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Topology Repair of Solid Models Using Skeletons
Qian-Yi Zhou, Tao Ju, Shi-Min Hu

Abstract— We present a method for repairing topological er-
rors on solid models in the form of small surface handles,
which often arise from surface reconstruction algorithms. We
utilize a skeleton representation that offers a new mechanism
for identifying and measuring handles. Our method presents
two unique advantages over previous approaches. First, handle
removal is guaranteed not to introduce invalid geometry or
additional handles. Second, by using an adaptive grid structure,
our method is capable of processing huge models efficiently at
high resolutions.

Index Terms— topology repair, skeleton, thinning, octree

I. INTRODUCTION

With the advance of data acquisition techniques, we have
witnessed a boom of high resolution 3D data in recent years.
Although many surface reconstruction methods are capable of
generating water-tight surfaces from these data, the resulting
models may still exhibit topological errors in the form of
small handles, such as those shown on the left of Figure 1.
These high-frequency topological features may unnecessarily
increase the complexity of the model and make it unsuitable
for subsequent processing tasks such as mesh simplification,
mesh parameterization, and physical computation.

Our goal is to remove small handles on the surface of a solid
model, so that a low-genus model can be prepared for further
applications. To be able to process large models with complex
errors, which are typical in today’s surface reconstruction
problems, we particularly desire the following properties:

• Discriminative: The method should be able to differen-
tiate between big and small handles.

• Robust: Removal of existing handles should not intro-
duce invalid geometry or additional handles.

• Efficient: The method should handle huge models at high
resolutions within reasonable time and memory.

Unfortunately, to the best of our knowledge, none of the
current topology repair methods satisfy all of our require-
ments. In particular, it is difficult for mesh-based or existing
volumetric methods to guarantee that removing a handle
does not introduce a new handle. Furthermore, the time and
space consumption of traditional methods are typically high
for processing large models, either due to operations that
require the full mesh resolution or the reliance on a uniform
volumetric grid.

In this paper we introduce a new, volumetric approach of
topology repair that meets all of the three requirements. Our
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method converts an input solid into a volume grid, and thins
the volumetric model to a skeleton so that the task of detecting
handles is reduced to identifying cycles on the skeleton. Using
topology-preserving morphological operations, the modified
skeleton with cycles removed grows back into the model
with the corresponding handles removed. Both thinning and
growing are performed on an adaptive grid structure for
efficient processing of large models. In addition, our method
allows selective removal of small handles by computing and
utilizing a thickness measure on the skeleton.

Contributions We present a robust and efficient solution for
topology repair. Our method consists of conceptually simple
steps, and possesses two advantages over existing techniques:

1) Unlike previous mesh-based or volumetric approaches,
our method is guaranteed to remove handles without
introducing additional ones via skeleton modification
and topology-preserving morphological operations.

2) Whereas previous volumetric methods rely on a uniform
grid structure, our method operates on an adaptive octree
grid and is capable of processing huge models at very
high resolutions (e.g., 40963) in minutes.

II. RELATED WORKS

A. Skeletons

Skeletons are compact, medial representations that describe
the shape and connectivity of a 3D object [1]. In contrast
to skeletonization methods based on voronoi diagrams [2],
[3] and distance transforms [4], [5], iterative thinning excels
as an efficient, easy-to-implement technique for generating
topology-preserving skeletons of volumetric images (see an
excellent survey in 2D by [6] and a 3D introduction by [7]).
Given a solid represented as a set of 3D grid points, each
thinning iteration removes points in the outmost layer of the
set. The key of topology-preservation lies in identifying simple
points [8] whose removal would not alter the topology of the
solid. Unfortunately, existing thinning methods rely heavily on
the use of a uniform grid because it is convenient to identify
simple points on such a grid, which limits these methods
to relatively low resolutions that are often insufficient for
capturing the topology of large models.

B. Topology-controlled surface reconstruction

This class of methods [9]–[12] is designed to reconstruct
iso-surfaces from volumetric data with a known topology
type. Starting with an initial solid with the correct surface
topology, these methods grow (as opposed to thin) the solid
in a topology-preserving manner. While such methods have
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Fig. 1. Topology repair on a spider-web model: the original genus-75 model reconstructed from point sets with many small and entangled handles (left),
topology repair removes all erroneous handles except for the 17 major web holes (right).

been effective in reconstructing topological spherical cortical
surfaces from MRI data, application to other topologies is
difficult as these methods require a priori knowledge of the
desired topology as well as the geometry of the initial solid.

C. Mesh-based topology repair

The first class of methods for repairing the topology of a given
surface performs surgeries directly on the polygonal mesh.
Representative work includes the method of Fischl et al. [13],
which inflates a reconstructed cortical surface into a sphere
and removes handles by identifying and deleting overlapping
triangles on the inflated sphere. Using the concept of α-hulls,
El-Sana and Varshney [14] achieve controlled simplification
of CAD models by identifying small tunnels and surface
concavities as regions not accessible to a sphere of user-
specified radius rolling on the surface. Also in a controlled
manner, Guskov and Wood [15] employs a surface growing
technique that identifies and removes small handles completely
contained in a mesh neighborhood of a given size.

