
SUBMIT TO IEEE TIP 1

Motion-Aware Gradient Domain
Video Composition

Tao Chen1 Jun-Yan Zhu1 Ariel Shamir2 Shi-Min Hu1

1TNList, Department of Computer Science and Technology, Tsinghua University
2The Interdisciplinary Center

Abstract—Gradient domain composition methods like Poisson blending offer practical solutions for uncertain object boundaries
and differences in illumination conditions. However, adapting Poisson image blending to videos faces new challenges due to
the addition of the temporal dimension. In videos, the human eye is sensitive to small changes in the blending boundaries
across frames, and slight differences in the motion of the source patch and the target video. We present a novel video blending
approach that tackles these problems by merging the gradient of source and target video and optimizing consistent blending
boundary according to a user provided blending trimap for the source video. We extend the mean-value coordinates interpolation
to support hybrid blending with dynamic boundary while maintaining interactive performance. We also provide a user interface
and source object positioning method that can efficiently deal with complex video sequences beyond the capability of alpha
blending.

Index Terms—gradient domain, video editing, mean-value coordinates, Poisson equation, seamless cloning.
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1 INTRODUCTION

Video compositions are very useful in film, television and
entertainment industry. Such compositions take a part of a
source video, usually a foreground object (called “patch”),
and paste it into the frames of a target video. This process
involves two challenges: extracting the patch from a video,
and composing it with the target frames. In both cases a user
is typically involved to choose a desirable source patch and
a composition location in space and time. Therefore, the
main focus of effort in video composition techniques has
been to lower the amount of manual effort in this process.

Many works related to video matting and composition
have been proposed in computer graphics (see [1], [2], [3]
and [4]), and recent work can deal with transparent and
refractive objects [5]. These techniques use alpha-blending
composition and focus mainly on how to cutout the alpha-
matte of the video-patch from the source video. Compos-
ing using alpha-blending provides good results in limited
scenarios where the source and target videos have similar
illumination conditions, the object is easily separable from
its background, and the videos do not differ too much in
terms of motions, including both global camera motion and
local object/texture motion. Uncertain object boundaries,
due to heavy motion blur, smoke or dust, and varying
illuminations conditions make it difficult to achieve high
quality composition using alpha matting.

On images, gradient domain blending aims to solve such
problems by transferring the gradient of the source image
patch to the target image while maintaining seamless blend-
ing boundary. Conventionally, this can be done by solving
a Poisson equation. More recently, an interpolation based
method using mean-value coordinates (MVC) achieves in-

teractive rates for composition [6].

The main challenges in gradient domain video blending,
as opposed to image blending, come from motion. First,
even if the blending results of each individual frame is
satisfactory, the blending boundaries in adjacent frames
may not be consistent, and “popping” artifacts may appear.
Second, the motions of the source and target gradient fields
are typically different and can cause motion artifacts even
if the blending boundaries are consistent through time.
Third, often there are camera motion differences between
the source and the target videos, and there is a need to align
them as well.

We present a motion-aware gradient domain video blend-
ing technique that addresses the above issues. Our key
idea is that instead of using hard boundaries between the
foreground and background for composition, we define
soft boundaries for the blending region. In each frame,
the real boundary of the source patch will lie loosely
inside the blending region, but its exact location can be
adjusted dynamically through time. This allows greater
flexibility to determine dynamic boundaries for complex
moving objects, and allows fast updates for user interaction
such as while the user changes the position of the source
object. Moreover, we use a novel method for combining
the gradient fields of the source and target videos inside
the blending region. We reconstruct a mixing-gradient field
based on the consistency, and the gradient saliency of the
source and target videos. The mixing gradient gradually
scatters the possible motion differences on the blending
boundary between source and target videos into the whole
blending region, producing smoother and more coherent
blending results and reducing motion artifacts.
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Fig. 1. Challenges for existing video composition schemes (top row, showing source videos): uncertain object
boundaries due to shadows, smoke and dust, motion blur etc., and complex motions of both camera and objects.
We propose a robust gradient domain video composition method that is capable of dealing with these scenarios
(bottom row, showing composed videos). Please see the accompanying video.

Fig. 2. Pipeline of motion aware video composition method. Given an input source and target video sequences,
several preprocessing steps are first applied. These include calculating the optical flow, performing video
segmentation and stabilization. The user then inputs blending trimaps on the source video and positions the
source object on the first frame. The system will compose an output video by motion aware gradient composition.
Consequently, the user can interactively refine the position on chosen frames.

Our solution builds on several previous work including
video segmentation [7], motion estimation [8], video sta-
bilization [9], grab-cut [10] and graph-cut [11]. We extend
MVC cloning [6] with hybrid blending boundary conditions
similar to [12] and use a mixing-gradient field [13]. Our
contribution lies not only in creating a full interactive
solution for video composition, but also in developing a
motion-aware technique for gradient domain video editing.

2 RELATED WORK
Video matting and composition is a well studied problem in
computer graphics and computer vision. In 2002, Chuang et
al. [1] use bi-direction optical flow to propagate the matting
trimaps across video frames. In Li et al. 2005 [2], Wang et
al. 2005 [3] and Armstrong et al. 2007 [14], graph-cut based
video segmentation is proposed to obtain segmentation. In
2009, Bai et al. [4] present a video cutout system that
achieved better segmentation by the collaboration of a set
of local classifiers. All these video matting approaches rely
on the clear object boundary of the source video. Gradient

domain image composition avoids solving difficult matting
problem for fuzzy boundaries, and can also deal with
large illumination difference of source and target images.
Burt and Adelson 1983 [15] uses a multiresolution spline
technique to blend two images, while this method is concise
and fast, the data incorporation from distant source and
destination pixels may generate undesirable result. Pérez
et al. 2003 [16] improves it by solving Poisson equation
on blending region. Jia et al. 2006 [17] eliminates the
blending artifacts by optimizing the blending boundary and
collaborating with alpha matting. Chen et al. 2009 [12]
further improves the composition quality by using a mixed
boundary condition for solving Poisson equation. Bhat et
al. 2008 [18] efficiently solves the poisson equation by
using Fourier analysis. To achieve real-time performance,
Farbman et al. 2009 [6] uses mean-value coordinates
interpolation to approximate the process of solving the
Laplacian equation in gradient domain composition. Tao
et al. 2010 [19] presents an error-tolerant gradient-domain
image compositing technique. By defining the boundary
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gradients and applying a weighted integration scheme to
the gradient field, it tackles the color bleeding problem and
improves the composition quality. However, motion blur,
camera shaking and low quality object boundary due to
the complexity of the scene or video quality still limit the
applicability of these works.

