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Abstract

The computation of a rigid body transformation which optimally aligns a set of
measurement points with a surface and related registration problems are studied
from the viewpoint of geometry and optimization. We provide a convergence analysis
for widely used registration algorithms such as ICP, using either closest points (Besl
and McKay [2]) or tangent planes at closest points (Chen and Medioni [4]), and for
a recently developed approach based on quadratic approximants of the squared
distance function [24]. ICP based on closest points exhibits local linear convergence
only. Its counterpart which minimizes squared distances to the tangent planes at
closest points is a Gauss-Newton iteration; it achieves local quadratic convergence
for a zero residual problem and – if enhanced by regularization and step size control
– comes close to quadratic convergence in many realistic scenarios. Quadratically
convergent algorithms are based on the approach in [24]. The theoretical results are
supported by a number of experiments; there, we also compare the algorithms with
respect to global convergence behavior, stability and running time.

Key words: registration, rigid registration, kinematics, optimization, ICP
algorithm, distance function, convergence analysis

1 Introduction

Registration plays an important role in 3D model acquisition and geometry
processing [1]. Individual overlapping scans of an object, initially available in



different coordinate systems, have to be optimally positioned in a single sys-
tem. This requires the simultaneous registration of a number of point clouds.
Another industrial application of registration is the following: For the goal of
shape inspection it is of interest to find the optimal Euclidean motion (trans-
lation and rotation) that aligns a cloud of measurement points of a workpiece
to the CAD model from which it has been manufactured. This makes it pos-
sible to check the given workpiece for manufacturing errors and to visualize
and classify the deviations. The latter registration problem concerns only two
systems. It is basic to the entire family of rigid registration problems and thus
we will investigate this problem in detail. The simultaneous registration of
more than two systems can be done along similar lines, but its description
requires more care on issues such as choice of the initial position, automatic
detection of the overlapping regions of different scans, etc., and thus we will
describe it in a separate paper.

Previous work. A well-known standard algorithm to solve the present reg-
istration problem is the iterative closest point (ICP) algorithm of Besl and
McKay [2]. Independently, Chen and Medioni [4] proposed a similar algorithm.
Although these two algorithms are based on similar ideas, we will see later
that the difference — from the viewpoint of optimization — is not marginal
at all. Most of the literature is based on these algorithms and deals with a va-
riety of possible improvements. An excellent summary with new results on the
acceleration of the ICP algorithm has been given by Rusinkiewicz and Levoy
[27], who also suggest that iterative corresponding point is a better expansion
for the abbreviation ICP than the original iterative closest point. Among the
many improvements of ICP we point to a paper by Sharp et al. [28], where
correspondences are determined in a hybrid space of point and feature coor-
dinates. This leads to a remarkable gain on the side of global convergence.
Planitz et al [22] proposed a general framework for analyzing, comparing, de-
veloping and implementing surface correspondence algorithms. Robust point
set registration using a statistical rather than geometric approach has been
proposed by Tsin and Kanade [30]. For an overview of further recent literature
on registration we also refer to [6,8,16,19,26] and the references therein.

A study of the geometry of the squared distance function of a geometric object
led to the formulation of another type of registration algorithms [24], where
one system (scan) ’flows’ within the squared distance field of the other scan
towards the latter. The present paper has been motivated by that approach.

Contributions and outline of the present paper. Despite the large
amount of work on registration, it seems that there is no thorough investigation
of registration algorithms from the viewpoint of geometry and optimization.
Filling this gap is the main purpose of the present contribution. The study of
registration as a geometric optimization problem reveals important informa-
tion on the behavior of known algorithms and provides the theoretical basis
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for empirical results which have been reported in earlier papers. Moreover, we
will present an analysis and some extensions of the work in [24], which aim at
registration algorithms with quadratic convergence.

This paper is organized as follows. Section 2 summarizes basic facts from
kinematics and the geometry of the distance function to a surface. In Sec. 3,
registration is formulated as a constrained nonlinear least squares problem.
Gradients of the objective function in various norms and corresponding gra-
dient descent schemes for registration are studied. These algorithms are of
importance for the global convergence behavior; the local convergence is just
linear. Registration with the ICP algorithm is discussed in Sec. 4. It is shown
that ICP exhibits linear convergence. To obtain better local convergence, we
devise and analyze in Sec. 5 algorithms with quadratic convergence; such al-
gorithms are of the Newton type and require second order approximants of
the objective function. Simplified versions are Gauss–Newton iteration and
the Levenberg–Marquart method. These are addressed in Sec. 5.4. In fact,
Gauss–Newton iteration turns out to be the algorithm of Chen and Medioni.
Sec. 6 contains the experimental validation of the theory and a comparison of
the various algorithms with respect to global convergence behavior, stability
and running time.

2 Kinematical Geometry and the Squared Distance Function of a
Surface

First order properties of one-parameter motions. Since registration re-
quires the computation of an optimal rigid body motion, kinematical geometry
plays an important role. We review here some basic facts; for proofs and more
details we refer to the literature, e.g. [3,25]. Consider a rigid body moving in
Euclidean three-space R3. We think of two copies of R3: One copy associated
with the moving body and called moving system Σ0, and one copy called the
fixed system Σ. We use Cartesian coordinates and denote points of the moving
system Σ0 by x0, y0, . . . , and points of the fixed system by x, y, and so on.

A one-parameter motion Σ0/Σ is a smooth family of Euclidean congruence
transformations depending on a parameter t which can be thought of as time.
A point x0 of Σ0 is, at time t, mapped to the point x(t) = A(t) · x0 + a0(t)
of Σ. All points of Σ0 have a path curve x(t) in Σ. The path of the origin is
a0(t). A(t) describes the rotational part; we have AT = A−1 and det(A) = 1.

The first derivative ẋ(t) = Ȧ(t) · x0 + ȧ(t) of the path of x0 is its velocity
vector at time t. We write v(x) for the vector field of vectors ẋ(t) attached to
the points x(t). It is well-known that the vector field v(x) is linear and has
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the special form

v(x) = c + c× x. (1)

Of special interest are the uniform motions, whose velocity vector field is
constant over time. Apart from the trivial uniform motion, where all velocities
are zero, uniform motions are either translations (c = o, c 6= o), rotations
about a fixed axis (c · c = 0, c 6= o) or helical motions (c · c 6= 0). The latter
are the superposition of a uniform rotation and a uniform translation parallel
to the rotation’s axis. If ω is the angular velocity of the rotation, and v the
velocity of the translation, then p = v/ω is called the pitch of the helical
motion. Up to the first differentiation order, any one-parameter motion agrees
locally with one of these motions.

If (c, c) represents the velocity vector field of the motion, then the Plücker
coordinates (g, g) of the axis, the angular velocity ω and the pitch p of the
instantaneous helical motion (including special cases) are reconstructed by

p = (c · c)/c2, ω = ‖c‖, (g, g) = (c, c− pc). (2)

Recall that the Plücker coordinates of a line G consist of a direction vector g
and the momentum vector g = p× g, where p is an arbitrary point of G.

