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Abstract

This paper presents an algorithm for extending B-spline curves and surfaces. Based on the unclamping algorithm for B-spline curves, we
propose a new algorithm for extending B-spline curves that extrapolates using the recurrence property of the de Boor algorithm. This
algorithm provides a nice extension, with maximum continuity, to the original curve segment. Moreover, it can be applied to the extension of
B-spline surfaces. Extension to both single and multiple target points/curves are considered in this paper. © 2002 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

B-spline is among the most commonly used method for
curve and surface design, and it has been widely used in
practical CAD systems [1,2]. In a system that uses B-spline
or NURBS as a shape design tool, we should implement
many practical algorithms, such as position and derivatives
evaluation, knot insertion, knot deletion and degree eleva-
tion. Based on these fundamental algorithms, we can
perform geometric modelling and processing, such as inter-
polation, fitting and fairing of curves and surfaces,
constructing sweep or lofting surfaces, computing inter-
section of curves and surfaces, shape modification and set
operation of solids with free-form surfaces.

Besides the above-mentioned functions, which a CAD
system usually provides, the extension of a given B-spline
curve or surface is also a useful function. A natural problem
is to extend a B-spline curve P(f) to a given point R, and to
represent the extended curve in B-spline form. In many
systems, a common solution is to add a Bézier curve with
GC' continuity at the end of the B-spline curve, and then
convert the entire curve into B-spline form. Shetty and
White [3] proposed a practical and straightforward method
for the extension of rational B-spline curves and surfaces
without modifying the shape and the parametrization of the
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original curves and surfaces. With their method, the
extended curve is represented as a B-spline curve with
knot vector in the form of {0,0,0,0,...1,1,1,1,s,s,s,5},
where the order of the curve is assumed to be four and
s is a number greater than 1. However, a B-spline curve
with knot vector in this form is not favoured in CAD
applications.

The objective of this paper is to develop an algorithm for
extrapolating B-spline curves and surfaces using curve
unclamping and the recurrence property of de Boor algo-
rithm. The paper is organised as follows. The definition of
the B-spline curves, the de Boor algorithm, and the
unclamping algorithm are described in Section 2. Section
3 presents the extrapolation method for the extension of B-
spline curves. Section 4 investigates extension of B-spline
surfaces. Conclusion is given in Section 5.

2. B-spline curves, de Boor algorithm, and curve
unclamping algorithm

A B-spline curve of order k with control points
P(i=0,1,...,n) can be defined as:

P() =Y PiNj(D), iy = 1= 1,44 (1)
i=0

where N; () are the B-spline basis functions of order k
defined over the knot vector T = {fp,t1,..., Lipeees Lyperrs
t.+x}, and can be defined by the well-known de Boor-Cox
formula [1,2].
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I, t;=1t<t
N (1) = )
0, Otherwise

r— Livgp — 1
Ny + N (0. )

i+k—1 — L livk = lix1

N (1) =
A point on the curve P(t) at parameter #(t € [t;, 1, ]) can
be computed using the following de Boor algorithm.
P, r=0,i=0,1,...,n
T t—tiv,
P P, (3)
livk = Litr livk = litr

r=1,2,. k—lii=j—k+1,..j—r

Pi(t) =

and P(r) = Pf: 1H(t). Fig. 1 shows the computational
process for a fourth order curve.

Knot vectors of B-splines can be classified as clamped
and unclamped [2]. For clamped knot vectors, it is common
to use the following form for order k B-spline curves:

Tl : 0,0,...,O s by e By 1,1,...,1 . (4)
N—— N——
k k

The first part of our B-spline extension algorithm
involves unclamping B-spline curves from T} to:

T2 : 0,0,...,0 s by s by Byt oens Lyt
k
where:
bpsk Z tyig—1 = oo Sy = 1 (%)

The following unclamping algorithm proposed by Piegl
and Tiller (see page 577 of Ref. [2]) can be applied to
compute the new control points Q;(i =0,1,...,n) with
unclamped knot vector 75.