Our work extends the range of possible video composi-
tions by providing motion aware blending. Several works
attempted to extend the gradient domain scheme to video
composition. Wang et al. 2004 [20] proposes a 3D video
integration algorithm which solves a 3D Poisson equation.
Xie et al. 2010 [21] adapts the mean-value coordinates
to efficiently solve the video composition. However, these
methods did not take spatio-temporal and motion inconsis-
tencies of the source and target gradients into account. This
reduces the composition quality and narrows the application
range.

Other related works include illumination estimation from
images and videos. Since gradient domain composition
does not consider the real illumination condition of the
source and target, it can provide over-blending effects
(pasted objects are too dark or over saturated). Lalonde et
al. 2007 [22] use illumination clues to choose illumination
consistent images for their Photo Clip Art. Lalonde et al.
2009 [23] further estimate the illumination details from
a single outdoor image, which can help to prevent over-
blending. GradientShop Bhat et al. 2010 [13] uses a general
optimization framework for gradient domain image and
video processing, which also inspired our work. Gradi-
ent domain composition also suffers from different image
noises, which are addressed lately by Image Harmonization
techniques proposed in Sunkavalli et al. 2010 [24].

3 OVERVIEW
Figure 2 shows the pipeline of our method. First, the
user provides blending trimaps on the source video. In the
“user input” step of Figure 2, The blue and red region
respectively covers the definite foreground and background.
The green region in between is a soft boundary for the
blending region, and usually covers the uncertain area
around the foreground source object such as shadows, dust,
smoke or waves (see Figure 3 and the trimaps shown in
Figure 10(a)(c)). Both the hybrid blending boundary and
the mixing-gradient field will be calculated inside this soft
boundary. The boundary between red and green region,
denoted as Γout , is obtained by a user-drawn closed loop on
the first frame. The inner boundary Γin, between the green
and the blue regions, is generated by applying a refinement
step of grab-cut [10] to another user-drawn closed loop
roughly along the object boundary on the first frame. The
trimaps on subsequent frames are generated by propagating
the user inputs on the first frame (details in Section 5.3).

To compose the new video, the user places the source
objects on the first frame of the target video. Using an
intuitive user interface, the source and target videos can be
aligned. The position and scale of the source object will be

automatically calculated on subsequent frames according to
feature points registration and optical flow estimation. To
generate desired motion path (i.e. the object moving path
across video frames) or fix inaccurate automatic alignment,
the user can drag and resize the source object on some
motion keyframes. Our method allows interactive composi-
tion results to be shown to the user while he or she adjusts
the alignment. The details of this user interface will be
presented in Section 6.

After the video source objects are positioned, the key
challenge for composition is to overcome large appearance
and motion differences between the source and target video
sequences. We first find a blending boundary in each
frame, which minimizes the spatio-temporal differences
and motion differences along the boundary. Then, we
reconstruct a mixing-gradient field inside the composition
region according to optical flow, gradient saliency and
continuity. The gradient domain blending also takes into
account inter-frame consistency. We efficiently calculate
per frame blending results subject to a temporal restriction
along the flow vectors of the source and target sequences.
These steps are described in Section 5.

Lastly, we propose an approximate calculation for mean-
value coordinates, to achieve interactive real-time update
when dynamic blending boundary is used. In Section 4 we
describe this real-time hybrid blending method for a single
frame.

4 REAL-TIME SINGLE FRAME HYBRID
BLENDING

Regular Poisson image blending involves solving a large
linear system which is time-consuming for use in video
blending. Farbman et al. [6] introduce an alternative,
coordinate-based, approach to perform the cloning pro-
cess of normal Poisson blending with Dirichlet boundary
conditions. The interpolated value at each interior pixel
is given by a weighted combination of values along the
boundary based on mean-value coordinates (MVC). The use
of coordinates is advantageous in terms of speed, ease of
implementation, small memory footprint, and parallelizabil-
ity. However, since this solution deals with a fixed blending
boundary with the same boundary condition as regular Pois-
son blending, it also carries the same limitations, especially
when there are large texture or color differences.

Fig. 3. The definitions of regions and boundaries in
this paper.
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Fig. 4. Comparison between MVC cloning Farbman et al. 2009 [6] and our MVC hybrid blending. (a) Blending of
the rectangle region inside the dashed line and the background. The black dash line designates the inconsistent
boundary that should be avoided for blending. (b) MVC cloning with selective boundary suppression at the black
boundary generates undesirable (red) blending result due to extrapolation of MVC. (c) MVC hybrid blending
generates plausible blending result by setting Neumann boundary conditions at the black boundary. Next, two
highlight regions show, on a real image, the advantage for using mixed boundary conditions (e, top) and optimized
blending boundary (e, bottom) in MVC hybrid blending (e) compared to MVC cloning (d).

Farbman et al. [6] propose to use selective boundary
suppression that removes some boundary points for inter-
polation to reduce “smudging” artifact. This fails when
the removed boundary points are extruded, as shown in
Figure 4(a)-(c). Jia et al. [17] propose to optimize the
blending boundary to achieve minimal color variation of
source object, while Lalonde et al. further improved this to
deal with large texture or color differences in [22] and [12].
Here, we improve MVC method by searching for optimized
boundary and using mixed boundary conditions similar to
the hybrid blending approach suggested in Chen et al. 2009
[12].