Second order Taylor approximant of uniform motions. So far we have
seen that a first order approximation of a motion at a given position, say at
time t = 0, is given by x1(t) = x(0) + tẋ(0) = x0 + t(c̄ + c × x0). Here, x0

is the position of x0 ∈ Σ0 at t = 0 in Σ. A second order approximant of a
uniform motion is (cf. [3]),

x2(t) = x0 + t(c̄ + c× x0) +
t2

2
c× (c̄ + c× x0). (3)

We will use (3) as a local parameterization of the Euclidean motion group,
which is precise up to second order. There, it is sufficient to identify (tc, tc̄)
with (c, c̄) and use the following parameterization with six scalar parameters
(c, c̄),

x(c, c̄) = x0 + c̄ + c× x0 +
1

2
c× (c̄ + c× x0)

= x0 + c̄ + c× x0 +
1

2
[c× c̄ + (c · x0)c− c2x0]. (4)

Computing a displacement from a Taylor approximant. The first or
second order approximations of uniform motions discussed above are in general
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not rigid body transformations. Later, it will be necessary to actually perform
the rigid body transformation, whose first or second order approximant is
known. In other words, we also have to add the higher order terms in the
Taylor expansion. Fortunately, this turns out as a very simple task: In the
unlikely case that there is no rotational part, i.e., c = 0, we are done, since
then we have a translation with the vector c, which of course is a rigid body
motion. Otherwise we note that the velocity field of the instantaneous motion
is uniquely associated with a uniform helical motion. Its axis A and pitch p
can be computed with formula (2). The rotational angle is given by φ = ‖c‖.
Altogether, the desired motion is the superposition of a rotation about the
axis A through an angle of φ = ‖c‖ and a translation parallel to A by the
distance of p · φ. For the explicit formulae we refer to the literature [3,25].

Euclidean motions embedded in the affine group. If we do not impose
orthogonality on the matrix A, we get, for each t, an affine map. Viewing rigid
body transformations as special affine maps will be very useful for the planned
analysis of registration algorithms.

In the following, we use a kinematic mapping (see [12]) that views affine maps
as points in 12-dimensional affine space. For that, consider the affine map x =
α(x0) = a0 +A · x0. Let us denote the three column vectors of A as a1, a2, a3.
They describe the images of the basis vectors of Σ0 in Σ. Of course, we have
x = a0+x0

1a1+x0
2a2+x0

3a3. Now we associate with the affine map α a point in
12-dimensional affine space R12, represented by the vector A = (a0, . . . , a3).
The images of Euclidean congruence transformations (rigid body motions)
α ∈ SE(3) form a 6-dimensional manifold M6 ⊂ R12. Its six equations are
given by the orthogonality conditions of A, i.e., ai · aj = δij, i, j = 1, 2, 3.

It will be necessary to introduce a meaningful metric in R12. Following [12],
this is done with help of a collection X of points x0

1, x
0
2, . . . , x

0
N in the moving

system (body), which shall be called feature points. The squared distance
between two affine maps α and β is now defined as sum of squared distances
of feature point positions after application of α and β, respectively,

‖α− β‖2 = ‖A− B‖2 :=
∑

i

[α(x0
i )− β(x0

i )]
2. (5)

With A = (a0, . . . , a3), B = (b0, . . . , b3), C := A − B = (c0, . . . , c3), and
x0

i = (x0
i,1, x

0
i,2, x

0
i,3) the distance becomes

‖A− B‖2 = ‖C‖2 =
∑

i

[c0 + x0
i,1c1 + x0

i,2c2 + x0
i,3c3]

2 =: CT ·M · C. (6)

This expression with help of a positive definite symmetric matrix M shows
that the metric (5) in the space of affine maps is Euclidean. It only depends
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on the barycenter sx = (1/N)
∑

i x
0
i and on the inertia tensor J :=

∑
i x

0
i · x0

i
T

of the set of feature points x0
i in the moving system [12].

The squared distance function of a surface. Here we will summarize a
few basic facts on the squared distance function. For more details, we refer to
[23]. Given a surface Φ ⊂ R3, the squared distance function d2 assigns to each
point x ∈ R3 the square of its shortest distance to Φ. The importance of this
function for our algorithms lies in the fact that we want to compute a position
of a data point cloud which minimizes the sum of squared distances to a given
surface. Since several important optimization concepts require second order
approximants of the objective function, we need second order approximants
of d2.

Let us fix the notation. We consider a surface Φ with unit normal vector field
n(s) = n3(s), attached to its points s. At each point s ∈ Φ, we have a local
Cartesian frame (n1, n2, n), whose first two vectors n1, n2 determine the prin-
cipal curvature directions. We will refer to this local frame as principal frame
Π(s). Let κi be the (signed) principal curvature to the principal curvature
direction ni, i = 1, 2, and let ρi = 1/κi.

It is known that the second order Taylor approximant Fd of the function d2 at
a point p ∈ R3 is expressed in the principal frame at p’s closest point (normal
foot point) s ∈ Φ as

Fd(x) =
d

d− ρ1

(n1 · x + h1)
2 +

d

d− ρ2

(n2 · x + h2)
2 + (n3 · x + h3)

2. (7)

Here, ni · x + hi = 0, i = 1, 2, 3, are the equations of principal planes and
tangent plane at s, respectively.

In the important special case d = 0 (i.e., p = s), the approximant Fd equals
the squared distance function to the tangent plane of Φ at s. Thus, if p is
close to Φ, the squared distance function to the tangent plane at p’s closest
point on Φ is a good approximant of d2.

We may have an indefinite Taylor approximant, which might be undesirable for
optimization. Then, we derive nonnegative quadratic approximants either by
replacing a negative term d/(d−ρj) by zero or by |d|/(|d|+ |ρj|); a motivation
for the latter choice is given in [23]. In any case, a second order approximant
Fd is with appropriate coefficients α1, α2 and α3 = 1 given by

Fd(x) =
3∑

j=1

αj(nj · x + hj)
2. (8)

Note that so far we tacitly assumed that p does not lie on the cut locus of Φ.
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There the distance function d and also its square are not differentiable, and it
makes no sense to talk about a second order Taylor approximant.

For later use we finally note that the gradient ∇d2 of the squared distance
function at a given point p is

∇d2 = 2(p− s) = 2dn. (9)

Remark 1 For the sake of brevity, we are discussing in this paper only the
case of smooth surfaces. However, the change to the more practical case of
piecewise smooth surfaces is straightforward. Such a surface exhibits sharp
edges and vertices (intersection points of edges, singular points such as the
vertex of a cone); its squared distance field is composed of squared distance
fields of smooth surfaces, of curves (edges and eventual boundary curves) and
of points (vertices). The squared distance field of a point is quadratic anyway.
Quadratic approximants to squared distance fields of space curves have been
studied in [23]. Intuitively, the simplicity of the extension to piecewise smooth
objects is explained as follows: we attach small smooth blending surfaces along
edges and corners, with blending radius ε, and consider the limit for ε → 0.

A data structure for fast distance information retrieval. Surface patches
obtained from a 3D scanning device are usually defined by point cloud data
(PCD) which do not contain any topology information. For the purpose of reg-
istration of PCD, one can still compute second order quadratic approximants
in each iteration. A numerically stable algorithm in this case benefits from
a globally smooth fitting surface and then computes closest points together
with the curvature information at these points. This is not easy and time
consuming. Therefore, we briefly address here a modified d2tree method [18]
for computing quadratic approximants to the squared distance function. It in-
volves least squares fitting of quadratic patches. The pre-computed quadratic
patches are stored in a special data structure called d2tree. Figure 1(a) shows
a d2tree for simple two dimensional ellipse-like PCD.

