tests showed that:

e Our algorithm is best in terms of absolute time taken.
e Prautzsch and Piper’s algorithm has the worst growth characteristics; our algorithm has a slightly
slower growth rate than Piegl and Tiller's algorithm.

These examples used B-spline curves with interior knots of multiplicity one. We also investigated
timings in the order 4 case when the interior knots were all double or triple knots, again using a B-spline
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A somdisss
10.04 Piegl and Tiller algorithm
9.0 . . N ) .
2.0 - I Prautzsch and Piper algorithm
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6.0 ',-‘. Our algorithm
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4.0 ,//
3.0 A
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2.0 4 ".’ bl
1.0+ oA o = "

Table 4

3to4 3to5 3to6 3to7 3to8 3to9

o
imncrement

Fig. 2. Times taken to elevate the degree starting at order 3.

Times (in seconds) taken to raise the order by 3 starting at various orders

Elevation Pigel’s algorithm Prautzsch’s algorithm Our algorithm
2to4 08344 13525 04135

3to5 12218 18412 0689

4t06 1701 23516 09441

5t07 23283 29312 11355

6to8 28171 31965 13819

7t09 3381 35331 1564

81t0 10 4057 38652 17143

with 20 control points. Similar results were again obtained, again showing that our algorithm to be best
both in absolute time taken, and in growth rate, when the splines have multiple knots.

Next, we studied the performance of the various algorithms with respect to different starting orders,
and differing amounts of degree elevation. Again, as a representative sample, we illustrate the results
obtained in the ordek to orderk + 3 case in Table 4 and Fig. 3.

The results follow a similar pattern to the previous tests, and our algorithm is the clear winner.

The results of our practical experiments validated our theoretical comparisons in terms of the number
of operations used. Our new algorithm is clearly more efficient for degree elevation than either of the
existing algorithms used as benchmarks.

4.2. Degree elevation and knot insertion

We also experimentally tested and compared our combined degree elevation and knot insertion algo-
rithm to the use of a separate degree elevation algorithm followed by a knot insertion algorithm. For
the same reasons noted above, we used Prautzsch’s degree elevation algorithm when raising the degree
by one, and Piegl’s algorithm when raising the degree by more than one. We used Béhm'’s (1980) knot
insertion algorithm, being the fastest. Other test conditions were as described in the previous Section.
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Time (CPU seconds)
A ——
7.0 Piegl and Tiller algorithm
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5.6 - Prautzsch and Piper algorithm
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4.2 Our algorithm
354
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2.1
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Fig. 3. Times taken to raise the order by 3 starting at various orders.
Table 5
Times (in seconds) taken to raise the order by 1 and insert varying numbers of knots
Number of knots inserted Separate algorithms Our algorithm
10 0874 05894
30 1042 Q7106
50 1203 08118
70 1375 09231
90 1542 1045
110 1709 1153
Time (CPU seconds)
A R
20— Degree raising and knot insertion
1.8 —
1.6 Our algorithm
1.4
1.2
1.0
0.8
0.6
0.4 -
0.2 +
10 30 50 70 90 110 ;;rcmem

Fig. 4. Times (in seconds) taken to raise the order by 1 and insert varying numbers of knots.

Two tests were carried out. In the first, we always started with an order 3 curve, and raised its order
to 4, while at the same time inserting some number of knots, with the number being inserted increasing
from 10 to 110. Times taken are shown in Table 5, and graphed in Fig. 4.
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In the second test, we started with an order 4 curve, and raised its order by varying amounts to order
5,6,...,10, while at the same time always inserting 100 knots. In this case, the relative advantage of our
method increased with the amount of degree elevation.

Overall, our combined algorithm is faster than using separate algorithms, as expected.

4.3. Handling rounding errors

Real arithmetic on a computer is not performed to perfect accuracy. Normally, the resulting errors
(rounding errorg can be ignored because the noise they represent is extremely small compared to the
signal. However, in certain ill-conditioned cases, the errors can be significant.

Usually, normal floating point arithmetic works well for our algorithms, but the results can be unstable
when the knots are distributed in an extremely non-uniform manner, e@;.if — u;)/(u; — u;_1) <
107 for somei.

In this case, a modification to our new method may be used. We insertand u;, k — z;,1 and
k — z; times respectively, using Bohm’s approach (B6hm, 1980), so that the curve is segmented into three
separate B-spline curves. Degree elevation can then be performed for each curve using our algorithm, and
then Eck’s method (Eck and Hadenfeld, 1995) can be used to remove thekaot, .1, k., andk,,,
times respectively, to obtain the overall B-spline curve after degree elevation. Stability is achieved by
dividing the B-spline curve into segments such the that knots are relatively uniformly distributed within
each segment.

Note that this process only takegi®) time for each knot intervdls; , u;,1], which has to be processed
in this way. If we do this procedure faveryknot, we obtain Piegl and Tiller’s algorithm.

5. Conclusion

In this paper, we have given an efficient algorithm to elevate the degree of a B-spline curve, and
we have also shown how the process can be combined with a complementary algorithm working on
similar principles for knot insertion, to give an efficient algorithm which can do degree elevation and
knot insertion simultaneously. These methods are computationally superior to existing approaches. The
new method presented in this paper can clearly also be extended to the case of degree reduction.
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