Let Ω denote the patch of source frame f s to be composed
onto the target frame f t , and let Γ be its boundary. As
illustrated in Figure 3, Chen et al. [12] classify a band
region around the blending boundary Γ into two types:
M1 consists of pixels where texture and color between the
source and target are consistent, and M2 consists of the all
other pixels. Texture and color consistencies are measured
respectively by the difference of Gabor feature vectors and
the difference of the UV color components. Conventional
Poisson blending can be safely applied to the M1 region, but
it can cause artifacts (e.g. “smudging” and discoloration)
within M2. In M2, Chen et al. apply matting to separate the
foreground f s

f and background f s
b layers of the source image

f s, and use the foreground layer f s
f for blending to the target

image f t . This technique creates a mixed guidance vector
field G in Ω and a mixed boundary condition on Γ:

4 f ′ = div(G) over Ω,with (1)

G|M1 = ∇ f s and G|M2 = ∇ f s
f

f ′|Γ1 = f t and ∇ f ′|Γ2 = ∇ f s
f

where Γi = Γ∩Mi, i = 1,2

In M2 regions, f ′ is treated as intermediate result, which is
then combined with f t using alpha blending to obtain the
final result f .

In our work, we do not solve the Poisson equation but
instead use mean-value coordinates as in Farbman et al. [6]
due to its efficiency. To this end, we have to address
two challenges. First, the blending boundary Γ in hybrid
blending is optimized according to the pixel differences

(mismatch). As the source and target alignment changes,
Γ is changed, and hence MVC weights can no longer be
pre-computed. This reduces the effectiveness of MVC in
terms of computational savings. Second, in hybrid blending,
the boundary points on Γ2 are with Neumann boundary
conditions, and therefore cannot be used directly for mem-
brane interpolation. We solve the first challenge by an
approximation to MVC coordinates, and address the second
challenge by first solving the boundary values that will be
interpolated.

4.1 MVC approximation
In Farbman 2009 [6], the membrane value at each interior
pixel of seamless cloning is given by a weighted combina-
tion of values along the boundary. The process includes
three steps: region triangulation, mean-value coordinates
computation and interpolation. If the blending boundary is
fixed, the first two steps can be pre-computed similar to
Farbman 2009 [6]. Then, multiple cloning positions of the
source patch can be considered efficiently. However, using
a fixed, user-drawn, boundary is not optimal for seamless
blending. Dynamic blending boundaries are optimized for
different blending positions. To deal with changing bound-
ary we propose a new method to approximate the mean-
value coordinates.

We observe that the most time-consuming part in MVC
computation is calculating the angles from the inner points
x ∈Ω to the points on the blending boundary pi,pi+1 ∈ Γ.
The tangent of these angles ^pi,x,pi+1 are used as weights
in the MVC calculation (see Figure 5). To bypass comput-
ing these angles every time the boundary Γ is changed, we
approximate these angles using pre-computed values that
are close to the actual angle values.

To achieve this we require a fixed boundary that encloses
all possible dynamic blending boundaries. The user-drawn
boundary Γout naturally fits this role, since all the blending
boundary optimizations are applied inside it. We construct
an adaptive triangular mesh inside Γout by using a similar
method as in Farbman 2009 [6], but using a constant
vertex density in the region between Γin and Γout , that
is identical as the vertex density on Γout . For each inner
vertex x, we calculate the angles to all vertices on Γout :
α ′i−1 = ^p’i−1,x,p’i and α ′i = ^p’i,x,p’i+1 (see Figure 5).
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Fig. 5. Angle approximation for mean-value coordi-
nates using a fixed enclosed boundary Γout (blue).

The points p’ are sampled on Γout by the hierarchical
boundary sampling described in Farbman 2009 [6]. The
tangents of these angles (divided by 2) are saved for
all vertices. Then, each time a blending boundary Γ is
optimized for a given position of the source patch, we
compute distinct correspondence points on Γout for each
point on Γ. To do so, we first link each point on Γ to
their nearest point on Γout . Then, if multiple points on Γ

are linked to a same point on Γout , we choose the one
with shortest distance as the “key-correspondence”. All
other correspondences between the key-correspondences
are uniformly distributed between them (see dotted lines in
Figure 5). Now, the jth component (before normalization)
of our approximated MVC for a vertex x is given by:

w j =
tan(α ′ j−1/2)+ tan(α ′ j/2)

||p j−x||
(2)

Since the tangents are pre-computed, the approximated
MVC can be computed in real-time. Although this approx-
imation is different from the true MVC, especially when Γ

is close to Γin, in practice the approximated interpolation
is visually indistinguishable with the MVC interpolation.

4.2 Boundary value solving
When the hybrid blending boundary contains Neumann
boundary conditions, it cannot be directly approximated
by MVC interpolation, since some boundary values for the
interpolation is unknown. Thus we solve these values before
applying our approximated MVC interpolation.

We first convert the Poisson equation to Laplacian equation.
The mixed boundary condition is also modified appropri-
ately. To obtain its Laplacian form, we define the correction
function f̃ on Ω such that f ′ = g+ f̃ , where g is the image
that provides the source gradient field G (see Section 5.2).
Hence, the Laplacian form of hybrid blending becomes:

4 f̃ = 0 over Ω,with (3)

f̃ |Γ1 = f t −g and ∇ f̃ |Γ2 = 0

For the boundary points on Γ2 with
Neumann boundary conditions we
only know the gradient. Hence, we
assume their values fit a function
f̃ |Γ2 = h (illustrated on the right).
Then, by considering the coordinate-
based interpolation, we can form a

Fig. 6. Challenges for video composition. Motion blur,
uncertain boundaries, shadows and reflections are
demonstrated inside the blue frames.

small linear system by the pixel values around the Neumann
boundary and the known gradient values ∇ f̃ |Γ2 = 0.

h(pi)− ∑
p j∈Γ1

w j
i ( f t(p j)−g(p j))− ∑

pk∈Γ2

wk
i (h(pk)) = 0, (4)

where w j
i and wk

i are mean-value coordinates for qi (neigh-
boring points of pi) in Γ1 and Γ2 respectively. We solve
this linear system, which usually contains hundreds of
unknowns h(pi) by LU factorization. Then, we apply our
approximated MVC interpolation (discussed in previous
section) to the solved boundary values h(pi).