Simply put, the d2tree in 3D is an octree like data structure each cell of
which stores a quadratic function that approximates the squared distance
locally. Previous structures of d2tree compute these quadratic functions by
least squares fitting to the squared distance function with the same error
threshold. However, as different cells correspond to different approximants,
these constructions can not preserve the continuity of quadratic approximants
along the boundary of each cell. The modified d2tree structure solves this
problem by borrowing the idea of ’partition of unity’ [21], which is typically
used to integrate locally defined approximants into a global approximation.
In our approach, the quadratic patch in each cell Ci is associated with a C2
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(a) cells in a d2tree for two dimen-
sional PCD

(b) Sketch to the modified d2tree in
2D; cells are bounded by circles

Fig. 1. Modified d2tree structure in 2D.

compactly supported function wi(·),

wi(x) = W (
‖x− oi‖2

θ d2
i

). (10)

Here, oi and di are respectively the center and the length of the diagonal of
cell Ci, and W (·) is a C2 function with support interval [0, 1]; the constant θ
controls the overlap of the cells. In our implementation, we chose W to be a
cubic B-spline basis function and θ = 1.7.

The squared distance approximant at a point x is defined by blending of the
squared distance approximants of its adjacent cells,

F+(x) =

∑
i wi(x)(xT · Ai · x + 2bi · x + ci)∑

i wi(x)
. (11)

The summation in equation (11) is taken over all cells. However, as all wi(·) are
compactly supported, for a fixed point x0, only a few terms in (11) contribute
to its squared distance approximation so that it can be efficiently computed.
Figure 1(b) shows a sketch in 2D, where the squared distance approximation
of p is a weighted combination of the squared distance approximations in cells
with centers oi, 1 ≤ i ≤ 4.

The construction of the modified d2tree is done in a top-down style based
on fitting quadratic functions F (·) to samples of the squared distance field
of the PCD. The details of the construction is similar to the method used in
[21,18] and will not be described here. For our construction, the number of
levels of the tree and the error threshold for the quadratic approximants are
the required parameters.
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Our application requires a squared distance approximant near a given point p.
Unlike the d2tree defined before, we use the second order Taylor approximant
of F+(x) at p,

F2(x) = F+(p) +∇F+(p)T · (x− p) +
1

2
(x− p)T · ∇2F+(p) · (x− p).

As W (·) has an analytic expression, both ∇F+(·) and ∇2F+(·) can be com-
puted analytically.

Remark 2 Compared with the previous d2tree [18], the modified d2tree struc-
ture takes more time to supply the squared distance approximant at a given
point, as it needs the computation of gradient and Hessian of F+(·). To cut
down the computation time in the present application, one can just apply the
modified strategy when the cell is near the surface. However, the time needed
for computing gradient and Hessian remains small compared to the time which
would be necessary for computing closest points in each iteration of the follow-
ing registration algorithms.

3 Problem formulation and gradient descent

A set of points X0 = (x0
1, x

0
2, . . .) is given in some coordinate system Σ0. It

shall be rigidly moved (registered, positioned) to be in best alignment with a
given surface Φ, represented in system Σ. We view Σ0 and Σ as moving and
fixed system, respectively. A position of X0 in Σ is denoted by X = (x1, . . .).
It is the image of X0 under some rigid body motion α. Since we identify
positions with motions, the motions have to act on the same initial position.
Thus, we always write X = α(X0).

The point set X0 may be a cloud of measurement points on the surface of a
3D object. The surface Φ may be the corresponding CAD model, another scan
of the same object, a scan of a similar object, a mean shape in some class of
shapes, etc. For our description, we will simply speak of a data point cloud
and a surface Φ (‘model shape’), but have in mind that Φ may also be given
just as a point cloud. For computations with point cloud data, we refer to [20].

The registration problem shall be formulated in a least squares sense as follows.
Compute the rigid body transformation α∗, which minimizes

F (α) =
∑

i

d2(α(x0
i ), Φ). (12)

Here, d2(α(x0
i ), Φ) denotes the squared distance of α(x0

i ) to Φ. If we view α
as a special affine map, we have to compute its 12 parameters (a, A) under
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the constraint that A is an orthogonal matrix. Hence, the present problem is
a constrained nonlinear least squares problem [11,10,17].

The following notation will be used throughout this paper. The current po-
sition of the data point cloud in some iterative procedure is called X =
(x1, x2, . . .) = α(X0); if necessary, we write more precisely Xc = (x1c, . . .) =
αc(X

0). The next position in an iteration is indicated by X+ = (x1+, . . .) =
α+(X0). The minimizer of F is X∗ = α∗(X0).

For practical reasons, in particular for dealing with outliers in the data set
X, one may use a weighted sum. This is not a major difference and shall be
neglected in the following.

3.1 Gradient descent

In the following, we compute the gradient of the objective function F in (12).
In view of (9), we multiply F by the factor 1/2, but call the function again
F . A tangential direction in the Euclidean motion group is determined by an
instantaneous velocity vector field v(x) = c + c × x. Let yi be the closest
points of the current data point positions xi on Φ, and set fi := xi−yi. Then,
by equation (9), the directional derivative of F in direction C = (c, c) reads

∂F

∂C
=

∑

i

(xi − yi) · v(xi) =
∑

i

fi · (c + c× xi) =
∑

i

(fi · c + fi · c).

Here fi = xi × fi is the momentum vector of the surface normal through xi.
Let us view the vectors fi as forces acting along the corresponding surface
normals. We call these forces the repelling forces. Then, fi are the moments
of these forces. Altogether, we have a repelling force system, represented in
terms of screw theory ([25], pp. 192) by the screw

F = (f, f) = (
∑

i

fi,
∑

i

fi). (13)

We will call F the repelling screw and −F the attracting screw. Hence, the
directional derivative appears as virtual work done by the repelling force system
on the instantaneously moving data shape,

∂F

∂C
= f · c + f · c. (14)

With known results from line geometry and screw theory [25] we conclude: An
instantaneous motion with directional derivative zero corresponds to a screw
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which is reciprocal to F. In particular, the axes of instantaneous rotations,
which yield vanishing directional derivative of F , lie in a linear line complex.

A minimizer is characterized by vanishing derivative in all directions. This is
only possible if the screw F vanishes. In terms of statics, the condition may
be expressed as follows:

Proposition 3 At a position, which is a local minimizer of the objective func-
tion F of the registration problem, the repelling force system (or equivalently
the attracting force system) is in equilibrium.

Remark 4 In the case of known correspondences, we have an analogous equi-
librium property of the force system F = (f, f) defined by the vectors xi − yi

to pairs of corresponding points. In particular, this requires f = 0, which ex-
presses exactly the well-known correspondence of the barycenters of the two
point sets X and Y (see [9,14]).

