
ARTICLE IN PRESS
S0167-8396(04)00127-X/FLA AID:907 Vol.•••(•••) [DTD5] P.1 (1-15)
COMAID:m2 v 1.32 Prn:14/12/2004; 10:12 cagd907 by:ML p. 1

d

s

es. The
the knot
revious

Liu and
which is
rs from
s more
ises the
B-spline

nt and
llowed
Computer Aided Geometric Design••• (••••) •••–•••
www.elsevier.com/locate/cag

Fast degree elevation and knot insertion for B-spline curve

Qi-Xing Huanga, Shi-Min Hua,∗, Ralph R. Martinb

a Department of Computer Science and Technology, Tsinghua University, Beijing 100084, PR China
b School of Computer Science, Cardiff University, Cardiff, CF24 3AA, United Kingdom

Received 30 April 2004; received in revised form 15 October 2004; accepted 10 November 2004

Abstract

We give a new, simple algorithm for simultaneous degree elevation and knot insertion for B-spline curv
method is based on the simple approach of computing derivatives using the control points, resampling
vector, and then computing the new control points from the derivatives. We compare our approach with p
algorithms and illustrate it with examples.
 2004 Elsevier B.V. All rights reserved.

Keywords:B-splines; Degree elevation; Knot insertion

1. Introduction

Several methods have been given for degree elevation of B-spline curves (Cohen et al., 1985;
Wayne, 1997; Prautzsch, 1984; Prautzsch and Piper, 1991; Pigel and Tiller, 1994), the fastest of
Prautzsch and Piper’s algorithm (Prautzsch and Piper, 1991). Unfortunately, their algorithm suffe
being complicated and hard to implement. On the other hand, Piegl and Tiller’s (1994) algorithm i
straightforward, and easier to understand. It splits the B-spline curve into Bézier curve pieces, ra
degree of each piece, and then recombines the degree-elevated Bézier curves to produce the new
curve. Liu’s algorithm (Liu and Wayne, 1997) has the benefits of being both simple to impleme
fast. It takes the approach of computing the new control points using a series of knot insertions fo
by a series of knot deletions.

* Corresponding author.
E-mail address:shimin@tsinghua.edu.cn (S.-M. Hu).
0167-8396/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cagd.2004.11.001



ARTICLE IN PRESS
S0167-8396(04)00127-X/FLA AID:907 Vol.•••(•••) [DTD5] P.2 (1-15)
COMAID:m2 v 1.32 Prn:14/12/2004; 10:12 cagd907 by:ML p. 2

2 Q.-X. Huang et al. / Computer Aided Geometric Design••• (••••) •••–•••

simul-
niquely
t. This
curves:

riv-
m for

i et al.,
finement
et al.,

sed on
l form.

in the

rithms.
ith some

ely

ndition,
We give here a new fast, simple method for degree elevation of B-spline curves, which can also
taneously insert knots. Our approach is based on the well known fact that a polynomial curve is u
determined by its value at a given point together with the values of all its derivatives at that poin
observation can be generalised to B-splines which are piecewise polynomials, and hence B-spline
each curve segment over the knot interval[ti, ti+1] is determined by the value of the curve and its de
atives at the knotti . We have already used this observation to devise a knot adjustment algorith
B-splines (Tai et al., 2003).

The derivatives of a B-spline can be computed efficiently using a variety of approaches (Ferrar
1994; Wang et al., 1996). It has been shown that using the inverse approach leads to a knot re
algorithm (Sankar et al., 1994) which is significantly faster than the usual Oslo algorithm (Cohen
1980).

In a similar vein to (Sankar et al., 1994), this paper gives a new degree elevation algorithm ba
representing a B-spline using derivatives, and converting it back to the usual piecewise polynomia
Our new algorithm has the following advantages:

• our algorithm is more efficient than existing algorithms,
• our algorithm is simple to implement, with a readily understood conceptual basis,
• our algorithm can handle unclamped B-spline curves, whereas previous algorithms only work

clamped case,
• our algorithm can be generalized to perform knot insertion.

Section 2 outlines various B-spline formulae we need later. Section 3 describes our new algo
Section 4 provides examples and a comparison with other approaches. We close the paper w
conclusions and a discussion.

2. B-spline formulae

Here we summarize various relevant B-spline formulae. A B-spline curve of orderk is defined by a
linear combination of B-spline basis functions as:

P(t) =
n∑

i=0

PiNi,k(t), tk−1 � t � tn+1, (1)

where thePi are control points, andNi,k(t), i = 0, . . . , n, are B-spline basis functions defined recursiv
on the knot vectorT = [t0, . . . , tn+k] as (Piegl and Tiller, 1997):

Ni,1(t) =
{

1 if ti � t < ti+1,

0 otherwise,
(2)

Ni,k(t) = t − ti

ti+k−1 − ti
Ni,k−1(t) + ti+k − t

ti+k − ti+1
Ni+1,k−1(t). (3)

(By convention, if 0/0 appears in the formula, we replace it by 0.)
We could explicitly require thatti+k > ti : if ti+k = ti , this leads toNi,k(t) = 0, resulting in a B-spline

curve which splits into two separate B-spline curves. However, there is no need to impose this co



ARTICLE IN PRESS
S0167-8396(04)00127-X/FLA AID:907 Vol.•••(•••) [DTD5] P.3 (1-15)
COMAID:m2 v 1.32 Prn:14/12/2004; 10:12 cagd907 by:ML p. 3

Q.-X. Huang et al. / Computer Aided Geometric Design••• (••••) •••–••• 3

t

rite the

ith

nd the

ts,
s

and Eq. (1) is still valid with this choice of knot vector. This fact is important because the(k − p)th
derivative of a B-spline curve may not satisfy the condition thatti+p > ti , but it is still convenient to trea
it as a single B-spline curve.