Figure 4(b)-(e) shows the comparison between Farbman
et al.’s MVC cloning [6] and our MVC hybrid blending.
In practice we have found that the difference between the
hybrid blending based on Poison and hybrid blending based
on MVC interpolation are almost indistinguishable. On the
other hand, after pre-computation, the MVC interpolation
is about two orders of magnitudes faster. This is the key
technique that enables efficient gradient domain blending
on video and interactive editing.

5 MOTION AWARE VIDEO COMPOSITION

The image blending method described in the previous
section can produce plausible composition results even
for foreground objects that are difficult to extract using
conventional alpha-matte cut-out methods (e.g., see the
regions inside the blue boxes in Figure 6).

However, if we compose each frame (e.g., the boat in
Figure 6(a)) independently without considering inter-frame
consistency, the results will suffer from boundary flickering,
inconsistent color and texture motion around the composed
source object. These artifacts are caused by three reasons:

Motion differences. There may be differences in the color
and texture motion between the source patch and the target
surrounding. These differences can cause a visible seam
to appear on the blending boundary in the video, not only
because of foreground object movement, but also because
of surrounding movements (e.g., smoke, haze, water). As
an example, the water flow motion around the boat in the
source patch will not be consistent with the water flow
motion of the rest of the target frame.

Position mismatch. Due to our use of dynamic compo-
sition boundary, it can change in consecutive frames and
cause regions to pop or disappear.
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Temporal Fluctuations of Color mismatch. The differ-
ences in color between the source and the target on the
blending boundary may also change between the frames.
The color mismatch is used as the boundary conditions
in our blending method and therefore affects the color
inside the blending region. This means that changes in the
mismatch in consecutive frames can cause color flickering
of the entire blending region.

To address these issues, we first create coherent blending
boundaries that changes smoothly through the frames, and
then construct a novel mixing-gradient field to guide the
blending by considering both the source and target gradient
fields throughout the entire video.

5.1 Optimizing blending boundary

We first minimize the boundary color mismatch between
the source patch and target surroundings on the blending
boundary. The minimization will effectively suppress the
variation of the appearance of source object in the blended
video. We extend the boundary optimization method of
hybrid blending (Section 4) from images to video, taking
temporal coherency into account. We first apply video
segmentation [7] to both the source and target videos to
create super-voxels. Then, we calculate the texture and
color differences for the corresponding super-voxels of the
two videos in the soft boundaries to classify them to either
M1 or M2 regions as described in Section 4. The blending
boundaries of M2 are generated by coherent matting [4],
and we only need to optimize the position of the blending
boundary in M1.

Boundary optimization can be effectively performed using
dynamic programming [17]. Extending this to video should
not only preserve the preceding function, but also minimize
the artifacts caused by the above three reasons. While
directly optimizing the boundary on the 3D volume can
solve the position mismatch problem, it cannot resolve
motion differences or color mismatch. Another drawback
of optimizing on the 3D volume is that neighboring pixels
along the time axis are usually not continuous due to
motion. Moreover, a continuous blending boundary in 3D
space is over-restrictive and leads to non-optimal results on
each frame. As discussed in [25], [4], [13], a better solu-
tion is to optimize the consistency of motion-compensated
neighbors instead of the direct neighbors. Bhat et al. [13]
also show that this can be done by following a mostly (50%
to 60%) accurate optical flow, and by taking confidence
values from the motion vectors into account. We follow a
similar approach in this work.

We define a cost function for the blending boundary Γ of
each frame, using additional terms to control the temporal
consistency according to the motion vectors:

E(Γ,k) = ∑
p∈Γ

1
Dp
{(kp− k)2 +(kp− ktp)2 + ||vt

p−vs
p||2}

(5)

There are three terms here for each boundary point p.
In the first term, kp is the color mismatch of the target
and source on p, kp = ( f t

p − f s
p), and k is the average

mismatch in the current frame. This term minimizes the
color mismatch on a single frame, and is similar to Jia
et al. 2006 [17]. In the second term, ktp is the average
mismatch between p and the nearest boundary points on
the two adjacent frames. This term minimizes the color
mismatch between consecutive frames. In the third term, vt

p
and vs

p are target and source optical flow vector from p to
its corresponding point in the next frames on the target and
source respectively. This term seeks a boundary with similar
optical flows so that motion differences are reduced. Dp
is a penalty term that minimizes boundary point distances
across frames, which will be discussed shortly. Note that
Dp is not a hard constraint and noticeable boundary offsets
may still occur after optimization. Our scheme gives higher
priority to color mismatch, and we rely on the gradient
mixing in the next subsection to remove popping artifacts
caused by the position mismatch.

We iteratively minimize the cost function in Equation (5).
Initially, k is set to be the average mismatch on the user-
provided outer boundaries Γout , Dp is set to be 1, and the
second term (kp− ktp)2 is set to be 0. In each iteration a
new boundary is calculated using dynamic programming,
where the cost value for each pixel is set to be the sum
of the three terms in Equation (5). Next, we project the
boundary points to their motion-compensated neighbors in
adjacent frames, in both forward and backward directions,
using optical flow vectors (Figure 7). Note that the target
and source optical flow vectors can generate two different
projections for a single boundary point p on an adjacent
frame. We consider the nearest distance from p to its
projections on each adjacent frame, and set Dp to be the
average of the two nearest distances to the two adjacent
frames. Accordingly, ktp is set to be the average of the
color mismatch between p and the two nearest projected
pixels on those two frames. In short, in each iteration we
first calculate the new boundaries and then update k, Dp and
ktp. The iteration terminates when the boundaries converge
or a maximum number of iterations is reached (we use 20).

5.2 Gradient mixing
To deal with the remaining artifacts caused by position mis-
match and motion differences, we propose to mix the source
and target gradients coherently in the soft boundary region.