To compute the gradient, we need a metric, since the direction C needs to be
normalized. The simplest normalization via c2 + c2 = 1 yields as gradient

∇F = (f, f) =: F∗. (15)

It is more natural, however, to use the Euclidean metric (5) for normalization
of the tangent vector to M6, represented by C. This requires that we normalize
according to

∑
i(c + c× xi)

2 = 1. This normalization can be written as

CT ·Me · C = 1. (16)

Writing the directional derivative in the form ∂F/∂C = F∗T ·M−1
e ·Me · C, we

see that the gradient ∇eF of F for the normalization via the metric (5) is

∇eF = M−1
e · ∇F = M−1

e · F∗. (17)

Both −∇F and −∇eF are in a certain metric directions of steepest descent
and can be employed in a gradient descent algorithm. One computes X+ from
Xc by application of a ‘small’ displacement, which is in first order given by
the velocity field in direction of the steepest descent. One considers the helical
motion defined by this velocity field (c, c̄). Then, one applies to the current
position Xc the helical motion according to Sec. 2, with an appropriate rota-
tional angle φ. One can start with φ = ‖c‖ and then check the validity of the
corresponding step. If the decrease of the objective function is not sufficient,
the rotational angle is reduced according to the Armijo rule [17] or a more
sophisticated step size prediction scheme of optimization [10,17].
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Remark 5 The gradient according to (17) possesses the following interpreta-
tion. We are looking for a velocity vector field v(x), determined by C = (c, c̄),
such that the first order approximants of the displaced data points, namely the
points xi +v(xi) = xi + c̄+ c×xi, are as close as possible to the closest points
yi ∈ Φ of xi, in a least squares sense. This requires the minimization of

F1 =
∑

(xi + v(xi)− yi)
2 =

∑

i

(fi + c̄ + c× xi)
2. (18)

With the expression of
∑

i(c + c× xi)
2 = 1 in the form (16), and with help of

(15) and (13), function F1 reads in matrix notation

F1 = CT ·Me · C + 2(F∗)T · C +
∑

i

f2i . (19)

Therefore, the minimizer Cm is given by the negative gradient from equation
(17),

Cm = −M−1
e · F∗ = −∇eF. (20)

Thus, a gradient descent based on ∇eF tries in each iteration to bring the new
data points xi+ as close as possible to the foot points yi of the current data
points xic. This is similar to the ICP algorithm, which is discussed in more
detail in Sec. 4. There, we show that ICP is linearly convergent. The same
holds for a gradient descent, if one uses an appropriate step size [17].

Although gradient descent is not a good method for the fine positioning, it may
be very useful to reach the convergence area of an algorithm with quadratic
convergence, described in Sec. 5.

4 The ICP algorithm revisited

The most widely used algorithm for the solution of the registration problem
is the iterative closest point (ICP) algorithm of P. Besl and N.D. McKay [2].
We will briefly describe this algorithm and then take another point of view
which immediately reveals its convergence properties.

The ICP algorithm performs in each iteration the following two steps.

(1) For each point xi = α(x0
i ) in the current position of the data shape, the

closest point yi in the model shape is computed. This is the most time
consuming part of the algorithm and can be implemented efficiently, e.g.
by using an octree data structure. As result of this first step one obtains
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a point sequence Y = (y1, y2, . . .) of closest model shape points to the
data point sequence X = (x1, x2, . . .). Each point xi corresponds to the
point yi with the same index.

(2) The rigid motion α+ is computed such that the moved data points xi+ =
α+(x0

i ) are closest to their corresponding points yi, where the objective
function to be minimized is

F1 =
∑

i

‖xi+ − yi‖2. (21)

This least squares problem can be solved explicitly. The translational
part of α+ brings the barycenter s0

x of X0 to the barycenter sy of Y
(cf. Remark 4). The rotational part of α+ can be obtained as the unit
eigenvector that corresponds to the maximum eigenvalue of a certain
symmetric 4 × 4 matrix [9,14]. The solution eigenvector is nothing but
the unit quaternion description of the rotational part of α+.

Now step 1 and step 2 are repeated, always using the updated data points,
until the change in the mean-square error falls below a preset threshold. The
ICP algorithm always converges monotonically to a local minimum, since the
value of the objective function is decreasing in each iteration.

4.1 ICP exhibits linear convergence

The ICP algorithm can be understood nicely if we embed the set of rigid body
motions into the space D of continuous deformations. A distance measure in
D can be introduced similarly as in R12, say with help of the measurement
points in X. Clearly, this distance cannot distinguish between deformations
that act identically on X. We could also restrict to special deformations that
are uniquely determined by an image set Y of X and reproduce Euclidean
congruences where possible.

The set of Euclidean congruences is some 6-dimensional manifold C6 in D.
The set of deformations α which map X onto points of Φ, i.e. F (α) = 0, is
some manifold D0 ⊂ D. In case that there are no measurement errors and X
fits exactly to Φ, a solution α∗ of the registration problem is an intersection
point of D0 and C6.

The two steps of ICP are interpreted in D as follows.

(1) To the point αc ∈ C6 (representing the motion between initial and current
position Xc of the data point cloud X), compute the closest point αf ∈ D0

(the deformation towards the cloud of closest points on Φ).
(2) To αf ∈ D0, compute the closest point α+ ∈ C6.
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Hence, each iteration consists of two orthogonal projections with respect to
the chosen metric in D. At first, one projects from a point on C6 orthogonally
onto D0, and then orthogonally back to C6. We will show that this kind of
double projection converges linearly. In case of a precise fit between data
and model shape, we have convergence to an intersection point of D0 and
C6. If there exists a deviation between data shape X and model shape, we
have convergence towards a common normal of D0 and C6. In both cases, the
algorithm converges to a minimizer of the objective function F . Depending on
the initial position, this may just be a local minimizer, but not the global one.

Linear convergence means that the distance of the iterates to the solution α∗

decreases according to

‖α+ − α∗‖ ≤ C‖αc − α∗‖, (22)

for some constant C ∈ (0, 1).

Let us now proceed with a proof of the error formula (22). In particular,
we would like to compute the constant C, which determines the speed of
convergence.

For our purposes it is sufficient to make the following simplification. We con-
sider the sequence of iterates (. . . , αc, α+, . . .) in C6 as points of some curve
c ⊂ C6. The intermediate foot points αf lie in some curve f ⊂ D0. Each
tangent of the curve c lies in the corresponding tangent space of C6; hence a
normal onto C6 is also a normal onto c. The same holds for the curve f. The
desired common normal of D0 and C6 is also a common normal of these two
curves; the normal foot points shall be c∗ (= α∗) and f∗. Of course, in case
of an intersection point we have c∗ = f∗. Therefore, we consider the double
projection algorithm for the computation of the common normal of two curves
c and f. It is sufficient to assume finite dimension m of the embedding space
D = Rm; since only the second order Taylor expansions of c and f around c∗

and f∗ enter the discussion, dimension m = 5 is actually sufficient. Moreover,
it suffices to express orthogonality in Rm with help of the canonical inner
product.

We consider arc length parameterizations c(u) and f(v) for the two curves,
with c(0) = c∗, f(0) = f∗. Assuming bounded derivatives up to third order,
the Taylor expansions read

c(u) = c∗ + uc′0 +
u2

2
c′′0 + O(u3), f(v) = f∗ + vf′0 +

v2

2
f′′0 + O(v3).

The common normal property of c∗, f∗ is expressed as

(c∗ − f∗) · c′0 = 0, (c∗ − f∗) · f′0 = 0. (23)
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Given a current position c(uc)f(uc) for the common normal, which is orthog-
onal to f at f(uc), the next position c(u+), f(uc) is orthogonal to c. This is
formulated in the equations

(c(uc)− f(vc)) · f′(vc) = 0, (c(u+)− f(vc)) · c′(u+) = 0. (24)

Now we insert the Taylor expansions into these two equations. The absolute
terms cancel because of (23). Vanishing of the first order terms yields two
linear equations in uc, u+, vc, from which we eliminate vc and finally get

u+ = Cuc, with C =
(c′0 · f′0)2

[c′0
2 + (c∗ − f∗) · c′′0][f′02

+ (f∗ − c∗) · f′′0]
.