As some knots with consecutive subscripts may be equal, for the sake of convenience, we rew
knot vector in another form as follows:

T = [t0, . . . , tk−2, u0, u1, . . . , u1︸ ︷︷ ︸
z1

, u2, . . . , u2︸ ︷︷ ︸
z2

, . . . , uS−1, . . . , uS−1︸ ︷︷ ︸
zS−1

, uS, tn+2, . . . , tn+k], (4)

wheret0 � · · · � tk−2 � u0, uS � tn+2 � · · · � tn+k , and{ui}i=0,...,S is a strictly increasing sequence, w
{zi}i=1,...,S−1 being a positive integer sequence giving the multiplicities of each of the knots: 1� zi � k;
i = 1,2, . . . , S − 1. The multiplicity of eachui is zi .

Let P (l)(t) denote thelth derivative ofP(t). Then

P (l)(t) =
n−l∑
i=0

P l
i Ni+l,k−l(t), (5)

whereNi+l,k−l(t) are the B-spline basis functions defined over the knot vector given by Eq. (4), a
P l

i are defined recursively by:

P l
i =




Pi if l = 0,
k−l

ti+k−ti+l
(P l−1

i+1 − P l−1
i ) if l > 0 andti+k > ti+l ,

0 if l > 0 andti+k = ti+l .

(6)

Alternatively, we can computeP l−1
i+1 from P l−1

i andP l
i by a rearrangement of Eq. (6):

P l−1
i+1 = P l−1

i + ti+k − ti+l

k − l
P l

i . (7)

We callP j

i thederivative coefficientsof the B-splineP(t). When a B-spline curve has only simple kno
Wang (Wang et al., 1996) gives the following formula to compute the(k − 1)th derivatives at the knot
using theP j

i as follows:

P (k−1)(ui) = P k−1
i . (8)

For curves having multiple knots, we now give a similar formula:

Theorem 1.

P (j)(ui) = P
j

βi
, k − zi � j � k − 1, 1� i � S − 1, (9)

whereβi = ∑i
l=1 zl .

Proof.

P (j)(ui) =
n−j∑
i=0

P
j

i Ni+j,k−j (ui) =
n−j∑
i=0

P
j

i Ni+j,k−j (tβi+k−1)

=
βi+k−j−1∑

i=βi

P
j

i Ni+j,k−j (tβi+k−1)



ARTICLE IN PRESS
S0167-8396(04)00127-X/FLA AID:907 Vol.•••(•••) [DTD5] P.4 (1-15)
COMAID:m2 v 1.32 Prn:14/12/2004; 10:12 cagd907 by:ML p. 4

4 Q.-X. Huang et al. / Computer Aided Geometric Design••• (••••) •••–•••

el and
ee of an
Tiller,

; it can

m

s

).
t

= P
j

βi
Nβi+j,k−j (tβi+k−1) (10)

= P
j

βi
. (11)

Eq. (10) follows fromui = tβi+k−1 = ti+j and Eq. (11) follows from

Nβi+j,k−j (tβi+k−1) =
βi+k−j−1∑

i=βi

Ni+j,k−j (tβi+k−1) = 1. �

Knot vectors of B-splines can be classified asclampedor unclamped(Piegl and Tiller, 1997). The
knot vector of a clamped B-spline curve satisfiest0 = t1 = · · · = tk−2 = u0 anduS = tn+2 = · · · = tn+k .
We may also say thatP(t) is left-clampedif t0 = t1 = · · · = tk−1. It is well known that a left-clamped
B-spline curveP(t) satisfies

P (j)(u0) = P
j

0 , 0 � j � k − 1. (12)

Existing degree elevation algorithms (Liu and Wayne, 1997; Prautzsch and Piper, 1991; Pig
Tiller, 1994) can only handle clamped B-spline curves, so existing approaches to raising the degr
unclamped B-spline curve first clamp its knot vector by means of a clamping algorithm (Piegl and
1997). As an alternative, we use a knot adjustment algorithm (Tai et al., 2003) for this purpose
easily be combined with our new degree elevation algorithm to obtain greater overall efficiency.

3. Degree elevation

3.1. Degree elevation of a clamped B-spline curve

Since a B-spline curve is a piecewise polynomial curve, it is possible to raise its degree frok to
k + m, wherem is an integer greater than or equal to 1. Thus, there must exist control pointsQi and a
new knot vector�T = [t̄0, . . . , t̄n̄+k+m] such that

P(t) = Q(t) =
n̄∑

i=0

�Ni,k+m(t)Qi, (13)

where n̄ is the number of control points ofQ(t), and �Ni,k+m(t), i = 0, . . . , n̄, are the B-spline basi
functions of orderk + m defined on the knot vector�T .