Mesh-based methods have the advantage that topology
changes only involve local modification of the geometry.
However, there are two typical drawbacks. First, the removal
of existing handles directly on the mesh may introduce invalid
geometry in the form of self-intersections. Second, it is com-
putationally expensive to identify handles directly on a large
mesh, for example, by surface inflation [13], by computing
and intersecting α-prisms of triangles [14], or by exploring
a surface neighborhood that can be potentially large for
identifying long and thin handles [15]. Note that optimizations
can be performed to dramatically speed up detection of small
handles, as proposed in a recent work by Attene and Falcidieno
[16].

D. Volumetric topology repair

The second class of methods, to which our method belongs,
removes surface handles by modifying a volume representation
of the input model. In a simple approach, Nooruddin and Turk
[17] applied opening and closing operations on the volume
to remove small surface handles. However, these global mor-
phological operations may create additional handles in areas

away from the existing ones. In a more targeted approach, the
method of Wood et. al. [18] detects each surface handle as a
cycle in the Reeb graph of the iso-surface extracted using the
Marching Cubes method [19], and performs handle removal
by filling a disk-like volume inside the shortest geodesic loop
corresponding to each cycle. Still, the main problem with
this hybrid approach, as commented on by the authors, is
the possible introduction of new handles due to the loop-
filling operation. In addition, the removal of each handle
requires re-building of the Reeb graph on a uniform grid,
which can be time-consuming for a large number of handles.
The detection of shortest geodesic loops on big handles can
also be expensive.

Our method is most closely related to the graph-based ap-
proach of Shattuck and Leahy [20] and Han el al. [21].
Both methods encode the topology of the solid (instead of
the surface) as a graph, and remove handles by breaking
cycles in the graph. Using topology-preserving morphological
operations, handle removals are guaranteed not to introduce
new handles. However, both methods involve complex graph
generation and analysis that are restricted to uniform grids.
In particular, the construction of the Reeb graph in [20] is
based on axes-aligned sweeping, while handle removal using
the graph in [21] requires non-trivial connectivity analysis to
identify “hidden” handles within each graph node. In contrast,
our skeleton representation of the solid is simple enough to
compute on an adaptive grid and allows for easy identification
of surface handles of different sizes.

Recently, a multi-resolution solution was proposed by Szym-
czak and Vanderhyde [22], which applied topology-preserving
carving operations to extract iso-surfaces with the desired
genus. This method, however, provides no direct means for
controlling the size of the handles to be removed. In addition,
the removal operation is limited to filling tunnel-like handles,
and hence may result in modifying a much larger volume than
necessary. In comparison, our handle removal is guided by an
accurate measure of handle sizes, and allows for both tunnel-
filling and ring-cutting (see the removal of the two handles in
Figure 6 (e)).
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Fig. 2. 2D illustration of handle removal using skeletons. (a): The original
object (darkened points, edges and faces) and the iso-surface (solid lines).
(b): The skeleton of the object. (c): The modified skeleton consisting of a
spanning tree of (b) (removed edges are highlighted). (d): The new object
grown from the modified skeleton (c), resulting in the removal of handles.

III. METHOD OVERVIEW

To avoid introducing invalid geometry (e.g., self-intersections)
as the result of topology repair, we represent an input model
as an implicit volume. The surface of the model, represented
as the iso-surface on the volume, partitions the volume into
the object (e.g., interior) and the background (e.g., exterior).
To remove surface handles, our method involves three concep-
tually simple steps, as illustrated in Figure 2:

1) Thin the object into a skeleton that preserves the topol-
ogy of the object (b).

2) Remove cycles in the skeleton by computing the span-
ning tree of the graph defined by the skeleton (c).

3) Grow the modified skeleton to form a new object that
preserves the topology of the skeleton (d).

Intuitively, a cycle in the skeleton corresponds to a ring-like
handle on the original surface, and removing the skeleton cycle
has the effect of “cutting” the ring at the location where the
cycle is cut (see Figure 2 (c,d)). In our method, removing
one skeleton cycle is guaranteed to cut exactly one surface
handle without introducing additional handles (unlike mesh-
based [13]–[15] or previous volumetric [17], [18] handle-
removal methods). Furthermore, we can associate the skeleton
with a thickness function, which allows the user to control the
size of handles to be removed and allows each ring to be cut
at its thinnest location.

The above steps can be applied to both the object and the
background. When applied to the background, a cycle in the
background skeleton corresponds to a tunnel-like handle on

the original surface, and removing a skeleton cycle results in
“filling” of the tunnel. Like cutting, filling is guaranteed not
to introduce additional handles, and tunnels can be selectively
filled based on their sizes.