Fig. 7. Pixels used to calculate the temporal cost in
blending boundary optimization.
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Mixing of gradients for image cloning was proposed by
Pérez et al. [16] to preserve salient contents in both source
and target images. We extend this approach to videos in
a spatio-temporally coherent manner. This gradient mixing
is applied on the band region between Γin and blending
boundary Γ. The key idea is to create a gradually mixed
gradient field in the spatial domain to reduce the motion
inconsistency artifacts. If Gs

i and Gt
i are the source and

target gradients respectively, then in its naive form, mixing
could be obtained for i-th pixel of this region as a linear
combination of the source and target gradients:

Gi = αi · (Gs
i )+ [1−αi] · (Gt

i), (6)

However, our approach is based on the observation that
different situations may need different mixing rules to
obtain the desired results by preserving content either
from the source or the target video. For example, motions
with greater gradient values are more noticeable, and they
usually depict the structure of the source object. Hence,
larger gradients should be preserved as much as possible.
Moreover, to generate temporally coherent results, the
preservation of the gradient field should be temporally
consistent in motion-compensated neighbors. We use user-
defined mixing parameters that address the specific situation
of the composition (see Table 1).

The use of MVC cloning demands that the mixed gradient
field should be conservative. We reconstruct a conservative
mixing gradient field as the guidance vector field according
to the following: 1. the gradient magnitude of source and
target, 2. the spatio-temporal coherence of the source and
target gradients. We define F (G) as a filtering function
governed by the gradient mixing parameters whose values
are set by the user. These values can be different for the
source and the target filtering. We also define ai = (αx

i ,αy
i )

as the mixing weighting factor. Note that to generate a
conservative gradient field, αx

i and α
y
i can be different. For

i-th pixel of this region, the reconstructed gradient value is
defined as a linear combination of the filtered source and
target gradients:

Gi = ai ·F (Gs
i )+ [(1,1)−ai] ·F (Gt

i), (7)

In the following, we show how to define the mixing param-
eters and how to use them to generate the gradient filtering
functions F , and the initial values for ainit

i = (α init
i ,α init

i ).

Mixing parameters. We provide three gradient mixing
parameters, namely “salient”, “base”, and “distinct“. Each
one could be toggled either on or off for both the source
or the target gradient field. The “salient” toggle decides
whether to preserve gradients that are more salient (large)
in the source and target videos. The “base” toggle decides
whether to preserve the low frequency appearance of the
videos. These toggles affect the filtering function F of the
gradient field G (either source or target) as follows:

F (G) =


G−K ∗G if only “salient” is on,
K ∗G if only “base” is on,
G if both are on,
0 if both are off

here K = N(pi;σ2) is a Gaussian filter centered at the i-th
pixel (we set σ = 5), and ∗ is the convolution operator. The
“salient” toggle is effective for preserving edges and sharp
textures, while the “base” preserves shadows, reflections
and smooth textures.

The “distinct” parameter decides whether to preserve re-
gions with distinct motion, including motion that differs
from its surrounding area and motion with low optical flow
confidence (which usually means unpredictable motion).
The user can toggle this setting to affect the initial mixing
weight α init

i :

α
init
i =

||Gs
i ||2

||Gs
i ||2 + ||Gt

i||2
+(dsD s

i −dtD t
i ), (8)

where ||Gs
i || and ||Gt

i|| are the gradient magnitudes of the
source and target gradient respectively at the i-th pixel.
The first term favors the preservation of larger gradient
magnitudes. ds or dt are equal to 1, if the “distinct” toggle
for source or target is on respectively, and 0 otherwise. D s

i
and D t

i are the “distinct” measures for the source and tar-
get respectively. When only considering mono-directional
optical flow, the measures are defined as :

Di =

{
||(DoG∗V)i||2

ψ
if wvi > 0.5,

1−wvi otherwise,
(9)

where DoG ∗ V is the convolution of DoG (difference
of Gaussian) and the optical flow vector field. The two
bandwidths of the DoG are 12 and 3. The scale factor ψ

is set to 50. wvi is the confidence of optical flow on the
i-th pixel. To take the optical flow fields of both directions
into account, we use the average value of the two Di
generated by both optical flow fields. The value of α init

i is
clamped to [0,1]. Toggling “distinct” directly changes the
initial mixing weight of gradient mixing, thus changing the
gradient mixing result. This parameter emphasizes motion
that are distinct from their background inside the blending
region. Note that this region usually contains scene objects
that move together or affected by the foreground object,
such as motion blur, shadow, wave, smoke, dust, etc. All
user-defined mixing parameter values for examples of this
paper are shown in Table 1.

After the initial mixing weights and filtered gradients are
determined, we define a cost function for each ai to ensure
feature preservation and smoothness:

C(ai) = ||ai−ainit
i ||2+ (10)

+w1 ∑
j∈Ntem(i)

||ai−a j||2 +w2 ∑
k∈Nspa(i)

||ai−ak||2
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The first term requires that the mixing weights are similar as
the initial mixing weight ainit

i . The second and third terms
are respectively penalize temporal and spatial variations.
Ntem(i) is the set of indices of the motion-compensated
neighbors of the i-th pixel, if the corresponding optical flow
confidence is higher than 0.5. Since we may have up to
four optical flow vectors (source and target in both forward
and backward directions) for each pixel, Ntem(i) contains
at most 4 elements. Nspa(i) is the set of indices of the 4-
connected neighbors of the i-th pixel on a single frame. We
require that the mixing weights ai are all 0 on Γ and 1 on
Γin. The third term effectively drives the mixing weights
to gradually increase from Γ to Γin, which smooths the
motion differences between the source and target inside the
blending region. We set w1 and w2 to 0.5 and 0.3 in all our
results.

Assuming that the coordinate of i-
th pixel on its frame is (x,y), as
illustrated on the right, any Gi =
(Gx

(x,y),G
y
(x,y)) must satisfy the follow-

ing equation to produce conservative
mixed gradients:

Gx
(x,y−1) +Gy

(x,y) = Gy
(x−1,y) +Gx

(x,y) (11)

Substituting Equation (7) into Equation (11), we get a
linear equation involving αx

(x,y−1),α
y
(x,y),α

y
(x−1,y) and αx

(x,y).
Combining these equations for all pixels yields a set of
linear constraints for all ai = (αx

i ,αy
i ). The cost function

in Equation (10) is minimized with this set of linear
constraints, which ensures that the mixing of the gradients
is still conservative. The quadratic programming problem
can be transformed to a large sparse linear system by using
lagrange multipliers. We iteratively solve the system by
successive over-relaxation with relaxation factor ω = 1.8.
In practice, we found that after five iterations, even with
no convergence, the resulting mixing weights already en-
sure the smoothness of gradient mixing. We then replace
the source gradient field in the soft boundary region by
the mixing-gradient field and compute blending using the
composition technique discussed in Section 4.