The curvesP(t) andQ(t) have the same geometry and parameterization. The computation ofn̄,Qi,

and�T is referred to asraising the degreeof the curve (Pigel and Tiller, 1994).
The knot vector�T andn̄ can be computed as follows. Assume thatT takes the form given in Eq. (4

Since degree elevation preserves continuity,Q(t) has continuity of orderCk−zi at ui , and the new kno
vector must take the form

T = [u0, . . . , u0︸ ︷︷ ︸
k+m

,u1, . . . , u1︸ ︷︷ ︸
z1+m

,u2, . . . , u2︸ ︷︷ ︸
z2+m

, . . . , uS−1, . . . , uS−1︸ ︷︷ ︸
zS−1+m

,uS, . . . , uS︸ ︷︷ ︸
k+m

], (14)

so thatn̄ = n + S × m.
We now consider how to find theQi .



ARTICLE IN PRESS
S0167-8396(04)00127-X/FLA AID:907 Vol.•••(•••) [DTD5] P.5 (1-15)
COMAID:m2 v 1.32 Prn:14/12/2004; 10:12 cagd907 by:ML p. 5

Q.-X. Huang et al. / Computer Aided Geometric Design••• (••••) •••–••• 5

proves

e

t
n it into
3.1.1. The new degree elevation algorithm
Theorem 2. The derivative coefficients ofP(t) andQ(t) are related as follows

Q
j

0 = P
j

0 , 0� j � k − 1, (15)

Qt
βp+pm = P i

βp
, 1� p � S − 1, k − zp � i � k − 1, (16)

Qk−1
βp+pm+j = Qk−1

βp+pm, 1 � p � S − 1, 1� j � m. (17)

Proof. Theorem 1 gives that,

P (i)(u0) = P i
0, 0� i � k − 1,

Q(i)(u0) = Qi
0, 0 � i � k − 1,

P (i)(up) = P i
βp

, Q(i)(up) = Qi
βp

, 1� p � S − 1, k − zp � i � k − 1.

As P(t) andQ(t) have the same geometry and parametrization, so do their derivatives, which
Eqs. (15) and (16).

Consider one segment of the knot vector,t ∈ [up,up+1). It is well known that at mostk + m of the
B-spline basis functions�Ni,k+m(t) are nonzero in this knot segment; more precisely,�Ni+k,m(t) is nonzero
on [up,up+1) whenβp + (p − 1)m− k + 1� i � βp +pm− k. Consider thekth derivatives ofP(t) and
Q(t). As the degree ofP(t) is k − 1, itskth derivative equals zero, and thus so does thekth derivative of
Q(t), so that:

0= P (k)(t) = Q(k)(t) =
n+S·m∑
i=0

Qk
i n̄i+k,m(t) =

βp+pm−k∑
i=βp+(p−1)m−k+1

Qk
i n̄i+k,m(t). (18)

Eq. (18) allows us to deduce thatQk
i = 0, βp + (p − 1)m − k + 1� i � βp + pm − k, and as a result w

can deduce Eq. (17):

Qk−1
i+1 = Qk−1

i + t̄i+k+m − t̄i+k

(k + m) − k
Qk

i . �
Remark. It is obvious that Theorem 2 holds as long asP(t) andQ(t) are just left-clamped; it does no
matter if the curve is right-unclamped. To do degree elevation for an unclamped curve, we can tur
a left-clamped curve using the knot adjustment algorithm mentioned earlier.

For a givenl in Eqs. (6) and (7), we can see that division by a common factor of(k − l) is needed for
all i, so from a software engineering point of view, it simplifies matters if we define instead

P̃
j

i = P
j

i

/ j∏
l=1

(k − l),

Q̃
j

i = Q
j

i

/ j∏
l=1

(k + m − l),

which lets us rewrite Eqs. (6) and (7) in simpler form:

P̃
j

i = P̃
j−1
i+1 − P̃

j−1
i

ti+k − ti+l

, (19)



ARTICLE IN PRESS
S0167-8396(04)00127-X/FLA AID:907 Vol.•••(•••) [DTD5] P.6 (1-15)
COMAID:m2 v 1.32 Prn:14/12/2004; 10:12 cagd907 by:ML p. 6

6 Q.-X. Huang et al. / Computer Aided Geometric Design••• (••••) •••–•••

n

tion of a

-spline
, 1,
. The
, 1, 1,
(540,
ith the
P̃
j−1
i+1 = P̃

j−1
i + (ti+k − ti+l)P̃

j

i . (20)

Eqs. (15)–(17) now become

Q̃
j

0 =
j∏

l=1

(
k − l

k + m − l
)P̃

j

0 , 0� j � k − 1, (21)

Q̃
j

βp+pm =
j∏

l=1

(
k − l

k + m − l
)P̃

j

βp
, 1 � p � S − 1, k − zp � j � k − 1, (22)

Q̃k−1
βp+pm+i = Q̃k−1

βp+pm, 1 � p � S − 1, 1� i � m. (23)

This leads to greater efficiency. For example, in the case where the knots ofP(t) are not repeated, the∏j

l=1(
k−l

k+m−l
) can be computed a priori, so while Eqs. (15) and (16) add a furthern multiplications,

Eqs. (19) and (20) save a total ofn(k − 1) multiplications andmn(k − 1) divisions respectively.
Based on the equations developed above, we now give a procedural method for degree eleva

clamped B-spline curve as follows:

Algorithm 1. Raise a clamped B-spline curve from degreek to degreek + m.