C is the constant we are looking for, since u = 0 corresponds to the foot point
c∗. To express C in geometric quantities, we use the properties of arc length
parameterizations, c′0

2 = f′0
2

= 1, and denote the angle between the tangents
at the normal foot points by φ, i.e. cos φ = c′0 · f′0. With d ≥ 0 as distance
between the foot points c∗ and f∗, we have f∗− c∗ = dn, ‖n‖ = 1. So far, this
gives

C =
cos2 φ

(1− dn · c′′0)(1 + dn · f′′0)
.

By the Frenet equations, we have

c′′0 = κcnc, f′′0 = κf nf ,

with κc, κf as curvatures and nc, nf as unit principal normal vectors of the
curves c and f, respectively. Of course, these entities are taken at the normal
foot points. nc · n equals the cosine of the angle γc between the common
normal and the osculating plane of c at c∗. The quantity κc cos γc can be
seen as normal curvature of the curve c with respect to the normal vector n.
Analogously we define the normal curvature κn

f , but to have symmetry, we use
the normal −n there (so that it points from f∗ to c∗). This finally yields

C =
cos2 φ

(1− dκn
c )(1− dκn

f )
. (25)

Remark 6 The normal curvature κn
c of c at c∗, with respect to the normal

n, can be visualized as follows: Connecting the point f∗ with the curve c yields
a cone. By developing this cone into the plane, c is transformed into a planar
curve c̃, whose ordinary curvature at c̃∗ (with the normal orientation given by
ñ) is precisely κn

c [5,29]. The interpretation of κn
f is analogous.

If the curves intersect, i.e. d = 0, the convergence only depends on their
intersection angle. The property C = cos2 φ is immediately clear for two in-
tersecting straight lines. It is not surprising that it appears in first order also
if c and f are not lines. For curves c and f, which are tangent at some point
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c∗ = f∗, we have d = 0 and φ = 0, and thus C = 1. This gives a convergence
which is below a linear rate!

It is much more subtle to analyze the case d 6= 0. Obviously, even curvature
information enters the discussion. The situation can be easily understood if
one takes two circles c and f in the plane. Clearly, we have φ = 0. The speed
of convergence is determined by the radii of the circles; it is an elementary
exercise to verify the validity of (22) with the constant from (25).

4.2 Conclusions on the performance of ICP

We will only discuss the case of a small residual problem (d small); there,
the data point cloud X fits very well onto Φ. By equation (25), the speed of
convergence is given by C ≈ cos2 φ and thus we have to find the angle φ, under
which the minimizer is approached.

By equation (5) squared distances between two positions, say the current
position X and the minimizer X∗, are computed as sum of squared distances
of corresponding data point locations,

‖X −X∗‖2 = ‖α− α∗‖2 =
∑

i

(xi − x∗i )
2. (26)

As approximants to the tangent vectors at the minimizer (vectors c′0 and f′0
of the previous subsection), we may use the normalized secant vectors (X −
X∗)/‖X −X∗‖ and (Y − Y ∗)/‖Y − Y ∗‖, and thus we have

cos φ ≈
∑

i(xi − x∗i ) · (yi − y∗i )√∑
i(xi − x∗i )2

√∑
i(yi − y∗i )2

. (27)

During the computation, X∗ is not yet known. An alternative is the estimation
of φ from two successive iterates,

cos φ ≈
∑

i(xic − xi+) · (yic − yi+)√∑
i(xic − xi+)2

√∑
i(yic − yi+)2

. (28)

This confirms an intuitively obvious and experimentally verified phenomenon:
ICP is very slow, if tangential moves along the surface are needed. Then the
angle φ is small and the constant C is close to 1. Tangential moves belong to
a velocity vector field of a rigid body motion which is nearly tangential to Φ.

We have run a large number of experiments to empirically test the accuracy of
the estimate (28) of the constant in the linear convergence behavior of ICP. A
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representative example is the following one. The chosen surface Φ is a bi-cubic
B-spline surface with 36 control points and uniform knots. The size of the
object is approximately 0.352 × 0.340 × 0.354. The data set X results from
random sampling of k = 500 points on Φ and successive displacement of the
point cloud as a rigid body system; thus we have a zero residual problem.
Figure 2 shows the initial and the final position after 200 iterative steps of
standard ICP. Table 1 presents for each given iteration the error E(j) =√

[
∑

i(xi − x∗i )2]/k according to (26), the estimate cos2 φ of the constant C

using formula (28) and the quotient E(j)/E(j−1), which represents the exact
error reduction in each iteration. The last two quantities are graphed in Figure
2, bottom. It reveals that the theoretical convergence result describes the exact
behavior very well, except for a few initial iterations when the data point cloud
is far from the fixed object. This is expected, since we have performed a local
convergence analysis which does not capture the initial phase.

iteration10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

error

1e-10
1e-9
1e-8
1e-7
1e-6
1e-5
1e-4
1e-3
1e-2
1e-1 true coefficient

estimation

Fig. 2. Local convergence behavior of the standard ICP algorithm: (upper left)
initial position, (upper right) final position, (bottom) illustration of the constant C
for the linear error reduction, and its estimate cos2 φ according to (28)

Surfaces, which possess a velocity vector field v(x), such that v(x) is exactly
tangential to Φ for all x ∈ Φ, are invariant under a uniform motion. Such a
surface must be a plane, sphere, cylinder, rotational or helical surface. Clearly,
for such a surface, F has an infinite number of minimizers. An instability can
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Table 1: Error reduction in the standard ICP algorithm
Iterative Closest Point (ICP)

j E(j)
E(j)

E(j−1)
cos2φ j E(j)

E(j)
E(j−1)

cos2φ

0 8.607e-2 110 1.302e-7 0.8637 0.8633

10 5.291e-2 0.9696 0.5302 120 3.014e-8 0.8639 0.8635

20 3.453e-2 0.9510 0.6529 130 6.987e-9 0.8640 0.8636

30 1.631e-2 0.8968 0.3871 140 1.621e-9 0.8640 0.8637

40 3.670e-3 0.8573 0.8314 150 3.764e-10 0.8641 0.8638

50 8.478e-4 0.8754 0.8467 160 8.745e-11 0.8641 0.8639

60 1.957e-4 0.8685 0.8511 170 2.032e-11 0.8642 0.8639

70 4.720e-5 0.8616 0.8601 180 4.725e-12 0.8643 0.8639

80 1.071e-5 0.8625 0.8617 190 1.101e-12 0.8640 0.8639

90 2.451e-6 0.8631 0.8624 200 2.588e-13 0.8659 0.8638

100 5.640e-7 0.8635 0.8629

also exist infinitesimally or approximately. A linear algorithm for the detection
of such cases can be based on line geometry [25]; strategies for handling them
in an ICP algorithm have been described by Gelfand et al. [8,16].

Let us summarize the results on the convergence of ICP.

Proposition 7 The ICP algorithm exhibits in general linear convergence with
a decay constant C given by equation (25). For a zero residual problem, where
the minimizer is approached tangentially, we have the worst case C = 1; a tan-
gential approach occurs in an exact way only for surfaces which are invariant
under a uniform motion.

Without further discussion, we mention that the quadratically convergent al-
gorithms in the next section exhibit a better convergence for small angles
φ than ICP does. However, they are no longer quadratically convergent for
φ = 0.

5 Registration algorithms of the Newton-type and Gauss-Newton
iteration

There are various possibilities to achieve quadratic convergence in registration
algorithms. Recall that quadratic convergence means an error reduction of the
form

‖α+ − α∗‖ ≤ C‖αc − α∗‖2, (29)

with some positive constant C. We will describe several algorithms, all of them
based on a Newton type iteration or a simplification of it.
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Algorithms which use quadratic approximants of the squared distance func-
tion according to (7) will be called SDM (squared distance minimization) al-
gorithms. Those, which set d = 0 and thus use only squared tangent plane
distances, are called TDM schemes. In this section, the following algorithms
will be analyzed (in this order).