Figure 8 shows the gradient fields before and after mixing,
the gradient alpha map, and the blending results with and
without gradient mixing. Even in a single frame composi-
tion, gradient blending produces better results than simple
blending. For video blending, it further reduces the motion
artifacts described above (please see the accompanying
video).

5.3 Coherent MVC cloning
As described in Section 4 the final composition on each
frame is achieved using MVC hybrid blending. The trian-
gulation and angle tangents for MVC are calculated using
Γout . Hence, to reduce computation cost we would like Γout
to remain as consistent as possible through frames. After
the trimap is provided on the first frame, the boundaries are
propagated to subsequent frames. The inner boundaries Γin

(a) (b) (c)

(d) (e) (f)

Fig. 8. Gradient mixing example: the red line is the
blending boundary Γ. (a) source gradient. (b) target
gradient. (c) mixing-gradient. (d) gradient alpha map,
illustrated by the norm of alpha vector. (e) composition
result without mixing. Note the evident seam between
the textures in this case. On videos, such seams also
appear when there are motion differences. (f) compo-
sition result using our mixing-gradient field.

are propagated using the Bai et al.’s method [4], which
relies on overlapping local classifiers and local window
propagation. The outer boundaries Γout are sampled and
their correspondence points found on Γin similar to the
method explained in Section 4. Γout are propagated to
subsequent frames by copying the translations of the corre-
sponding points on Γin. Whenever there is a large deviation
from the desired boundary the user can refine it manually
on a specific frame. This affects the propagation to later
frames. Next, we project Γi

out to Γ
i+1
out by a similarity

transformation. If the union of projected boundary and Γ
i+1
out

does not deviate too much (10%) from both boundaries, we
use the union as the new Γout on both frames. In such a
way, Γout will be updated and clustered to several groups
over time. In each group, the only differences of Γout are
within a similarity transformation, and the triangulation and
angle tangents will be computed only once for each group.

To further reduce flickering, we smooth the membrane
value of MVC interpolation at the mesh vertices temporally.
Our membrane may move together with the source object,
which is different from the fixed membrane mentioned
in Farbman 2009 [6]. Therefore, instead of smoothing
temporal neighbors in their paper, we smooth the motion-
compensated neighbors and modify the smoothing weights
of older frames accordingly. The smoothed vertex mem-
brane value at frame i is calculated as follow:

1
W

[mi +2−d(
i−1

∑
j=i−5

(i− j)−0.75(||a||ms
j

i−1

∏
k= j

wvs
k + ||(1,1)−a||mt

j

i−1

∏
k= j

wvt
k)],

where mi is the vertex membrane value before smoothing,
ms

j and mt
j are membrane values of the motion-compensated

neighbors on frame j according to source and target optical
flow respectively. a is the gradient mixing weight. wvs

k and
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wvt
k are the optical flow confidences of the source and target

optical flow respectively on frame k. d is the normalized
distance to boundary Γ. W is the weight sum for all involved
m.

6 INTERACTIVE POSITIONING
Matching a source video object to a target video is challeng-
ing not only because the scale, angle, position and lighting
must match in all frames, but also because the motion along
the frames must be consistent with the target video scene.
Our blending technique could compose source objects to
the background better, since we seamlessly transfer the
shadows and other effects around the transplanted object.
However, it can still appear unrealistic if we cannot position
the object correctly.

We provide interactive positioning to extend the flexibility
of our motion-aware composition framework. There are two
main goals for the operation: first, to better align the motion
of the source and target videos, and more importantly, to
allow fine tuning and editing of the motion of the source
object on the target video. We define the trajectory of
the center of the source object on the target frame as
the object’s motion path. Our user interface system design
combines automatic computation with user interaction to
lower the user’s effort and allow fast update for interactive
feedback while editing. This is achieved by constraining the
possible user edits only to specific points along the object’s
motion path, as well as constraining the magnitude and ori-
entation of velocity changes. These changes are propagated
automatically to other frames, reducing the user’s effort.
Moreover, this prevents unnatural motion artifacts to be
created, as well as allows efficient local updates. Together
with a method to interleave interaction and computation,
we create an interactive-feedback system for easy motion
refinement and editing.

6.1 Motion alignment
To remove shaky camera motion, we first stabilize the
source and target videos according to Zhang et al. 2009
[9]. This helps the subsequent video registration step. Zhang
et al. 2007 [26] performs automatic metric reconstruction
from long video sequences with varying focal length. We
use this method to recover the camera parameters and
remove the camera motion for both source and target
videos. In our case, we remove the moving source object
from the source video to prevent outliers. In our system
the user places (the rotation and scale are also allowed) the
source object on the first frame, and the system calculates
a motion path using alignment automatically. Still, trying
to neutralize the camera motion for all types of complex
video scenes would be impractical. Hence, we allow the
user to correct the position of the object on some frames
manually.

6.2 Motion editing
After automatic alignment and user refinement, good results
could be achieved in terms of video composition. However,

users may still want to speed up, slow down, or change the
trajectory of the object. These innovative effects can hardly
be achieved by simple composition with aligned path, and
we realize them using interactive motion editing.

Allowing arbitrary modification on any point in the object’s
path will break the intrinsic property of the motion path,
which later causes unnatural artifacts. Moreover, each time
the path changes, the boundary optimization (Equation (5))
and gradient mixing (Equation (10)) have to be computed
again. This becomes a bottleneck for interactive update
performance. For our boat example, it only takes 1.04
seconds for MVC hybrid blending, but it takes 6.64 seconds
to optimize Equation (5) and Equation (10) per 100 frames.
Hence, to prevent unnatural motion artifacts, and for more
efficient computation time, we intelligently constrain the
editing of the motion path both to very specific points in
time and to a preset amount.