• Use Eq. (19) to computẽP j

0 , 0� j � k − 1 andP̃ i
βp

, 1� p � S − 1, k − zp � i � k − 1.

• Use Eq. (14) to computẽT and set̃n to n + S × m.
• Use Eqs. (21)–(23) to get̃Qj

0, 0� j � k − 1, Q̃i
βp+pm, Q̃k−1

βp+pm+j .

• Use Eq. (20) to compute new control points̃Q0
i .

3.1.2. Example
We now give a numerical example showing how our algorithm works. Fig. 1 shows a clamped B

curve. The original curveP(t) is an order 4 B-spline curve with knot vector {0, 0, 0, 0, 0.5, 0.5, 1
1, 1} and control points {(260, 100), (100, 260), (260, 420), (420, 420), (580, 260), (420, 100)}
curveQ(t) after degree elevation is an order 5 B-spline with knots {0, 0, 0, 0, 0, 0.5, 0.5, 0.5, 1, 1
1} and with control points {(260, 100), (140, 220), (180, 340), (280, 420), (400, 420), (500, 340),
220), (420, 100)}. The differential coefficients of the two curves are presented below together w
relations from Theorem 2:

Q̃0
0 = P̃ 0

0 , Q̃0
1 = 3

4
P̃ 0

1 , Q̃0
2 = 1

2
P̃ 0

2 , Q̃0
3 = 1

4
P̃ 0

3 ,

Q̃3
2 = 1

2
P̃ 2

2 , Q̃3
3 = 1

4
P̃ 3

2 , Q̃1
3 = Q̃0

3, Q̃4
3 = Q̃3

3.



ARTICLE IN PRESS
S0167-8396(04)00127-X/FLA AID:907 Vol.•••(•••) [DTD5] P.7 (1-15)
COMAID:m2 v 1.32 Prn:14/12/2004; 10:12 cagd907 by:ML p. 7

Q.-X. Huang et al. / Computer Aided Geometric Design••• (••••) •••–••• 7
Fig. 1. Degree elevation from order 4 to order 5.

Differential coefficients ofP(t):

P̃ 0
0 (260,100) P̃ 0

1 (100,260) P̃ 0
2 (260,420)

P̃ 1
0 (−320,320) P̃ 1

1 (320,320) P̃ 1
2 (160,0)

P̃ 2
0 (1280,0) P̃ 2

1 (−320,−640) P̃ 2
2 (320,−640)

P̃ 3
0 (−3200,−1280) P̃ 3

1 (320,−640) P̃ 3
2 (−3200,1280)

P̃ 0
3 (420,420) P̃ 0

4 (580,260) P̃ 0
5 (420,100)

P̃ 1
3 (320,−320) P̃ 1

4 (−320,−320)

P̃ 2
3 (−1280,0).

Differential coefficients ofQ(t):

Q̃0
0(260,100) Q̃0

1(140,220) Q̃0
2(180,340) Q̃0

3(280,420)

Q̃1
0(−240,240) Q̃1

1(80,240) Q̃1
2(200,160) Q̃1

3(120,0)

Q̃2
0(640,0) Q̃2

1(240,−160) Q̃2
2(−160,−320) Q̃2

3(160,−320)

Q̃3
0(−800,−320) Q̃3

1(−800,−320) Q̃3
2(160,−320) Q̃3

3(−800,320)

Q̃4
0(0,0) Q̃4

1(0,0) Q̃4
2(0,0) Q̃4

3(0,0)

Q̃0
4(400,420) Q̃0

5(500,340) Q̃0
6(540,220) Q̃0

7(420,100)

Q̃1
4(200,−160) Q̃1

5(80,−240) Q̃1
6(−240,−240)

Q̃2
4(−240,−160) Q̃2

5(−640,0)

Q̃3
4(−800,320).



ARTICLE IN PRESS
S0167-8396(04)00127-X/FLA AID:907 Vol.•••(•••) [DTD5] P.8 (1-15)
COMAID:m2 v 1.32 Prn:14/12/2004; 10:12 cagd907 by:ML p. 8

8 Q.-X. Huang et al. / Computer Aided Geometric Design••• (••••) •••–•••

s is done
them.

ot

e

of
3.2. Degree elevation of an unclamped B-spline curve

The above method can readily be generalised to the case of an unclamped B-spline curve. Thi
by considering the appropriate knot adjustment and degree raising results in turn, and combining

3.2.1. Problem statement
Let P(t) = ∑n

i=0 Ni,k(t)Pi be a B-spline curve defined on the knot vector

T = [t0, . . . , tk−2, u0, u1, . . . , u1︸ ︷︷ ︸
z1

, . . . , uS−1, . . . , uS−1︸ ︷︷ ︸
zS−1

, uS, tn+2, . . . , tn+k].