IV. VOLUME REPRESENTATION

Before presenting the main algorithms, we first introduce an
adaptive volume representation on which the algorithms will
be performed.

A. Motivation

Our volume representation is motivated by the need to analyze
and modify the topology of a solid using its skeleton. As we
shall see in Section V, our topology analysis and operations
require models as well as their skeletons to be represented as
3D cellular complexes, which consist of points (0-D), edges
(1-D), faces (2-D) and cells (3-D). In particular, each edge
connects two points, each face is enclosed by a ring of edges,
and each cell is enclosed by an envelop of faces. For example,
the darkened points, edges and faces in each grid of Figure 2
form a cellular complex in 2D.

To represent a cellular complex on a volumetric grid, we need
to be able to tag each grid element (e.g., point, edge, face and
cell) that belongs to the complex. Note that merely storing
signs at grid points, as in traditional volume representations,
is not sufficient: the edge connecting two points that belong to
a cellular complex may not, itself, be part of that complex (see
highlighted region in Figure 2 (c)). Even the more advanced
representation [23] restricts tagging to just points and edges.

B. Representation

We begin with an octree structure to support efficient process-
ing of large models at high grid resolutions. We additionally
associate each minimal grid element of the octree with a +/−
sign. Here, a minimal element is the one that does not contain
any smaller elements of the same dimension (e.g., a minimal
edge contains no smaller edges on the grid). For convenience,
we shall drop the prefix “minimal” hereafter. We call the new
volume representation an Extended Signed Octree (ESO).

To facilitate thinning, both object and background must as-
sume the form of a cellular complex. The object V in an ESO
G is defined as the set of all positive elements in G. Note that
not every ESO yields an object that is a cellular complex: a
positive edge containing a negative point violates our previ-
ously stated definition that an edge in a cellular complex must
contain two points of the complex. As a result, we further
require that, in a valid ESO grid, each positive element must
contain only positive elements of lower dimensions.

Unlike the object, the set of all negative elements on a valid
ESO is not a cellular complex. To this end, we consider the
dual of a valid ESO grid G, denoted as Ĝ, which consists of
points, edges, faces and cells topologically dual to the cells,
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Fig. 3. (a) A primal ESO grid G, (b) The dual grid Ĝ, (c) The composite
grid G̃ constructed by overlaying G with Ĝ and the iso-surface (solid lines). In
(a,b), positive grid elements are darkened and negative elements are dimmed.

faces, edges and points on G. In addition, each element in
Ĝ is given the sign of its dual element in G. Geometrically,
points in Ĝ are located at the centroids of their corresponding
cells on the primal grid G.1 A 2D illustration of a portion of
ESO grid and its dual are shown in Figure 3 (a,b). As such,
we define the background V as the set of negative elements in
the dual grid Ĝ (shown as dimmed elements in Figure 3 (b)).
Since each negative element of a valid ESO is only shared
by negative elements of higher dimensions, by duality, every
negative element in Ĝ contains only negative elements of lower
dimensions. Therefore, V is also a cellular complex.

Finally, we note that symbols G, Ĝ, V and V all refer to a
same volume representation. In particular, any changes to the
object V involve flipping the signs of some grid elements in
the primal grid G, hence affecting the signs in the dual grid
Ĝ and the composition of the background V . In addition, we
note that ˆ̂G = G and V = V .

C. Operations

1) Constructing ESO: A valid ESO grid can be easily con-
verted from a traditional octree grid, where signs are stored at
grid points, by retaining existing signs while assigning positive
signs to edges, faces and cells that contain only positive points.
The initial octree grid can be obtained either directly from a
volume image (e.g., MRI data) or from a polygonal mesh using
scan-conversion routines. In this paper, we use the PolyMender
software [24], which is capable of producing a water-tight
solid model from arbitrary polygonal soups.

2) Extracting Iso-surface: To construct the iso-surface of an
ESO grid G, we extend the Dual Contouring algorithm [25],
which was designed for octrees with only signs at grid points.
In particular, we consider a composite grid, denoted as G̃,
that overlays G with its dual Ĝ, as shown in Figure 3 (c).
Each point in G̃ corresponds to an element in G as well as its
dual element in Ĝ. Recall that Dual Contouring proceeds by
first creating one vertex for each grid cell that is non-empty
(i.e., containing grid points with different signs), followed

1For completeness, the outside of the root node of the primal octree is
represented as a cell element in G with infinite size, whose dual in Ĝ is a
point at infinity.

by creating one polygon for each non-empty grid edge. Iso-
surface extraction on G proceeds similarly in two steps:

1) Create one vertex for each pair of a positive point
and a negative cell that contains the point (such pair
corresponds to a non-empty cell in G̃).

2) For each pair of a positive N-D element σ and a
negative (N + 1)-D element δ that contains σ (such
pair corresponds to a non-empty edge in G̃), create one
polygon connecting vertices created for each pair of a
point contained by σ and a cell containing δ .