Algorithm 1: Curve unclamping on the right side’

1. Set initial value. Let:

Q?:Qi7i:n_k+2’n_k+3"”’n'

2. Let:
Oi=0" i=n—k+2,n—k+3,..,n—r
O = 2/ 1/ yi=n—r+ln—r+2,..,n
a
where o = ner TH
litrr1 = 4
r=12,...k—2

! The original algorithm in Ref. [2] unclamps curves on both the left and
right sides, and k denotes degree instead of order.

3. Let:

P,i=0,1,...,n—k+1
Q=9 2 . _
i Li=n—k+2, n—k+3,...,n

3. Extension of B-spline curves
3.1. Extending a B-spline curve to a target point

For a given B-spline curve P(f), we now show that it is
easy to extend the curve to a target point R by using the
unclamping algorithm. The target point R may be some
user-defined point or be automatically generated by meth-
ods such as those described in Shetty and White [3]. For a
given parameter ¢, > 1, their method computes the target
point by reflecting point P(1 — #,) about the normal of the
curve at P(1).

We first estimate the parametrization of the extended
curve. After adding one target point, the knot vector of
P(#) would be changed from T to:

T3 : 0,0,...,0 ,t4,....t,, 1, u,u,....,u, (6)
N—— N——
k k

where u > 1. We calculate u according to the chord length
estimation; that is, u is determined by:

— |17, — Rl
u=1+ n—k+1 7
> NP = Pl
r=0
where || - || is the Euclidean norm.

Once the parametrization is estimated, we change the
knot vector of P(¢) from T to
0,0,....,0 ,t4, ..o, by 1, w1, u
N N, e/
k k=1
and use Algorithm 1 to compute the new control points Q;,
0=i=n.

The new curve after the extension can be represented as:

n+1
P()y= Y PN®,0=t=u ®)
=0
Py, P,
P? P!

Fig. 1. Computational process of de Boor algorithm for k = 4.
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where:

0, i=0,1,...n
Pi:
R, i=n+1

By the properties of the B-spline basis functions, we can
rewrite the knot vector T3 as:

Fig. 2 shows the effects of extending an order 4 B-spline
curve: (a) shows the original curve and the target point, (b) is
the same curve after curve unclamping and (c) is the new
curve after extension.

3.2. Extension with multiple target points

We will only consider the extension of B-spline curves
with two target points; the discussion for the case of more
than two target points is similar.

Let the two target points be R and R. After the extension,
the knot vector of the new curve would be changed from T}
to:

T,: 0,0,..,0 .1, ...,
N, e’
k k

t, Lu,v,v,...,v, )
N— —

where v > u > 1. We calculate u and v according to the
chord length estimation, i.e., u is defined by Eq. (7), and v
is determined by:

v=u-+ HR_RH (10)
n—k+1
> PG = Pl
r=0

By unclamping the knot vector of P(¢) from T to:

0,0,...,0, fx,....t,, Lu,v,v,...,v,
e —— e ——
k k-2

we use Algorithm 1 to compute the new control points Q;,
0=i=n, of the reparametrized curve Q(f). We first
consider how to extend Q(¢) to the first target point R to
obtain a curve with knot vector:

0,0,....0 ,t4, ... t,, 1, u,v,v,...,v .
N — N
k k—1

The extension from R to R is then similar to the procedure
described in Section 3.1.

Note that P(?) is a B-spline curve of order k, thus we can
achieve C*? continuity between the previous curve
segment (at endpoint Q(1) = P,) and the extended segment,
which has endpoints Q(1) and R. In fact, the control points
of the previous segment are Q;,, i=n—k+1,
n—k+ 2,...,n, and the control point of the new segment
would be Q;, i=n—k+2, n—k+3,...,n+ 1; that is,
only one new control point Q, has to be computed.