We wish to raise the degree of this B-spline fromk to k + m, and compute an appropriate new kn
vector. We denote the final curve byQ(t), with knot vector of the form:

�T = [t̄0, . . . , t̄k+m−2, u0, u1, . . . , u1︸ ︷︷ ︸
z1+m

, . . . , uS−1, . . . , uS−1︸ ︷︷ ︸
zS−1

, uS, t̄n+Sm+2, . . . , t̄n+(S+1)m+k].

As before{t̄0 � t̄1 � · · · � t̄k+m−2 � u0} and{uS � t̄n+Sm+2 � . . . � t̄n+(S+1)m+k} are input values which
may be chosen by the user.

3.2.2. Degree elevation algorithm
First, we change the knot vector ofP(t) to its left-clamped form

T1 = [u0, . . . , u0︸ ︷︷ ︸
k

, u1, . . . , u1︸ ︷︷ ︸
z1

, . . . , uS−1, . . . , uS−1︸ ︷︷ ︸
zS−1

, uS, tn+1, . . . , tn+k].

The new curveR(t) defined onT1 has control pointsRi, i = 0, . . . , n. By considering the derivativ
coefficients ofP(t) andR(t) arising in the knot adjustment algorithm, we have

R̃k−1
0 = P̃ k−1

0 R̃l
k−2−l = P̃ l

k−2−l , 0� l � k − 2. (24)

R̃i
βp

= P̃ i
βp

, 1 � p � S − 1, k − zp � i � k − 1, (25)

R̃l
i = R̃l

i+1 − (ti+k − tk−1)R̃
l+1
i , i = 0, . . . , k − 3− l, l = k − 3, . . . ,0. (26)

We now use the degree elevation algorithm for a clamped B-spline curve to raise the degree ofR(t) as
desired. Let the result beU(t) with control pointsUi and knot vector

T2 = [u0, . . . , u0︸ ︷︷ ︸
k+m

,u1, . . . , u1︸ ︷︷ ︸
z1+m

, . . . , uS−1, . . . , uS−1︸ ︷︷ ︸
zS−1

, uS, t̃n+Sm+2, . . . , t̃n+(S+1)m+k].

The relations between thẽRj

i and theŨ j

i are given by Eqs. (21)–(23) where we replaceP by R andQ

by U .
Finally, we change the knot vectorT2 to T̃ and findQ(t). By considering the derivative coefficients

U(t) andQ(t), and asQl
i = Ul

i = 0, l � k from the knot adjustment algorithm, we have

Q̃
j

βp+pm = Ũ
j

βp+pm, 1 � p � S − 1, k − zp � j � k − 1, (27)

Q̃k−1
βp+pm+i = Q̃k−1

βp+pm = Ũ k−1
βp+pm+i = Ũ k−1

βp+pm, 1� p � S − 1, 1� i � m, (28)

Q̃
j

m+k−1−j = Ũ
j

m+k−1−j , 1� j � k − 1, Q̃k−1
i = Ũ k−1

i , 1� l � m, (29)



ARTICLE IN PRESS
S0167-8396(04)00127-X/FLA AID:907 Vol.•••(•••) [DTD5] P.9 (1-15)
COMAID:m2 v 1.32 Prn:14/12/2004; 10:12 cagd907 by:ML p. 9

Q.-X. Huang et al. / Computer Aided Geometric Design••• (••••) •••–••• 9

hard to
Sankar
t vector,
ithms.
arately.
degree
Q̃
j

i = Q̃
j

i+1 − (t̃i+k+m − t̃i+j+1)Q̃
j+1
i , i = 0, . . . , k + m − 2− j, j = 0, . . . , k − 2. (30)

These may readily be cast into algorithmic form as before.

3.3. Combining knot insertion and degree elevation

3.3.1. Problem statement
In this section, we only consider the case of a clamped B-spline curve. LetP(t) = ∑n

i=0 PiNi,k(t) be
a B-spline curve defined over the knot vector

T = [u0, . . . , u0︸ ︷︷ ︸
k

, u1, . . . , u1︸ ︷︷ ︸
z1

, u2, . . . , u2︸ ︷︷ ︸
z2

, . . . , uS−1, . . . , uS−1︸ ︷︷ ︸
zS−1

, uS, . . . , uS︸ ︷︷ ︸
k

]

as before. We now wish to raise its degree fromk to k + m, and also to insert a set of new knotssi each
with multiplicity yi :

[s0, . . . , s0︸ ︷︷ ︸
y0

, s1, . . . , s1︸ ︷︷ ︸
y1

, . . . , sl, . . . , sl︸ ︷︷ ︸
yl

]. (31)

We denote the final curve byQ(t). We may express the final knot vector as:

�T = [ū0, . . . , ū0︸ ︷︷ ︸
k+m

, ū1, . . . , ū1︸ ︷︷ ︸
z̄1

, . . . , ūl[1], . . . , ul[1]︸ ︷︷ ︸
z̄l[1]

, . . . , ūl[S]−1, . . . , ūl[S]−1︸ ︷︷ ︸
zl[S]−1

, ūl[S], . . . , ūl[S]︸ ︷︷ ︸
k+m

], (32)

whereūl[i] = ui, 0 � i � S, are the knots of original curve and the knots

[ū1, . . . , ū1︸ ︷︷ ︸
z̄1

, . . . , ūl[1]−1, . . . , ūl[1]−1︸ ︷︷ ︸
z̄l[1]−1

, ūl[1], . . . , ūl[1]︸ ︷︷ ︸
z̄l[1]−z1−m

, . . . , ūl[S]−1, . . . , ūl[S]−1︸ ︷︷ ︸
z̄l[S]−1

] (33)

are the ones inserted. Thus, the number of new knots isn̄ = n + Sm + ∑l
i=0 yi , where

∑l
i=0 yi is the

number of knots being inserted. Here Eq. (33) gives another way of expressing Eq. (31).

