Computer Graphics International 2006

Skeleton-Based Shape Deformation using Simplex Transformations

Han-Bing Yan, Shi-Min Hu and Ralph Martin

Outline

- Motivation
- Introduction
- Mesh segmentation using skeleton
- Skeleton-based shape deformation
- Results
- Conclusions and future work

Motivation

- Applications of Meshes Deformation :
> Animation \& modelling
- Traditional methods [Sederberg et al. 1986]
$>$ FFD \& other space warping methods

Motivation

- Differential methods
>Laplacian coordinates [Alexa2003, Lipmann2004]
> Possion-based gradient field method [Yu2004]

2006-6-29

Motivation

- Skeleton-based Method (Skinning, Envelopes)
$>$ Each vertex is controlled by several bones

$$
P^{\prime}=\sum_{k=1}^{n} w_{k} P M_{k}
$$

> The final position of each vertex is a weighted sum of the vertex position in 3 coordinate frames fixed to moving bones
> Widely used in commercial software

Motivation

- Pros and Cons of Skeleton-based Method
$>+$ Gives natural control of shape feature deformation.
- Animals have skeletons...
> - Weights must be carefully selected
- to retain original mesh features
- to avoid flipping and self-intersection
$>$ - No weight selection method works well in all cases
$>-$ Weight selection is a tedious manual process

Motivation

- Traditional Skeleton-based method
> Does not used vertex connectivity information directly, though mesh has provided this information.
- Target of our method
> We want to develop a new skeleton-based

四deformation method which uses vertex connectivity information directly.

Our Method

- Key idea in our method
\rightarrow We use skeleton to drive simplex, not vertex:
- Simplices contain shape connectivity information
- Input

4 $\quad>$ Original image or shape (2D or 3D triangle mesh), Original skeleton, Deformed skeleton

Simplex Transformation

- Simplex Transformation
$>$ There exists a unique transformation between two (triangles, tetrahedra) in (2D, 3D)

$$
\begin{gathered}
v_{i}=R u_{i}+T \\
R=V U^{-1} \\
V=\left[\begin{array}{llll}
v_{1}-v_{3} & v_{2}-v_{3}
\end{array}\right] \quad V=\left[\begin{array}{lll}
v_{1}-v_{4} & v_{2}-v_{4} & v_{3}-v_{4}
\end{array}\right] \\
U=\left[\begin{array}{llll}
u_{1}-u_{3} & u_{2}-u_{3}
\end{array}\right] \quad U=\left[\begin{array}{lll}
u_{1}-u_{4} & u_{2}-u_{4} & u_{3}-u_{4}
\end{array}\right] \\
2 \mathrm{D}
\end{gathered}
$$

Main Steps

－Steps
＞Segment mesh using skeleton
－i．e．allocate each simplex to a controlling bone
$>$ Calculate transformation matrix for each bone
＞Ensure connectivity between final simplices while keeping the transformation for each

最事。simplex as close as possible to that of its controlling bone

Mesh Segmentation

- Aim
$>$ Decide which bone controls each triangle
- Each triangle is controlled by one bone
$>$ This is a segmentation problem
- Two possible approaches
$>$ Using Euclidean distance between bone and triangle
> Using the shortest path distance on mesh between bone and triangle

Mesh Segmentation

- We show some results first

Mesh Segmentation

- Define the control domain of each bone using Range lines(2D), Range planes(3D)

Mesh Segmentation

- Each vertex is in the control domain of at least one bone
- One vertex maybe in the control domain of several bones
- Effective Distance: $d_{\text {eff }}$
- Effective Distance with Penalty:

$$
d_{e f f p e n}=d_{e f f}+n \delta
$$

Mesh Segmentation

- If $\min d_{\text {effren }}<\delta$, the bone with minimal Effective Distance with Penalty is the control bone of this triangle
- Otherwise, calculate the shortest path distance from the triangle center to the two joints of this bone. The bone with the minimal shortest path distance is the control bone of this triangle.

Transformation Matrix of Bones

- Without scaling:

Transformation Matrix of Bones

- Also allowing scaling of bones
$>$ Rotate the bone to the x axis, scale it along the x axis, then rotate it back.

$$
S^{\prime}=R_{S 2} S R_{S 1}
$$

$>$ The transformation matrix of a bone is the product of a rotation matrix and a scaling matrix.

$$
M^{\prime}=S^{\prime} R^{\prime}
$$

- Translation vector of bones

Simplices in 3D

- 2D Triangle Mesh
>Simplices used are triangles themselves
- 3D Triangle Mesh
> One vertex needs to be added to each triangle to create a simplex

$$
v_{4}=\frac{\left(v_{1}+v_{2}+v_{3}\right)}{3}+\frac{\left(v_{2}-v_{1}\right) \times\left(v_{3}-v_{2}\right)}{\sqrt{\left(v_{2}-v_{1}\right) \times\left(v_{3}-v_{2}\right)}}
$$

Optimization

- We want to use the bone's transformation matrix for the simplices it controls
>Problem: if every simplex uses the same transform as its controlling bone, there will be gaps between adjacent simplices which belong to different bones
- Solution
>Let the simplices transform as much as possible like its controlling bone while enforcing vertex connectivity requirements

Optimization

- We optimise an error energy function

$$
E=\sum_{i=1}^{n} A_{i}\left\|M_{i}-M_{i}^{\prime}\right\|_{F}^{2}
$$

$>$ The variables are the vertex coordinates of the deformed mesh

- By minimizing the error energy function, we get a result which
(47 $>$ Keep vertex connectivity requirements
- follows the bones as much as possible

Optimization

- Linear Equation Solver
> This quadratic optimization problem can be easily transformed to a linear system

$$
K V=d
$$

$>V$ is the unknown vector of vertex coordinates
\rightarrow The x, y (and z in 3D) coordinates form separate linear subsytems

$$
K X=d_{x} \quad K Y=d_{y} \quad K Z=d_{z}
$$

Results

- 2D

(a)

(b)

(c)

(d)

Results

- 3D

裡等

2006-6-29

Results

- 3D

\cdots

2006-6-29

Results

- 3D

2006-6-29

Extensions of this paper

- Small issue with this method
$>$ At least one vertex must be fixed to avoid a matrix singularity
- Different choice of fixed vertex will result in a different position for the deformed mesh
- but it has the same shape
- Solution
$>$ Include the translation vector in the Error Energy Function

Extensions of this paper

- New Error Energy Function

$$
E=\sum_{i=1}^{n} A_{i}\left(\|R-R\|_{F}^{2}+\beta\|T-T\|_{2}^{2}\right)
$$

> No vertex needs to be fixed, and the deformed mesh moves with the skeleton.

Extensions of this paper

- Twist
$>$ The above method is very easily to extend to twist the mesh using bones or line segments.

Extensions of this paper

- Vertex constraint
> Even we can deform the mesh without using skeleton, just using control vertices

2006-6-29

Conclusion

- Pros and Cons
> + Uses skeleton to drive simplices, not vertices
- offering easy control
- vertex connectivity information is used directly
$>+$ No weights need to be defined
> + Experimental results are very good
$>+$ No flip or self-intersection happens in most cases

路踪
> - Need to solve a linear equation

- hence this method is slower than traditional methods

Future Work

- Other extensions
$>$ In the above method, the skeleton can be seen as a tool to modify the simplex transformation matrix
> The skeleton can also be used to modify other local intrinsic attributes
- Thus, other skeleton-based deformation methods can be developed: e.g. Laplacian coordinates, gradient fields, and so on.

$Q \& A$

2006－6－29