While Dual Contouring guarantees to produce a crack-free iso-
surface, applying the above algorithm in a valid ESO further
ensures a manifold output (see proof in Appendix A). To
reproduce geometry details, each vertex created in the first
step for a point-cell pair is located at the cell’s representative
vertex. The representative vertex of a non-empty octree cell
is obtained during ESO construction either from scalar values
at grid points or by sampling polygonal geometry (provided
by PolyMender [24]). If a representative vertex does not exist
(e.g., in a newly created non-empty cell after topology repair),
the vertex associated with the point-cell pair is temporarily
located halfway between the point and cell centroid. A post-
processing step is then applied to smooth these temporary
vertices using iterative averaging [26].

Iso-surface extraction can be implemented as tree traversals on
the ESO grid. We utilize the recursive procedures proposed
in [25], which visits each grid element together with leaf
cells sharing the element in one octree traversal. Using these
procedures, step (1) is performed in one traversal of all grid
points, and step (2) is performed in another traversal of all
grid points, edges and faces. Details of the procedures can be
found in [25].

V. HANDLE REMOVAL

Given an input model represented as an ESO grid G, our
method removes handles on the iso-surface of G in three steps:
thinning, skeleton cycle removal, and growing. Performing
these steps on the object V results in cutting ring-like handles,
while performing the same steps on the background V results
in filling tunnel-like handles.

We first describe how each step is performed on the object
V , although the same algorithms are equally applied to the
background V . We next show that these steps result in robust
removal of existing handles without introducing additional
handles. Finally, we discuss efficient implementations of the
algorithms on the octree.

A. Algorithms

1) Thinning: The skeleton of the object is obtained by
thinning, which iteratively removes elements from the object
boundary. To carry out topology operations on the resulting
skeleton in subsequent steps, thinning should yield cellular
complexes that preserve the topology of the original object.
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Fig. 4. Thinning using simple removals. Each simple removal (indicated by
an arrow) removes a simple element σ and its witness δ . Thinning terminates
(far right) when no more simple elements can be found.

In addition, the thinning procedure should admit efficient
implementation for processing large models.

To this end, we first introduce the concept of simple elements
and their witnesses:

Definition 1: An N-D element σ in a cellular complex V is
called simple with respect to V if σ is contained in exactly
one (N +1)-D element δ of V . In particular, δ is called the
witness of σ .

At each step of thinning, we remove a simple element together
with its witness from the object. We call the removal of such
a pair a simple removal. Thinning using simple removals is
illustrated in Figure 4, where a simple edge and its witness face
are removed first, followed by a sequence of simple removals,
each deleting a simple point and its witness edge. Thinning
stops when no more simple elements can be found (e.g., a
single point is not a simple element based on Definition 1).

Note that after each simple removal, the remainder of the
object is still a valid cellular complex. In addition, performing
simple removal requires only counting the number of (N +1)-
D elements sharing a N-D element, which can be implemented
efficiently using recursive walks on the octree grid (see Section
V(C)).

2) Skeleton cycle removal: The skeleton generated by thin-
ning may consist of points, edges and faces. Let SV be the
skeleton of V . We consider the skeleton graph whose edges
are isolated edges (i.e., edges with no incident faces) on SV ,
denoted as ISV , and whose nodes are connected components
in the remainder SV \ ISV . Note that when the skeleton SV

contains only points and edges, the skeleton graph is SV itself.
Observe in the 2D example of Figure 2 (b) that each cycle in
the skeleton graph lies centered in a ring-like handle of V .

Ideally, we would like to identify small handles and to “cut”
open a handle ring at its thinnest location. To this end, we
shall associate a thickness value at each isolated skeleton edge,
which measures the cross-section area of the object at that edge
(discussed next). Given the thickness-weighted skeleton graph,
we compute the complement of the maximum spanning tree (or
spanning forrest if c[SV ] > 1) of the skeleton graph, and denote
E as those edges in this complement whose thickness value
falls below a user-specified threshold ε . Removing E from
the graph only cuts those cycles whose minimum thickness
is smaller than ε , and the cuts (i.e., E) take place at the
thinnest portion of each cycle (see Figure 2 (c)). Accordingly,
the modified skeleton S′V is computed as S′V = SV \E.

a) Generating sets: To explain the thickness measure, we first
introduce the generating set, W [e], of an isolated edge e in the
skeleton SV . Formally, W [e]∈V is defined as the minimum set
so that V \W [e] is a cellular complex, and thinning V \W [e]
yields SV \{e}. Intuitively, W [e] is a solid “slice” of the object,
such that removing the edge e from the skeleton is the same as
removing the slice W [e] from the object and applying thinning.
Note that generating sets are related to stable manifolds in
a flow complex [27]. While the latter relies on a smooth
Euclidean distance function, the former is defined by iterative
thinning on a discrete grid.