3.3.2. Combining knot insertion and degree elevation
Existing degree elevation and knot insertion algorithms use different approaches which are

combine. However, our degree elevation algorithm and the knot insertion algorithm proposed by (
et al., 1994) use the same idea, i.e., computing derivatives from control points, resampling the kno
and computing new control points from derivatives. It is thus possible to combine the two algor
The resulting algorithm is more efficient than performing degree elevation and knot insertion sep
The following theorem describes the relations between derivatives of the curve before and after
elevation and knot insertion.

Theorem 3.

Q̃
j

0 = P̃
j

0 , 0� j � k − 1, (34)

Q̃
j

β̃l[i]
= P̃

j

βi
, k − zi � j � k − 1, 1� i � S − 1, (35)

Q̃k−1
β̃l[i]+h+j

= P̃ k−1
βi

,

1 � i � S − 1,

0 � h � l[i + 1] − l[i] − 1,

0 � j � min(z̃l[i]+h − 1,m),

(36)



ARTICLE IN PRESS
S0167-8396(04)00127-X/FLA AID:907 Vol.•••(•••) [DTD5] P.10 (1-15)
COMAID:m2 v 1.32 Prn:14/12/2004; 10:12 cagd907 by:ML p. 10

10 Q.-X. Huang et al. / Computer Aided Geometric Design••• (••••) •••–•••
{

which

an

y Piegl

rithm is
ng the

and
l knots

ra-

above.
Q̃
j

β̃h
= Q̃

j

β̃h+(k−m−1−z̃i−j)
,

k + m − z̃h � j � k − 2 if h �= l[i],
k + m − z̃h � j � k − zi − 1 if h = l[i]. (37)

Proof. The ideas of the proof follow those of Theorem 2 and we omit them for brevity.�
We may now give an algorithm for simultaneously raising the degree and inserting new knots,

follows by analogy with Algorithm 1.

Algorithm 2. Simultaneous degree elevation and knot insertion for a clamped B-spline curve.
The order is being raised fromk to k + m.

• Use Eq. (19) to computẽP j

0 , 0� j � k − 1, andP̃ i
βp

, 1� p � S − 1, k − zp � i � k − 1.

• SetT̃ by Eq. (32) and set̃n = n + Sm + ∑l
i=0 yi as above.

• Use Theorem 3 to get̃Qj

0, 0� j � k − 1, Q̃j

β̃l[i]
, k − zi � j � k − 1, 1� i � S − 1, and

Q̃k−1
β̃l[i]+h+j

,

1� i � S − 1,

0� h � l[i + 1] − l[i] − 1,

0� j � min(z̃l[i]+h − 1,m).

• Use Eqs. (20) and (37) to compute the new control pointsQ̃0
i .

Our algorithm is very efficient. For a 2D B-spline curve with unique knots, we need only 3(k − 1)

additions and 2(k−1) multiplications per inserted knot, while Böhm’s knot insertion algorithm (Goldm
and Lyche, 1993) takes 3(k + m − 1) additions and 2(k + m − 1) multiplications.

4. Comparison and discussion

We now give the results of comparing our new algorithm with existing methods.

4.1. Degree elevation

Here we only consider the case of a clamped B-spline curve, as the algorithms proposed b
(Pigel and Tiller, 1994) and Prautzsch (Prautzsch and Piper, 1991) cover this case.

Firstly, we counted the number of operations needed by various algorithms. Prautzsch’s algo
faster than Piegl’s for raising the order by one, but Piegl’s algorithm is more efficient when raisi
order by an arbitrary degreem. Thus we compared our algorithm with Prautzsch’s in the former case
with Piegl’s in the latter. The following tables give the number of operations required, assuming al
are of multiplicity one; we consider knots with higher multiplicity later.

Tables 1 and 2 clearly show that for arbitraryn, k, andm, our algorithm takes less arithmetic ope
tions.

Secondly, we experimentally tested and compared our algorithm to the algorithms considered
The following tests were performed:

• The growth rate as a function ofm using different starting degrees(k = 2,3, . . .).