The key idea is to explore both the motion properties of
the object and the visual feature of the frames to obtain
several control points, which indicate motion keyframes.
Only control points can be edited by the user, and their
modifications (including translation, rotation and scale) can
be propagated to other frames by linear interpolation. These
points are also the optimal points for adjustment. The
motion path is divided into several segments based on two
criteria: (a) the motion in one segment can be approximated
by a uniform motion in a straight line, and (b) the motion
property and visual feature should be stable on the control
points defining the segments.

Motion property is measured by speed, and visual fea-
ture is measured by the color mismatch on the blending
boundary mentioned in Section 5. These two criteria retain
two properties: motions discontinuity at the control point,
and stability of the control point itself. We greedily find
n control points on the motion path by minimizing the
following energy function:

En = µ1

n

∑
i=1

(kti −
kti−1 + kti+1

2
)2 + µ2

n

∑
i=1

−→vti
2 + µ3

n−1

∑
i=1

σ
2
i , (12)

where ti is the frame number of the i-th control point. kti
is the average color mismatch on the blending boundary of
frame ti.

−→vti is the object velocity on frame ti. Both ||−→v || and
k are normalized to [0,1]. σi is the variance of −→v inside the
i-th segment of the motion path with the control points as
the ends of segment. Initially, the motion path only contains
one segment and the first two terms of Equation (12) are
equal to zero whereas the last term is large. We greedily
find the control points until Equation (12) stops decreasing.
We set µ1 = 0.2,µ2 = 0.2 and µ3 = 0.6 in our experiments.

Using the control points we divide the motion into several
segments of approximated uniform motion in a straight
line. If the user edits the control point, these uniform
motions will be preserved to a large extent. In contrast,
if modification is applied on an internal segment point, it
will create a new discontinuity. In addition, we impose local
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modification constrains on the magnitude and orientation
of velocity changes for editing. With these restrictions,
we bound the area where the user could change the path
positions. When the user is editing the k-th control point,
assuming θi,θ

′
i are the old and new orientation of the i-th

point’s velocity, and vi,v′i are its old and new magnitudes,
then the restriction is computed as follows:

∀i∈ [nk−1,nk+1],max(θ ′i −θi)2 < Tθ and max(v′i−vi)2 < Tv

To maintain the perspective continuity of composition
scene, we set Tθ = 30o and Tv = 20 as threshold values
for all our examples. Figure 9 illustrates this control-point-
based motion editing.

Another key advantage of using control points lies in
the ability to apply only local updates and to interleave
interaction with computation time. When the user edits the
path, we do not perform global optimization of Equation (5)
and Equation (10) for the whole sequence. Instead, we
calculate the blending results on segments which were
changed previously but are not being edited. If, due to
previous calculating, the boundary, mixing-gradient and
MVC membrane values are available on the end frames
of these segments, they will become hard constraints in the
optimization. In summary, we interleave computation with
the user’s interaction time to compute the results on other,
non-edited parts. In our experiment, editing one point re-
quires 1-2 seconds, in which we can compute 20-35 frames
based on local optimization. Because of motion stability
of the control points, and because the coherent temporal
restriction mainly utilizes the information of consecutive
frames, we can merge several passes of local optimizations
together to approximate the global optimization.

Compared with 3D Poisson blending, our algorithm allows
interactive video editing both because of lower computation
complexity and because of our control-points optimizations.
While editing one particular frame, the user can see the real-
time result only on this frame via MVC hybrid blending.
The segments that are not calculated, being calculated and
have been calculated are visualized by different colors
(red, yellow and green respectively) on the motion path.
The user can press a “play” button to check the result of
videos using local optimization instantly. The user can also
lock control points to avoid unnecessary re-calculation of

t1

t2 t3

t4

t5

tn

Fig. 9. Interactive motion editing. t1, t2, ...tn are control
points on motion keyframes. The editing of the control
points only affects segments between locked control
points.

decided segments (please see supplementary video for real
examples).

7 EXPERIMENTAL RESULTS
We tested our video composition system on several chal-
lenging examples and demonstrate the results in the paper
and accompanying video. Table 1 shows the gradient mix-
ing parameters for each example. Figure 1(a) shows a slow
motion hummingbird blended onto a stop-motion flower.
The blending trimap of this example is demonstrated in
Figure 10(a). Our blending faithfully preserves the rapid
motion of the wing of the hummingbird and the water-
drops. Figure 1(b) pastes a boat on the sea surface under
sunset. The original source and target sequences contain
severe camera shaking, and the water flow direction is
different. The waves, the reflections, and the flag with
the pole which are challenging to previous methods are
faithfully preserved, while the motion of the boat is natural
due to interactive positioning. Figure 1(c) shows several
planes blended into a cloud scene. Our method preserves
the clouds between and through the planes and smoke
without requiring complicated matting. Its blending trimap
is shown in Figure 10(c). Figure 1(d) shows a spinning
top cloned to a different table. Our method preserves the
shadow and reflection of the spinning top, while adjusting
the texture to match the target table. Figure 1(e) is an
interesting chasing scene which pastes a snow mobile into
a desert scene while chasing some goats. Figure 1(f) pastes
a group of diving people into a fish tank, produce an
interesting montage scene. The swimming fish in the target
video and the bubbles in the source video are both preserved
without sudden disappearances thanks to our temporal
coherent motion-aware blending technique. Figure 1(a) and
(d) demonstrate that our blending method can deal with se-
rious motion blur of source objects, Figure 1(b), (c) and (e)
demonstrate that our method is capable of preserving wave,
smoke and dust effects in video. Our method also provides
more harmonious composition to the target environment.