Based on the thinning process that reduces V to SV , we present
a recursive construction for the generating sets:

W [σ ] = {σ}∪
⋃

δ∈P[σ ]

(W [δ ]∪W [s[δ ]]) (1)

where σ ∈ V is any N-D element, P[σ ] ∈ V is the set of
all (N +1)-D elements containing σ , and s[δ ] is the element
removed together with δ in a simple removal (i.e., a simple
element of which δ is the witness, or the witness of δ ) when
thinning V to SV .

To show that equation 1 meets our definition of a generating
set, we first observe that V \W [σ ] is a cellular complex for any
σ . This is because any element in V containing an element in
W [σ ] belongs to W [σ ]. In addition, for an isolated edge e, all
elements in W [e] but e are paired in simple removals. Hence
V \W [e] can be thinned to SV \{e} using the same sequence
of simple removals, except those in W [e], that reduce V to SV .
Finally, the construction contains only necessary elements and
hence W [e] is minimal.

b) Measuring handles: Observe from equation 1 that the
dimensions of elements in the generating set W [e] are no
smaller than that of e (i.e., 1). Accordingly, its dual elements

ˆW [e] in the dual grid Ĝ contain only points, edges and faces.
As the generating set W [e] forms a solid slice of the object
V , its dual ˆW [e] forms a cross-section surface of V that “cuts
across” the isolated edge e. Figure 5 (b) shows a 2D example,
where the dual of each generating set forms a cross-section
curve.

The thickness at an isolated edge e, denoted as w[e], is
therefore defined as the area of this cross-section surface

ˆW [e]. The construction of W [e] in equation 1 gives a recursive
evaluation of w[e]:

w[e] = A[e]+ ∑
δ∈P[e]

w[s[δ ]] (2)

where A[e] denotes the area of the dual face of e in the
dual grid Ĝ and w[s[δ ]] evaluates to zero if s[δ ] is not an
edge. To compute A[e], we triangulate the dual face of e
using the midpoint of e when the face is not planar. Figure 5
demonstrates the thickness measure on a skeleton computed
from a 2D object. Observe that w[e] adapts well to object
thickness at various locations.

3) Growing: The final step “grows” the modified skeleton
S′V back into a new object. Instead of reversing the thinning
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Fig. 5. (a): The original object V . (b): The skeleton SV with thickness values
(red for thin and blue for thick) and the dual elements of generating sets ˆW [e]
(black cross-section curves) at each skeleton edge e.

Fig. 6. Removing handles on a 2-holed torus: (a) The original object, (b,c)
cutting the top ring, (d,e) filling in the bottom tunnel. Edge thickness on the
skeletons are shown from red (small) to blue (big). Black spheres at the ends
of the skeleton in (d) are topologically the same point in the dual grid Ĝ that
is dual to the outside cell of the primal grid G.

process, which is a global operation, we take a different, local
approach. Let E be the edges removed from the original skele-
ton SV , i.e., E = SV \ S′V . We simply subtract the generating
sets associated with edges in E from the original object V .
The new object is thus computed as V ′ = V \⋃

e∈E W [e].

4) Cutting and filling handles: The above three steps can be
applied to either the object V and the background V , with
the effect of either cutting the ring-like handles or filling the
tunnel-like handles. We illustrate results of cutting and filling
using a simple 2-holed torus in Figure 6. Specifically, we let
the user specify two different thresholds ε,ε . We first cut rings
on V that are thinner than ε , creating a modified object V ′,
and next fill tunnels on V ′ that are narrower than ε . Observe
in Figure 6 that due to the use of our thickness measure, each
cutting and filling always takes place at the thinnest location
of a ring or the narrowest location of a tunnel.

B. Robustness of handle removal

Let M be the iso-surface on the input ESO grid, and M′ be
the iso-surface on the modified ESO grid after performing
thinning, skeleton cycle removal, and growing. Here we show
that M′ has exactly m fewer handles than M, where m is the
number of cycles removed from the skeleton graph.

Using Euler’s formula, the number of handles on a closed
manifold iso-surface M is computed by its genus g[M]:

g[M] = c[M]−χ[M]/2 (3)

where c and χ are the number of connected components
and the Euler characteristic. The Euler characteristic of a 3D
cellular complex V is defined as the alternating sum

χ[V ] = k0[V ]− k1[V ]+ k2[V ]− k3[V ],

where ki[V ] enumerates the number of points, edges, faces and
cells in V for i = 0,1,2,3 [28] (surface M can be considered
as a special cellular complex with no cell elements).