ARTICLE IN PRESS
S0167-8396(04)00127-X/FLA AID:907 Vol.•••(•••) [DTD5] P.11 (1-15)
COMAID:m2 v 1.32 Prn:14/12/2004; 10:12 cagd907 by:ML p. 11

Q.-X. Huang et al. / Computer Aided Geometric Design••• (••••) •••–••• 11

wn code
Pentium
econds.
tributed

Table 3

slightly

igated
-spline
Table 1
Raising the degree by one

Operations Prautzsch’s algorithm Our algorithm

+,− (n − k + 1)(10k − 8) + k 6(n − k + 1)(k − 1) + 2k(k − 1)

× (n − k + 1)(5k − 2) + 2k (n − k + 1)(2k − 1) + k(k − 1)/2
/ (n − k + 1)(2k − 2) (n − k + 1)(k − 1) + k(k − 1)/2

Table 2
Raising the degree bym

Operations Pigel’s algorithm Our algorithm

+,− ((2m + 1)(k − 1) + 2k ∗ k)(n − k + 1) 2(m + 2)(n − k + 1)(k − 1) + 2k(k − 1)

× ((m + 1)(k − 1) + 3k(k − 1)/2)(n − k + 1) (n − k + 1)(km + (k − m)) + k(k − 1)/2
/ k2(n − k + 1)/2 (n − k + 1)(k − 1) + k(k − 1)/2

Table 3
Times (in seconds) taken to elevate the degree starting at order 3

Elevation Pigel’s algorithm Prautzsch’s algorithm Our algorithm

3 to 4 0.9432 0.7916 0.5338
3 to 5 0.9432 1.8412 0.689
3 to 6 1.5162 3.1578 0.8352
3 to 7 1.8116 4.7107 0.9734
3 to 8 2.108 6.5777 1.1446
3 to 9 2.3834 8.6342 1.3

• The growth rate as a function of the starting orderk using different elevations of order (k goes to
k + 1, k goes tok + 2, . . .).

In an attempt to be as fair as possible to previous methods, we used the previous authors’ o
given in (Prautzsch and Piper, 1991) and (Pigel and Tiller, 1994). The hardware used was an Intel
IV, 1.4 GHZ computer. We ran each program 10000 times, and counted the total time taken in s
Each test curve was a 2D B-spline curve with 20 randomly chosen control points and randomly dis
knots.

These tests all led to similar conclusions; representative results for order 3 curves are shown in
and Fig. 2.

These tests showed that:

• Our algorithm is best in terms of absolute time taken.
• Prautzsch and Piper’s algorithm has the worst growth characteristics; our algorithm has a

slower growth rate than Piegl and Tiller’s algorithm.

These examples used B-spline curves with interior knots of multiplicity one. We also invest
timings in the order 4 case when the interior knots were all double or triple knots, again using a B



ARTICLE IN PRESS
S0167-8396(04)00127-X/FLA AID:907 Vol.•••(•••) [DTD5] P.12 (1-15)
COMAID:m2 v 1.32 Prn:14/12/2004; 10:12 cagd907 by:ML p. 12

12 Q.-X. Huang et al. / Computer Aided Geometric Design••• (••••) •••–•••

e best

orders,
results

number
of the

on algo-
m. For
he degree
0) knot
ction.
Fig. 2. Times taken to elevate the degree starting at order 3.

Table 4
Times (in seconds) taken to raise the order by 3 starting at various orders

Elevation Pigel’s algorithm Prautzsch’s algorithm Our algorithm

2 to 4 0.8344 1.3525 0.4135
3 to 5 1.2218 1.8412 0.689
4 to 6 1.701 2.3516 0.9441
5 to 7 2.3283 2.9312 1.1355
6 to 8 2.8171 3.1965 1.3819
7 to 9 3.381 3.5331 1.564
8 to 10 4.057 3.8652 1.7143

with 20 control points. Similar results were again obtained, again showing that our algorithm to b
both in absolute time taken, and in growth rate, when the splines have multiple knots.

Next, we studied the performance of the various algorithms with respect to different starting
and differing amounts of degree elevation. Again, as a representative sample, we illustrate the
obtained in the orderk to orderk + 3 case in Table 4 and Fig. 3.

The results follow a similar pattern to the previous tests, and our algorithm is the clear winner.
The results of our practical experiments validated our theoretical comparisons in terms of the

of operations used. Our new algorithm is clearly more efficient for degree elevation than either
existing algorithms used as benchmarks.

4.2. Degree elevation and knot insertion

We also experimentally tested and compared our combined degree elevation and knot inserti
rithm to the use of a separate degree elevation algorithm followed by a knot insertion algorith
the same reasons noted above, we used Prautzsch’s degree elevation algorithm when raising t
by one, and Piegl’s algorithm when raising the degree by more than one. We used Böhm’s (198
insertion algorithm, being the fastest. Other test conditions were as described in the previous Se



ARTICLE IN PRESS
S0167-8396(04)00127-X/FLA AID:907 Vol.•••(•••) [DTD5] P.13 (1-15)
COMAID:m2 v 1.32 Prn:14/12/2004; 10:12 cagd907 by:ML p. 13

Q.-X. Huang et al. / Computer Aided Geometric Design••• (••••) •••–••• 13

s order
reasing
Fig. 3. Times taken to raise the order by 3 starting at various orders.

Table 5
Times (in seconds) taken to raise the order by 1 and insert varying numbers of knots

Number of knots inserted Separate algorithms Our algorithm

10 0.874 0.5894
30 1.042 0.7106
50 1.203 0.8118
70 1.375 0.9231
90 1.542 1.045

110 1.709 1.153

Fig. 4. Times (in seconds) taken to raise the order by 1 and insert varying numbers of knots.

Two tests were carried out. In the first, we always started with an order 3 curve, and raised it
to 4, while at the same time inserting some number of knots, with the number being inserted inc
from 10 to 110. Times taken are shown in Table 5, and graphed in Fig. 4.