Performance. All our experiments were performed on a
PC with an i7 920 Quad core CPU, 12 GB RAM. Our
preprocessing includes dense optical flow calculation, video
segmentation for deciding the blending boundary type, and
video stabilization (if necessary). Using our un-optimized
implementation, these three steps usually take 5, 2 and 2
minutes per 100 frames of a VGA video. Then, the user can
interactively draw the blending trimap and set the gradient

Source Target
salient base distinct salient base distinct

bird
√ √ √ √

boat
√ √ √ √

planes
√ √ √

top
√ √ √ √

snow
√ √

dive
√ √ √ √

TABLE 1
The gradient mixing parameters for each example.
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(a)

(b)

(c)

(d)

Fig. 10. The input trimap and blending result. The user interaction strokes are shown in black and white. Please
see the accompanying video for the results.

mixing parameters. The number of needed user strokes for
generating 100 frame trimaps is usually below 10, thanks
for the fact that we don’t need to extract boundary of
the object. Next, the system generates an initial blending
result for each frame with the automatic alignment. With
this initial blending, we also save the vertex and angle
information for the MVC hybrid blending. Then, the user
can begin the interaction for motion alignment refinement
and motion editing.

The computation time and user interaction amount in each
step is shown in Table 2. The interaction time includes the
times for generating trimaps and (optional) motion editing.
The video blending time indicates initial blending time and
blending update time in motion editing. The current frame
blending rate is achieved by utilizing two cores of CPU. Al-
though it is approximately three times slower than original
MVC cloning due to boundary optimization and distances
computation etc., it is still an order of magnitude faster than
solving Poisson equation in hybrid blending (by TAUCS
sparse linear solver). In practice, we restrict the current
frame blending to single thread, and limit its rate to below
24 fps to save the computation power for segment blend-
ing optimization. Since our method uses an approximated
MVC, we also show the RMS differences of the hybrid
blending results. These values indicate that the difference
between the resulting images is unnoticeable. Using per
segment blending optimization produces additional RMS
differences from the global optimization. This could be
distinguishable especially on motion keyframes. However,
as long as temporal coherence is maintained between these
frames, the blending results are still plausible.

Comparison. The supplementary video shows some com-
parisons of our method to alpha blending using alpha matte
generated by Bai et al. 2009 [4], frame-by-frame hybrid
blending, 3D Poisson blending [20] and Xie’s method [21].
Alpha matting results lose many details around the source
object, and the composition is unrealistic due to large
illumination differences. Xie’s method relying on matting
also creates details loss. We further compare the interaction
amount to alpha matting in Table 2. It shows that alpha
matting usually requires 5-10 times more strokes than our
method, even though the obtained alpha mattes on those

examples are still not optimal. The results of frame-by-
frame blending and Xie’s method lack temporal coherency.
The flickering on the boat and the wake is due to temporal
fluctuations of color mismatch, which can be tackled by our
unique blending boundary optimization step. In frame-by-
frame blending and 3D Poisson blending, the inconsistent
motion along the blending boundary reveals very noticeable
seam, this problem is solved by gradient mixing in our
result. Our composition results are not affected by the
artifacts mentioned above, and are also achieved at an
interactive rate.

Limitation. When the blending boundaries of the source
and target video sequences are very inconsistent, i.e. their
appearance and texture always have large differences, our
hybrid blending based method degenerates to video mat-
ting. For example, compositing a white rabbit against a
black wall. However, such cases are unsuitable for blending
in the first place. Inconsistent lighting direction can also
create unnatural blending results. This may be solved by
illumination estimation and relighting. Another limitation
is that our method cannot align video scenes with large
camera rotation differences, since we are missing the 3D
information. Since our positioning is only applied on image
plane, it won’t be able to edit complex motion of the
object like in 3D real world. For example, our editing tool
can’t distinguish whether the snow mobile is jumping up
or moving away from the screen. However, this can be
improved by reconstructing a ground plane of the target
scene and add more degrees of freedom for positioning. Our
method also relies on various computer vision techniques
for pre-processing, and their imperfection could also create
artifacts. For example, although our boat result vastly
outperforms those generated by existing approaches, one
can still notice a blurred region on the deck of the boat,
which is caused by the inaccuracy of optical flow and its
confidence around the thin handrail of the boat. Adopting
more recent and advanced approaches like Liu et al. 2011
[27] may improve the results.

In general, not every pair of video sequences is suitable for
composition. Large illumination differences, inconsistent
background environments and various motions from source
object, camera, and background could all prevent good
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frame number average cloned preprocessing interaction trimap matting video blending current frame MVC
& frame size pixels per frame time(s) time(s) strokes strokes time(s) blending rate RMS

bird 115×1280×720 284,316 814 82 22 98 12.55 37 0.042
boat 91×1280×720 182,405 855 127 7 43 6.64 88 0.037

planes 106×1440×1080 101,346 1,274 104 5 27 4.10 137 0.024
top 82×330×300 37,762 65 25 4 39 0.93 211 0.018

snow 94×1280×720 220,818 902 93 8 137 9.56 49 0.029
dive 297×1008×566 29,484 2,512 155 26 158 2.81 235 0.025

TABLE 2
Performance statistics for video composition results.

composition results. In fact, an added value of our approach
is that we are able to give an approximate evaluation
of the composition quality by checking the consistency
in different steps. For example, using hybrid blending,
we can calculate the composition cost, and after source
object positioning, the motion consistency could be easily
derived. The accumulated score can suggest if the two video
sequences can, in fact, be composed successfully.

8 CONCLUSION

We presented a novel video blending approach that tackles
key challenges in video composition: complex object blend-
ing (smoke, water, dust) and motion differences. Using a
user provided blending trimaps of the source video, we
create consistent blending boundaries over time. Then, we
mix the gradients of the source and target videos inside
the blending region. Our blending is based on an efficient
implementation of mean-value coordinates interpolation
instead of the traditional Poisson methods. We also provide
a user interface to position source objects and refine the
results. All these enable us to efficiently deal with complex
video sequences beyond the capability of current solutions.

Our current implementation cannot generate the global
optimized video composition result in realtime, a possible
solution is to use KD-tree to accelerate the boundary
optimization and gradient mixing. It is also interesting
to extend the method to more challenging results. For
example, source objects that are moving towards or away
from the camera rather than primarily on a plane perpendic-
ular to the camera. This would require more sophisticated
user control to be developed. To more faithfully recover
the appearance of the source objects in the target video,
better illumination estimation could also provide guidance
for gradient domain blending. Lastly, our user interface is
still limited in versatility and accessibility, and it could be
improved by modern video editing techniques like Chen et
al. 2011 [28].
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