(1) Affine SDM. As a preparation for further discussions, we drop the rigidity
constraint of the moving system and thus allow an affine distortion.

(2) SDM 1. This scheme, first proposed in [24], uses a linearization of the
motion (rigidity constraint).

(3) SDM 2 is an SDM scheme based on a second order motion approximant.
(4) TDM simplifications exist to all SDM algorithms mentioned above. We

will show that they correspond to Gauss-Newton iteration and thus should
be enhanced by regularization techniques such as the Levenberg-Marquardt
method.

All these algorithms follow the same basic scheme and are quite easy to im-
plement because of the careful study of the squared distance function and
kinematical geometry; they can take advantage from preprocessing of the
squared distance field (see [20]). This geometric insight is lacking in a paper
by Tucker and Kurfess [31], which applies the Newton method to registration
in a straightforward way and thus leads to quite involved expressions and little
possibilities for acceleration.

Newton algorithms. Before we enter the discussion of registration, let us
recall the most basic facts on Newton iteration [17]. A Newton method for the
minimization of a function F (α) computes a second order Taylor approximant
at the current position αc and minimizes this quadratic function to obtain
the next iterate α+. Therefore, with the gradient ∇F (αc) and the Hessian
∇2F (αc), one has

α+ = αc − (∇2F (αc))
−1 · ∇F (αc).

Under appropriate assumptions on F and on the initial iterate, a Newton
iteration converges quadratically to a local minimizer. In order to obtain a
globally convergent algorithm, i.e. an algorithm which converges from each
initial position to a local minimizer, one has to make some improvements [17].
If the Hessian is not positive definite, the Newton direction may fail to be a
descent direction; then one has to employ an approximate Hessian, which in
our case will come from nonnegative quadratic approximants of the squared
distance function. Moreover, one should use a step size control and compute
a step λ such that

α+ = αc − λ(∇2F (αc))
−1 · ∇F (αc),
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has sufficient descent [17]. In the following, we will not explicitly point to this
stabilization, but we are assuming it is done.

Gauss–Newton iteration. Our objective function F (α) in equation (12)
is a sum (1/2)

∑
i di(α)2 of squares. One speaks of a nonlinear least squares

problem [17]. To avoid the costly computation of the full Hessian ∇2F , one
may use a Gauss-Newton iteration, which is equivalent to the solution of the
linear least squares problem

min
N∑

i=1

[di(αc) +∇di(αc) · (α− αc)]
2. (30)

It is well-known ([17],pp. 24) that the distance ‖ec‖ = ‖αc−α∗‖ of the current
iterate to the minimizer α∗ is related to the error ‖α+‖ in the next iterate by

‖e+‖ ≤ K(‖ec‖2 + ‖R(α∗)‖ ‖ec‖). (31)

Here, R(α∗) = (d1, . . . , dN)(α∗) is the residual at the minimizer, and K is
an appropriate constant which involves the Jacobian of R(α). The error esti-
mate is only true, if one is sufficiently close to the minimum. The well-known
conclusions of (31) are: Gauss-Newton iteration converges quadratically for
a zero residual problem. There, the data can be fitted exactly. Moreover, for
good initial data and a small residual problem, convergence of Gauss-Newton
is fast. For a large residual problem, the iteration may not converge at all.

Optimization theory provides several methods to achieve convergence of Gauss–
Newton like iterations even for large residual problems [17]. A variant of the
Gauss–Newton iteration does not apply the full step α+−αc, but just a scalar
multiple λ(α+ − αc), usually with λ < 1, to the current iteration. Various
methods for a line search along αc +λ(α+−αc) can be applied (see [17]). This
results in a so-called damped Gauss–Newton algorithm. Another way to mod-
ify Gauss–Newton is a regularization with the Levenberg–Marquardt method
[17]. Here, a scalar multiple of the unit matrix is added to the approximate
Hessian.

5.1 Affine SDM: a Newton algorithm for affine registration

As a preparation for further investigations let us first consider affine registra-
tion. In certain situations, affine registration may even be used for registration
by a rigid body motion, namely if F possesses an isolated minimizer α∗ within
the affine group which is contained in (or very close to) M6. A minimizer lies in
M6 if the deviations between data set and model shape are zero (up to Gaus-
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sian noise). This minimizer is isolated if there are no affine transformations of
the model shape into itself.

Starting from an appropriate initial position α0, we perform a Newton iteration
in R12 for the minimization of F . This requires a second order approximation
of the objective function F . Since F is the sum of squared distances of the
data point positions xi to the model shape Φ, a second order approximant
is F2 =

∑
i Fd,i, where Fd,i is the second order approximant of the squared

distance function to the model shape at xi. These approximants have been
investigated in Sec. 2. Let ni,j · x + hi,j = 0, ‖ni,j‖ = 1, for j = 1, 2, 3, be
the equations of the coordinate planes of the principal frame at xi’s closest
point yi ∈ Φ. Then, by equation (8), a second order Taylor approximant of
the squared distance function at xi is written as

Fd,i(x) =
3∑

j=1

αi,j(ni,j · x + hi,j)
2. (32)

The same form holds for a nonnegative modification. Nonnegative approxi-
mants should be applied at least in initial steps of the iteration to ensure
positive definiteness of the Hessian of the objective function.

We now insert an affine displacement of the data points,

x′i = xi + c0 + xi,1c1 + xi,2c2 + xi,3c3, (33)

into F2 and arrive at the local quadratic model of the objective function

F2 =
∑

i

3∑

j=1

αi,j[ni,j · (xi + c0 + xi,1c1 + xi,2c2 + xi,3c3) + hi,j]
2. (34)

Since ni,j · xi + hi,j is the distance of xi to the j-th coordinate plane of the
principal frame, this value equals 0 for j = 1, 2; it equals the oriented distance
di of xi to Φ for j = 3. Therefore we may rewrite F2 as

F2 =
∑

i

2∑

j=1

αi,j[ni,j · (c0 + xi,1c1 + xi,2c2 + xi,3c3)]
2 + F̃2. (35)

Here, F̃2 denotes the part arising from the squared distances to the tangent
planes at the closest points yi,

F̃2 =
∑

i

[ni · (c0 + xi,1c1 + xi,2c2 + xi,3c3) + di]
2. (36)

21



The minimization of the quadratic function F2 in the parameters (c0, . . . , c3) of
the affine displacement requires the solution of a linear system. Applying this
affine displacement to the data set, we obtain a new position. This procedure is
iterated. We stop with an appropriate criterion, e.g. if the error or its decrease
fall below a given threshold or a maximum number of iterations has been
reached. To enforce that the final position of the data set is a Euclidean copy
of the original one, we may register the original position to the final affine
position, which is a well-known eigenvalue problem (the second step in each
iteration of ICP).

Since the present method is a Newton algorithm, it converges quadratically.

Remark 8 Affine registration in the present formulation has an infinite num-
ber of singular solutions: These occur if the whole moving system shrinks to a
single point of the model shape, which clearly results in a zero residual. Our
experiments confirm that this shrinking effect may appear if the initial position
is too far away from the model shape (cf. Table 2).