The robustness of our method is built upon the following two
equalities that relate the topology of M to that of the object
V and the background V (see proof in Appendix A):

c[M] = c[V ]+ c[V ]−1
χ[M] = 2χ[V ] = 2χ[V ] (4)

The key observation from equation 3 and equation 4 is that
the number of handles on the iso-surface M depends entirely
on the Euler characteristic and connected components of the
object V and background V , that is:

g[M] = c[V ]+ c[V ]−1−χ[V ] = c[V ]+ c[V ]−1−χ[V ] (5)

To confirm our hypothesis that g[M′] = g[M]−m, where m
is the number of cycles removed from the skeleton graph, we
only need to show that the three-step topology repair increases
χ[V ] (or χ[V ]) by m while preserving both c[V ] and c[V ]
(without loss of generality, each step is demonstrated on V ):

1) Thinning: A simple removal is in fact equivalent to an el-
ementary simplicial collapse in algebraic topology [29],
which preserves the homotopy type of a 3-manifold. Let
SV be the skeleton of V after simple removals, we have

χ[SV ] = χ[V ], c[SV ] = c[V ], c[SV ] = c[V ] (6)

2) Skeleton cycle removal: By computing the spanning tree
of the graph of SV , the modified skeleton S′V preserves
the connectivity of SV while removing as many isolated
edges as the cycles removed from the graph:

χ[S′V ] = χ[SV ]+m, c[S′V ] = c[SV ], c[S′V ] = c[SV ] (7)

3) Growing: By definition of generating sets, thinning
the new object V ′ yields the skeleton S′V . Combining
equation 6 and 7, we have

χ[V ′] = χ[V ]+m, c[V ′] = c[V ], c[V ′] = c[V ]. (8)

C. Implementation

1) Thinning: Thinning of the object V is performed on an
ESO grid in an iterative manner. During each iteration, we
make two octree traversals. In the first traversal, we mark every
positive point, edge and face that is simple by Definition 1.
In the second traversal, we visit each marked element σ and,
if σ is still simple at the time of visit, invert the sign of both
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σ and its witness. The two traversals simulate the peeling of
elements on the outmost layer of V . Thinning terminates if no
simple elements are found in the first octree traversal. In our
implementation, we use the recursive procedures detailed in
[25] for efficient traversing of octree grid elements.

Note that thinning of the background V can still be performed
using octree traversals on the primal grid G based on the
following observation: the dual of an N-D negative element δ ,
denoted as δ̂ in Ĝ, is simple with respect to V if δ contains
exactly one (N −1)-D negative element σ in G.

2) Handle measurement: We compute the thickness measure
w[e] for each isolated skeleton edge e during thinning by
slightly modifying the two octree traversals described above.
Note that a positive face may be the witness of more than one
simple edge. To obtain a minimal thickness measure, in the
first octree traversal, we associate a face f with the minimal
w[e] of all simple edges e that f contains. In the second
traversal, we invert the signs of a simple edge e and its witness
face f only if w[e] equals the minimal value stored at f , and
we update the thickness measure on the remaining edges of f
using equation 2.

3) Growing: Growing involves only local modifications of
the original object using the generating sets. To construct the
generating sets using equation 1, we maintain pointers that
track the simple elements from their witnesses during thinning.
Note that growing typically takes negligible time due to the
small proportion of the handles relative to the entire volume.

VI. RESULTS

We first perform handle removal on a synthetic tree model
with genus 18 in Figure 7. Observe that the weighting of
skeleton edges using our thickness measure correctly identifies
the thinnest portion of each ring-like handle to be cut and the
narrowest portion of each tunnel-like handle to be filled. In
addition, handle removals result in only local modifications
of the volume, and the geometry away from the modification
sites are preserved.

Figure 1 shows how our method differentiates handles of
various sizes and removes complex handles in a robust manner.
The spider-web model shown on the left is reconstructed from
a noisy point cloud and contains 75 handles, many of which
are small. Entangling rings and tunnels are shown in the close-
up views. By performing filling with an appropriate threshold,
all handles but the 17 main “holes” of the spider-web are
removed, and no additional handles are created.

We demonstrate our method on large scanned models in Figure
8 and 9. The Happy Buddha, Asian Dragon and Michelan-
gelo’s David (reconstructed at 2mm resolution) are processed
respectively at octree depth 10, 11 and 12, equivalent to a grid
of size 10243, 20483 and 40963. To the best of our knowledge,
topology repair at the latter two resolutions have not been
reported before. Note in particular that the original Asian
Dragon mesh from the Stanford 3D Scanning Repository
contains a self-intersection where the horn penetrates into the

head. Mesh repair using PolyMender results in a number of
topological handles at that location (see Figure 8 (b)). Our
method removes all handles and separates the horn from the
head (see Figure 8 (c)).

Statistics for each model, including the handle thresholds, are
reported in Table I. The thresholds (ε,ε) are specified as the
ratio of the area of the cross-section surfaces to the area of
a side of the ESO bounding box. In each example, the ESO
grids are created by first converting from polygonal formats to
an octree grid using the PolyMender software [24] (timing is
reported). Genus are computed on the iso-surface of the ESO
grid. All tests are performed on a 3.0GHz P4 machine with
2G RAM. Note that even on a 40963 grid, the entire process
finishes in less than twenty minutes on a consumer-level PC.

VII. DISCUSSION

Here we further examine the robustness of our algorithm on
solid models with uncommon topologies. In particular, we
examine when the skeleton contains faces besides points and
edges, and show how a particular type of complex handles is
removed with no new handles introduced.