ARTICLE IN PRESS
S0167-8396(04)00127-X/FLA AID:907 Vol.•••(•••) [DTD5] P.14 (1-15)
COMAID:m2 v 1.32 Prn:14/12/2004; 10:12 cagd907 by:ML p. 14

14 Q.-X. Huang et al. / Computer Aided Geometric Design••• (••••) •••–•••

to order
of our

errors
d to the

stable

to three
thm, and

ved by
within

d

e, and
king on
n and
es. The
.

25016,
312101).

esign and
In the second test, we started with an order 4 curve, and raised its order by varying amounts
5,6, . . . ,10, while at the same time always inserting 100 knots. In this case, the relative advantage
method increased with the amount of degree elevation.

Overall, our combined algorithm is faster than using separate algorithms, as expected.

4.3. Handling rounding errors

Real arithmetic on a computer is not performed to perfect accuracy. Normally, the resulting
(rounding errors) can be ignored because the noise they represent is extremely small compare
signal. However, in certain ill-conditioned cases, the errors can be significant.

Usually, normal floating point arithmetic works well for our algorithms, but the results can be un
when the knots are distributed in an extremely non-uniform manner, e.g., if(ui+1 − ui)/(ui − ui−1) <

10−7 for somei.
In this case, a modification to our new method may be used. We insertui+1 and ui , k − zi+1 and

k − zi times respectively, using Böhm’s approach (Böhm, 1980), so that the curve is segmented in
separate B-spline curves. Degree elevation can then be performed for each curve using our algori
then Eck’s method (Eck and Hadenfeld, 1995) can be used to remove the knotsui andui+1, kzi

andkzi+1

times respectively, to obtain the overall B-spline curve after degree elevation. Stability is achie
dividing the B-spline curve into segments such the that knots are relatively uniformly distributed
each segment.

Note that this process only takes O(k2) time for each knot interval[ui, ui+1], which has to be processe
in this way. If we do this procedure foreveryknot, we obtain Piegl and Tiller’s algorithm.

5. Conclusion

In this paper, we have given an efficient algorithm to elevate the degree of a B-spline curv
we have also shown how the process can be combined with a complementary algorithm wor
similar principles for knot insertion, to give an efficient algorithm which can do degree elevatio
knot insertion simultaneously. These methods are computationally superior to existing approach
new method presented in this paper can clearly also be extended to the case of degree reduction

Acknowledgement

The work was supported by the Natural Science Foundation of China (Project Number 602
60273012, 60321002) and the National Basic Research Project of China (Project Number 2002CB

References

Böhm, W., 1980. Inserting new knots into B-spline curves. Computer Aided Design 12 (4), 199–201.
Cohen, E., Lyche, T., Riesenfeld, R.F., 1980. Discrete B-spline subdivision techniques in computer aided geometric d

computer graphics. Computer Graphics and Image Processing 14 (2), 87–111.



ARTICLE IN PRESS
S0167-8396(04)00127-X/FLA AID:907 Vol.•••(•••) [DTD5] P.15 (1-15)
COMAID:m2 v 1.32 Prn:14/12/2004; 10:12 cagd907 by:ML p. 15

Q.-X. Huang et al. / Computer Aided Geometric Design••• (••••) •••–••• 15

1.

ustrial

omputer

sign 14

esign 8

26

ed deriva-

trained

J. Imag.
Cohen, E., Lyche, T., Schumaker, L., 1985. Algorithms for degree raising of splines. ACM Trans. Graph. 4 (3), 171–18
Eck, M., Hadenfeld, J., 1995. Knot removal for B-spline curves. Computer Aided Geometric Design 12 (3), 259–282.
Goldman, R.N., Lyche, T., 1993. Knot Insertion Deletion Algorithms for B-Spline Curves and Surfaces. Society for Ind

and Applied Mathematics.
Ferrari, L.A., Sankar, P.V., Silbermann, M.J., 1994. Efficient algorithms for the implementations of general B-splines. C

Vision, Graphics and Image Processing 56 (1), 102–105.
Liu, W., Wayne, 1997. A simple, efficient degree raising algorithm for B-spline curves. Computer Aided Geometric De

(7), 693–698.
Prautzsch, H., 1984. Degree elevation of B-spline curves. Computer Aided Geometric Design 18 (12), 193–198.
Prautzsch, H., Piper, B., 1991. A fast algorithm to raise the degree of B-spline curves. Computer Aided Geometric D

(4), 253–266.
Pigel, L., Tiller, W., 1994. Software-engineering approach to degree elevation of B-spline curves. Computer-Aided Design

(1), 17–28.
Piegl, L., Tiller, W., 1997. The NURBS Book, second ed. Springer-Verlag.
Sankar, P.V., Silbermann, M.J., Ferrari, L.A., 1994. Curve and surface generation and refinement based on a high spe

tive algorithm. Computer Vision, Graphics and Image Processing 56 (1), 94–101.
Tai, C.-L., Hu, S.-M., Huang, Q.-X., 2003. Approximate merging of B-spline curves via knot adjustment and cons

optimization. Computer-Aided Design 35 (10), 893–899.
Wang, S.Y., Ferrari, L., Silbermann, M.J., 1996. High speed computation of spline functions and applications. Internat.

Syst. Technol. 7, 1–15.