5.2 SDM 1: A Newton algorithm based on a first order motion approximant

SDM 1 according to [24] keeps the rigidity constraint, i.e., the path in R12

towards the minimizer is restricted to M6. Let us first explain the iterative
procedure in R12. Here, each iteration from αc to α+ consists of the following
two steps.

(1) Compute the tangent space T 6 of M6 at αc and minimize a local quadratic
model F2 of the objective function F within T 6. Let α∗T denote the unique
minimum in T 6.

(2) Project α∗T onto M6 to obtain α+.

Such a projected Newton algorithm needs not even be convergent if the un-
constrained minimizer αu (in R12) is far away from M6. However, if αu = α∗

lies in M6, the algorithm can be shown to be quadratically convergent. These
results follow by a local quadratic approximation of the objective function
at the minimizer and by the use of corresponding results on the constrained
minimization of quadratic functions (see, e.g. [13]).

The realization of the two steps in SDM 1 is as follows [24].

Step 1. The tangent space T 6 is defined by Euclidean velocity fields, i.e.
v(x) = c+ c× x. Equivalently, ci of (33) are no longer arbitrary, but define a
skew symmetric matrix. Therefore, minimization of the local quadratic model
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inside T 6 requires the minimization of the quadratic function F2 in (c, c),

F2 =
∑

i

2∑

j=1

αi,j[ni,j · (c + c× xi)]
2 + F̃2. (37)

As before, F̃2 arises from squared tangent plane distances,

F̃2 =
∑

i

[ni · (c + c× xi) + di]
2 =

∑

i

[ni · c + ni · c + di]
2, (38)

and can be used instead of F2 when we are already close to the model shape
(see also Sec. 5.4). Note that (ni, ni) are the Plücker coordinates of the surface
normal through xi. F2 is a quadratic function in the unknowns (c, c). The
unique solution (c∗, c∗) can be given explicitly by solving a system of linear
equations.

Step 2. The projection back to M6 proceeds according to Sec. 2. We apply a
helical motion which is determined by the velocity field (c∗, c∗).

The presented algorithm can be made convergent in any situation, even if the
minimum within the affine group is not close to M6. However, then the choice
of the rotational angle cannot simply be ‖c‖. Especially, if a large rotational
angle arises, it is better to use arctan ‖c‖ or even a smaller value than that. A
secure way is to employ the Armijo rule or a similar strategy from optimiza-
tion [17] for the determination of an appropriate step size, analogous to the
procedure in a gradient descent algorithm. It is well known in optimization
[17] that this results in an algorithm with linear convergence.

5.3 SDM 2: A Newton algorithm with second order motion approximation

To achieve quadratic convergence in any case, we can use a second order
approximant for the motion from αc to α+ according to (4). This means that
we estimate the displaced data point xi by

x′i = xi + c + c× xi + Ti,2,

with the second order term

Ti,2 =
1

2
[c× c̄ + (c · xi)c− c2xi].

We insert this into Fd(xi) and sum up,

F2 =
∑

i

2∑

j=1

αi,j[ni,j · (c + c× xi + Ti,2)]
2 + F̃2. (39)

23



We observe that the quadratic term Ti,2 in the first part produces just cubic
or quartic contributions to F2. Since we will minimize a local quadratic model
at (c, c) = (0, 0), these terms do not matter at all. However, we have to look
into F̃2,

F̃2 =
∑

i

[ni · (c + c× xi + Ti,2) + di]
2, (40)

Skipping again the higher order terms, we get a local quadratic approximant,
denoted by F̃ ′

2,

F̃ ′
2 =

∑

i

[ni · c + ni · c + di]
2 + 2

∑

i

dini · Ti,2. (41)

Hence, the only relevant correction term compared to the use of a linearized
motion as in Subsection 5.2 is

F2c =
∑

i

di[det(ni, c, c) + (c · xi)(c · ni)− c2(xi · ni)]. (42)

Computationally, the second order motion approximation does not require
much more effort. However, in this refined version we can guarantee quadratic
convergence provided that we have an initial position in the region of attraction
of the minimizer.

5.4 TDM: Registration via Gauss–Newton iteration

At the final steps, the second order approximants Fd(xi) will be close to
squared distance functions of tangent planes at the closest points yi. This
means that the influence of αi,1 and αi,2 will be negligible and thus these pa-
rameters can be set to zero. We may then simply use F̃2 instead of F2; this
results in the TDM scheme associated with any of the SDM methods above.
Minimization of squared tangent plane distances has been first proposed by
Chen and Medioni [4], and it has been observed in various papers that this
results in faster convergence than ICP. We will give a deeper explanation by
showing that TDM corresponds to Gauss-Newton iteration.

We have to formulate equation (30) for the present registration problem. It is
better to start the discussion without the rigidity constraint, i.e., to consider
affine registration. For this, we note that the gradient ∇d(xi) of the distance
function to Φ at a point xi, taken with respect to the spatial coordinates x,
is given by the unit normal vector ni at xi’s closest point yi ∈ Φ, ∇di =
(xi − yi)/‖xi − yi‖ = ni. The term ∇di(αc) · (α− αc) describes, in our case,
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the directional derivative of this distance for an affine displacement α of xi,
which equals ni · (c + xi,1c1 + xi,2c2 + xi,3c3). Therefore, the minimization
of squared tangent plane distances, which is described in (36), is identical to
Gauss–Newton iteration (30).

Adding the rigidity constraint has been discussed in Subsections 5.2 and 5.3;
in exactly the same way we can handle the constraint for Gauss–Newton it-
eration (TDM). The only difference is that we do not use full local quadratic
approximants of the squared distance function at the current data points, but
we only use squared tangent plane distances, described in function F̃2. Let us
summarize the conclusions one can make with known results from optimiza-
tion, which have been mentioned at the beginning of this section.

Proposition 9 Registration algorithms which are based on the approach by
Chen & Medioni [4] and iteratively minimize the sum of squared distances to
tangent planes at the closest points yi ∈ Φ of the current data point locations
xi, correspond to a Gauss–Newton iteration. Therefore, these algorithms con-
verge quadratically for a sufficiently good initial position and a zero residual
problem (i.e., the data shape fits exactly onto the model shape).

Moreover, one has to expect that the Chen & Medioni method works well
for small residual problems. To achieve convergence even for a large residual
problem, one should employ the modifications addressed above. For instance,
Levenberg-Marquardt (L-M) regularization applied to Gauss-Newton iteration
with a first order motion approximant requires iterative minimization of

F̃2 =
∑

i

[ni · (c̄ + c× xi) + di]
2 + ν(c̄2 + c2). (43)

For the choice of the parameter ν, we refer to [17].

6 Experimental validation

In this section, we present an experimental verification of the theoretical re-
sults. We compare the standard ICP algorithm and the four algorithms pre-
sented in subsections 5.1-5.4 with respect to local convergence and global
stability. The experiments have been performed on a Pentium IV 2.8G with
1G RAM.

We present the results of test series run on four different models and corre-
sponding data sets (Fig. 3). We test both local convergence and global stability
and do this by an evaluation of the algorithms for a large number of initial
positions; examples for such positions are shown in Fig. 4.
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(a) fender model for test series 1 (b) model for test series 2

(c) face model for test series 3 (d) 2 overlappings scans of the
bunny for test series 4

Fig. 3. Models and data sets in registered position; the sample points used for
registration in (b), (c) and (d) are shown in red.

(a) local test (b) global test (c) local test (d) global test

Fig. 4. Some initial positions for local and global convergence tests; in all cases
the shown positions yield convergence.