For all of models that we have tested so far, we observed
that the skeletons of the object V and the background V
consist of only points and edges. However, an arbitrary model
may contain convoluted features, such as internal cavities,
complements of 3D knots and the “house-with-two-rooms”
[28], which yield skeletons containing faces that form closed
surfaces. Figure 10 (a) shows an extreme case where a two-
handled mug has a knotted handle on the outside and a knot
complement on the inside. As a result, the object skeleton
SV contains faces around the knot complement while the
background skeleton SV contains faces around the knotted
handle, as shown in (c,d). Nevertheless, the skeleton graphs
still detect the handles as graph cycles, because each handle
reduces to isolated skeleton edges in either the object skeleton
SV or the background skeleton SV . Combining cutting and
filling, the two handles are removed, as shown in (b).2

For each handle detected as a cycle on the skeleton graph, our
method guarantees removal of the handle without introducing
new handles. We especially demonstrate this advantage in
removing a blocked handle, as shown in Figure 11. The genus-
2 torus in (a) contains a tunnel inside (as shown in wireframe
in (c)), which connects to the outside through an outlet at the
top. Note that simply cutting the torus ring at an arbitrary
location will introduce a new handle (i.e., the total genus
remains 2) due to the presence of the tunnel that “blocks”
the cut. Our method results in filling of the interior tunnel
(highlighted in (d)) while cutting the torus ring at the tunnel
outlet, which yields a genus-0 output.

2Although lacking formal proof, we hypothesize that any surface handle
can be detected using the skeleton graph of either SV or SV .
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(a) (b) (c)

Fig. 7. (a) A tree model with genus 18. (b) The topologically repaired model with genus 0 using cutting threshold ε = 0.01 and filling threshold ε = 0.04.
(c) Closeup views of the rings (r1,r2) and tunnels (h1,h2), where the top row shows the original surface with the modified skeleton, and the bottom row
shows the modified surface.

Fig. 8. Topology repair of the Asian Dragon model at octree depth 11. The input model contains several handles where the horn touches the head (b),
resulted from geometric repair of the original, self-intersecting polygonal model by PolyMender [24]. Close-up looks at the handles site before and after repair
are shown in (c) top and bottom, where the pictures on the right are viewed from inside the dragon head.

Fig. 9. Topology repair of the Stanford Buddha model at octree depth 10 (left), showing a genus-6 and a genus-0 result, and the 2mm David model repaired
at octree depth 12 (right), showing closeup views of the cut and filled handles.

VIII. CONCLUSION

We present a novel volumetric method for removing topo-
logical errors on solid models in the form of small handles
resulted from surface reconstruction. Our method is based
on computing a skeleton representation using morphological

operations on an adaptive grid structure. For each handle
removed, either by cutting the ring or by filling the tunnel,
our method guarantees not to introduce additional handles.
In addition, large models can be processed at very high
resolutions in an efficient manner.

Our current method has several limitations, and we are in-
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Model Octree Octree PolyMender Genus ε ε Genus Cut Fill Contour Total Memory Output
Depth Leaf Cells Time (sec) Before After (sec) (sec) (sec) (sec) (MB) Triangles

Spider Web 7 63799 6.8 75 0.0 0.003 17 0 2.5 0.4 2.9 6 65710
Tree 7 181945 2.2 18 0.01 0.04 0 3.5 5.9 1.6 11.0 16 134364

Knotty Mug 8 437802 1.9 2 0.01 0.01 0 6.7 12.0 3.2 21.9 38 378004
Buddha 10 3989252 49.5 11 0.001 0.001 6 62.3 130.1 29.5 221.9 336 3434166

Asian Dragon 11 13978434 264.1 17 0.0005 0.0005 0 218.7 427.3 103.2 749.2 1173 11987648
David (2mm) 12 20749723 330.9 10 0.0005 0.0005 4 325.9 638.0 157.7 1121.6 1743 17815146

TABLE I

PERFORMANCE RESULTS ON PROCESSING VARIOUS MODELS ON A CONSUMER LEVEL PC WITH 3.0GHZ CPU AND 2GB MEMORY. TIMING EXCLUDES

I/O DURING CONTOURING.

(a) (b)

(c) (d)

Fig. 10. Removing handles on a mug (a) with both an outside knot r1 and
an inside knot complement h1, the result is in (b). The object skeleton (c) and
the background skeleton (d) each contains surfaces yet captures one of the
two handles as isolated skeleton edges. (Thick edges in (d) are topologically
identified as the same point on the dual grid dual to the infinite cell on the
primal grid).

vestigating possible solutions as part of our future research.
Despite its advantage over mesh-based methods in efficiency
and robustness, our method requires volumetric conversion
from input models represented in polygonal form. In this
paper, we used feature-preserving scan-conversion [24] and
iso-surfacing routines [25] capable of accurately reproducing
geometric features (e.g., sharp edges and corners), and utilized
an octree grid structure for adaptive representation of high-
resolution polygonal geometry. Nonetheless, the originally
mesh connectivity and fine geometric details may still be lost
in the process. A possible extension is to apply our volumetric
repair only to portions of a mesh that have been identified to
contain topology errors using mesh-based approaches. This
hybrid idea has already been realized in a different setting for
repairing geometric errors on CAD models [30].