We propose a new extrapolation algorithm based on the
inverse process of de Boor algorithm. To illustrate the idea
of this algorithm, we take order four as an example. In Fig.
l,letj=n+1and P _3 be the target point R. We want to
compute the unknown control point P from the glven inter-
polated point R and the known control points P _3, PJ » and

J 1- The following two computation steps can achieve this
goal:

1. Compute the intermediate points P _3, PJ 2, 3 by de
3 from P 3 and P
, and P 3 from _zand P

Boor recurrence, i.e., compute

5 from P _,and P
2. Compute the points Pj,z, Pj,l,Pj by the inverse process
of de Boor recurrence, i.e., compute P<2 , from Pjg_3 and
P =R, P 1 fromP _sand Pi_,,then Q,, =

Pl s and Piy

P]Q from

The recursive algorithm for the general case of extrapo-
lating order k B-spline curves is as follows.

(b)

Fig. 2. Extension of an order four B-spline curve to a target point.
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(b

Fig. 3. Extension of B-spline curves of order four with multiple target points.

Algorithm 2: Computation of Q,+; by extrapolation

1. Set initial value. Let j = n + L,t =1;,, /"1 (t) =R
and Q?+(j—k+1)(t) = Qpiz—p+ for 1=0,1,....k — 2.
2. De Boor recurrence. Let:

livk — 1 i =Ly -1
0= ———"—0 O+ —— 0,
livk = litr livk = Tivr

r=12,., k=2 i=j—k+1, ..j—r—1

3. Inverse de Boor recurrence:

+1
(Tivr = tie)Qir 1 () — (tipr — DOy
t—tit, '

(AGES

r=k—2,k—3,...,0,i=j—r
_ A0
4. Qn+1 - Qj (t)

After computing O, by Algorithm 2, we only have to let
0,+2 = R, and the new curve can be represented as:

n+2

Q)= > QN0 0=t=1. (11
i=0

with the knot vector:

Fig. 3 shows the results of extending several B-spline
curves to two and three target points. The extended curve
segments are shown as dotted lines while the original curve
segments are shown as solid lines.

4. Extension of B-spline surfaces

An order k X [ B-spline surface P(t,s) with control points
Pj(0<i=<n,0=j=<m) can be defined as:

n m

P(t, S) = Z ZPI']'Nik(t)]Vj](S)’ t—1 =r= thtr1,S1—1 =5= Sm+1s
i=0 j=0

12)

where N;(f) and N;(s) are the B-spline basis functions of
order k and /, respectively, defined over knot vectors 7} and:

T5:0,O,...,O,sl,...,sm 1,1,...,1 .
—— T N —
! 1

We now consider the extension of P(z,s) in the direction
of ¢ to two target curves Ti(s) and T»(s). Without loss of
generalityz, we assume that 7'(s) and T,(s) are order / curves
with knot vector 75 and control points P} and P,z( j=
0,1,...,m) respectively.

Due to the tensor-product structure of B-spline surfaces, it
suffices to extend the m + 1 B-spline curves:

Pi(t) = > PyNy(0), j=0.,1,....m
i=0

to target points P,1 and P,2 with a common parametrization.
Since the knot vector T; should be changed to T, after the
extension, we compute u and v by averaging u,(j = 0,1,...,m)
and v/(j=0,1,...,m), respectively, where u; and v; are
computed by Egs. (7) and (10) respectively.

Fig. 4 shows the result of extending a B-spline surface
with two target curves. The extended surface patches are
shown in dotted lines while the original surface patch and

target curves are shown in solid lines.

% If not, we can use degree elevation and knot insertion algorithms to
achieve it.



S.-M. Hu et al. / Computer-Aided Design 34 (2002) 415-419 419

Fig. 4. Extension of a B-spline surface of order 4 X 4 with two target curves.

5. Conclusion

This paper presents a new method for extending B-spline
curves and surfaces. We first extend B-spline curves to one
or more target points by curve unclamping and extrapolation
using the recurrence property of de Boor algorithm. The
algorithm for curves is then shown to be applicable for
extending B-spline surfaces to single or multiple target
curves. Experiment results have shown that the proposed
method is efficient and more practical than the method by
Shetty and White [3].
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