(1) Test 1 uses a fender model represented as a bi-cubic B-spline surface
(Fig. 3(a)). The size of the object is approximately 2.023× 0.750×0.367.
The data set is obtained by sampling the model at k = 500 points with
small Gaussian noise; this is done by normal-uniform sampling [27]. New-
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ton’s method is employed to compute on demand the closest point of each
data point.

(2) In Test 2 the original model is a triangle mesh (obtained from real mea-
surement data; see Fig. 3(b)); it has a size of 0.2183 × 0.2727 × 0.2155.
Having an application in industrial inspection in mind, where the original
model would be used many times, we use preprocessing by the modified
d2tree from Section 2. Data point clouds are obtained by random sam-
pling at k = 1000 points with small Gaussian noise.

(3) Test 3 concerns a large residual problem (Fig. 3(c)), where model shape
and data point clouds come from different face models. Evaluation of the
squared distance function is done via preprocessing.

(4) Test 4 shows the process of aligning two partially overlapping scans of the
bunny model (Figs. 3(d) and 4). During registration, the dark point cloud
S is fixed and the other point cloud is active. We sampled the active part
at k = 500 points and use preprocessing of S with the modified d2tree.
Three parameters T1, T2, τ are used to exclude sample points that do not
belong to the overlapping region. In the objective function, the term of
each sample xi is multiplied by a weight wi according to

wi :=





1 if d2(xi, S) ≤ T1,

exp(−τ(d2(xi, S)− T1)
2) if T1 < d2(xi, S) < T2,

0 if T2 ≤ d2(xi, S).

(44)

In general, T1, T2 need to be reduced during the optimization. The con-
stant τ controls the decay of influence and can be increased in later steps
of the iterative procedure. In the final few steps, we set T1 = T2.

Computation of initial positions of the data sets is performed as follows.
We apply helical motions with parameters (c, c̄) (cf. Section 2) to the op-
timally aligned position α∗ of the data set. Thus, the latter belongs to pa-
rameters (0, . . . , 0). The (c, c̄)–parameter domain is uniformly sampled as
(βix, βiy, βiz, Ljx, Ljy, Ljz), where −3 ≤ jx, jy, jz ≤ 3. For the local conver-
gence tests we use −3 ≤ ix, iy, iz ≤ 3, β = π/90 and L is 1/50 of the diagonal
Db of the bounding box of the model shape. Initial positions for global con-
vergence tests belong to −4 ≤ ix, iy, iz ≤ 4, β = π/9 and L = Db/8.

6.1 Local convergence

The results of the four test series run on the initial positions as explained
above are shown via 3D graphs in Figs. 5, 6, 7 and 8. Along the three axes we
graph iteration number j, logarithm log(E(j)) of the error (with E(j) defined
as in Section 4.2), and the number of occurrences in the test series. This shows
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Fig. 5. Error reduction for local convergence test 1 (small residual)

Fig. 6. Error reduction for local convergence test 2 (small residual).

that the 2D convergence graphs to the individual initial positions are pretty
close to each other; we have a strong concentration at a certain mean plot.

The error decay in the experiments is in agreement with the theory. Affine
SDM and SDM 2 are quadratically convergent, SDM 1, TDM and standard
ICP are linearly convergent; the latter exhibits the clearly worst local conver-
gence behavior. We also see that TDM does not work well for large residual
problems. Basically the same picture is found for the total computation time
(Table 2).

Let us discuss in more detail the time required per iteration. In all algorithms,
the dominant cost lies in computing various approximants of the squared
distance function. We analyze the cost ttotal for one data point. Essentially,
ttotal = tquery + ta sums up the time tquery required for finding the closest point,
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Fig. 7. Error reduction for local convergence test 3 (large residual)

Fig. 8. Error reduction for local convergence test 4 (partial matching)

Table 2: average computational time of each algorithm
Test 1 Test 2 Face registration Partial alignment

Preprocessing 0s 19.616s 21.571s 15.421s

Samples 1000 1000 1000 500

Standard ICP 11.12s 0.515s 0.637s 0.582s

TDM 1.623s 0.101s 0.153s 0.074s

SDM 1 0.523s 0.118s 0.204s 0.042s

SDM 2 0.409s 0.085s 0.104s 0.034s

affine SDM 0.334s 0.056s 0.087s 0.026s
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Table 3: Percentage of initial positions which belong to the convergence funnel of
the global minimizer
Test 1 Test 2 Face registration Partial alignment

Standard ICP 30.902% 29.921% 6.721% 12.874%

TDM + Armijo rule 10.209% 5.726% 2.978% 3.656%

TDM + L-M method 19.743% 12.354% 4.567% 6.493%

SDM 1 + Armijo rule 37.434% 28.545% 8.721% 14.218%

SDM 1+ L-M method 40.211% 30.671% 9.326% 15.951%

SDM 2 + Armijo rule 20.825% 16.768% 4.822% 7.869%

SDM 2 + L-M method 22.579% 18.546% 6.542% 9.928%

affine SDM + Armijo rule 0.207% 0.157% 0.056% 0.282%

affine SDM + L-M method 0.588% 0.352% 0.122 0.633%%

and the time ta for computing the squared distance approximant at the clos-
est point. As we use the same data structure for computing the closest point,
tquery remains fixed along all tested algorithms. TDM requires less informa-
tion than SDM, and this yields in practice tTDM

a ≈ 0.5 ∗ tSDM
a . Thus, if tquery

is dominant (as for test 1), ttotal for SDM and TDM are nearly the same. If
ta is dominant (d2tree preprocessing), we have tTDM

total ≈ 0.5 · tSDM
total . However,

faster convergence of SDM can still give lower total computation time of the
registration process (Table 2).

6.2 Global stability

After examining the local convergence, we come to the global stability issue.
We are interested here in the size of the funnel of attraction of the minimizer.
Since pure Newton and Gauss Newton methods would not do well at all, we
have to enhance them by step size control and/or L-M regularization.

For each algorithm, we let the moving system start from the initial positions as
outlined above and count the percentage of those initial positions that result
in the global minimizer α∗; the results are collected in Table 3.

We summarize the results as follows. SDM 1 and standard ICP show similar
global behavior, but they are only a little better than SDM 2. TDM has a
worse global behavior. As expected, affine SDM is the worst one, since it is
prone to exhibit a shrinking effect when the initial position is far from the
shape model.
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7 Conclusion and future research

Exploiting the geometry of the squared distance function and using known
facts from kinematical geometry and optimization, we have been able to an-
alyze and improve the local convergence behavior of registration algorithms.
In particular, we have proposed algorithms with local quadratic convergence.
Moreover, an experimental validation of the theoretical results has been given.
Both from the theoretical study and the experiments we conclude that the
most widely used ICP algorithm [2] is the slowest. The algorithm of Chen and
Medioni [4] (essentially a Gauss-Newton iteration) shows faster convergence,
but it is still behind the other schemes (SDM1,SDM2,affine SDM) with respect
to convergence rate and computation time.

It has also been shown that the quadratically convergent algorithms (with
regularization and step size control) do not require a very close but still a rea-
sonable initial position. Finding such a position requires different techniques;
a promising direction is the approach by Sharp et al. [28].

The presented optimization algorithms can be extended to the simultaneous
registration of multiple views. Also there, we can achieve local quadratic con-
vergence and verify it by experiments. For registration of multiple views, the
choice of a good initial position is even more critical, and thus we will discuss
multiview registration in a separate paper, both from the perspective of local
and global convergence.
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