The presented handle removal method requires two passes over
the volume, one for cutting handle rings and one for filling
handle tunnels. Although in each pass a handle is always

(a) (b)

(c) (d)

Fig. 11. Removing a blocked handle. (a,c): A genus-2 torus containing a
tunnel inside (with an outlet at the top). (b,d): Handles removed by filling the
interior tunnel (see red square) and breaking the exterior torus. Note that no
new handles are introduced.

cut at its thinnest place or filled at its narrowest location,
the removal operation may still modify a larger volume then
necessary if cutting is performed where filling would have
resulted in a smaller modification, or vice versa. To this end,
we are currently investigating the relations between the object
skeleton and background skeleton in order to identify the set
of edge removals on both skeletons simultaneously that would
result in minimum total modification to the volume.

Another research direction that we are currently pursuing is
the development of a user-interface for interactive topology
editing. Note that in nearly all topology repair methods (in-
cluding ours), the decisions regarding what handles are to be
removed, where the removal takes place along the handle, and
how the handle is removed (e.g., cutting or filling) are based
purely on some heuristic measure of handle sizes computed
from the model. Examples of such measures include surface
areas in [15], geodesic loop lengths in [18], and cross-section
areas in this paper. Given different input data, however, any
such measure could possibly fail. In these situations, human
judgement is often the best (if not only) criteria. We note that
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a distinctive advantage of our method over previous work for
user-interaction is that the skeleton provides a visual form for
examining and editing topology. It is not hard to imagine a
user-interface in which both object and background skeletons
are displayed and users identify handles as well as the exact
location and means for their removal conveniently via selecting
and removing edges on either skeleton. Such user-interface can
also provide new means for resolving handles besides cutting
a thin opening or filling a thin membrane, such as removing
an extended segment of the handle (when user selects a
sequence of skeleton edges for removal) and approximating
small entangling handles on an otherwise smooth surface using
a single smooth patch.

Finally, we will investigate improved thinning methods that
extend recent level-set techniques [31] on uniform grid to
ensure a uniform thinning speed on adaptive grids, which will
yield a smoother skeleton as well as handle cuts with less
bias towards axes directions. Such thinning techniques will be
useful in general for extracting shape-preserving skeletons of
large models.
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APPENDIX I
TOPOLOGY PROPERTY OF ESO ISO-SURFACE

Proposition 1: Let M denote the iso-surface on a valid ESO
grid with object V and background V . Then M is a crack-free,
2-manifold surface satisfying equation 4.

Proof:

1) Crack-free surface: Applying Dual Contouring, each
edge (or face) on the iso-surface is dual to a non-empty
face (or edge) in the composite grid G̃. Since each non-
empty grid face always contains an even number of non-
empty grid edges, each edge on the iso-surface is shared
by an even number of faces, and the surface is closed.

2) Manifold surface: Consider a non-empty face f̃ in the
composite grid G̃. When G is valid, an element σ in
G (or dual grid Ĝ) must be positive (or negative) if
some element containing σ is positive (or negative). As
a result, positive points and negative points in f̃ always
form two edge-connected components. By duality, the
iso-surface edge dual to f̃ is shared by two polygons.
Similarly, we can show that the positive points and
negative points in a non-empty cell in the composite grid
G̃ always form two connected components, and hence
the iso-surface vertex dual to the cell is contained in a
manifold neighborhood.

3) χ[V ] = χ[V ]: Since each N-D element in the Ĝ\V is dual
to an (3−N)-D element in V , we have χ[V ]− χ[V ] =
χ[Ĝ]. On the other hand, observe that Ĝ is constructed
by gluing the interior elements to a single outside point,
which topologically forms a genus-0 surface in 4D.
Hence we have χ[V ]−χ[V ] = χ[Ĝ] = 0.

4) χ[M] = χ[V ] + χ[V ]: Consider the decomposition of
G̃ into non-empty elements (M̃), elements containing
only positive points (Ṽ ) and elements containing only
negative points (Ṽ ). Note that χ[V ] = χ[Ṽ ] and χ[V ] =
χ[Ṽ ]. Using Dual Contouring, each N-D element on M
is due to a non-empty (3−N)-D element in G̃, hence
χ[M] = −χ[M̃]. For the same reason that χ[Ĝ] = 0, we
have χ[V ]+ χ[V ]−χ[M] = χ[G̃] = 0.

5) c[M] = c[V ] + c[V ]− 1: The connected components of
V and V can be represented as nodes in a connected,

acyclic graph where each edge denotes a connected
piece of surface separating an object component and a
background component. The equality therefore holds by
graph theory.
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