
Visual Storylines: Semantic Visualization of Movie Sequence

Tao Chen1, Ai-Dong Lu2, Shi-Min Hu1

1TNList, Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China

2Department of Computer Science, University of North Carolina at Charlotte, USA

Abstract

This paper presents a video summarization approach that automatically extracts and visualizes movie storylines in a static image
for the purposes of efficient representation and quick overview. A new type of video visualization, Visual Storylines, is designed
to summarize video storylines in a succinct visual format while preserving the elegance of original videos. This is achieved with
a series of video analysis, image synthesis, relationship quantification and geometric layout optimization techniques. Specifically,
we analyze video contents and quantify video story unit relationships automatically through clustering video shots according to
both visual and audio data. A multi-level storyline visualization method then organizes and synthesizes a suitable amount of
representative information, including both locations and interested objects and characters, with the assistants of special visual
languages, according to the relationships between video story units and temporal structure of the video sequence. Several results
have demonstrated that our approach is able to abstract the storylines of professionally edited video such as commercial movies and
TV series. Preliminary user studies have been performed to evaluate our approach and the results show that our approach can be
used to assist viewers to grasp video contents efficiently, especially when they are familiar with the context of the video, or a text
synopsis is provided.

Keywords: Video Summarization, Video Visualization, Geometric Layout.

1. Introduction1

In recent years, both the quality and quantity of digital videos2

have been increasing impressively with the development of vi-3

sual media technology. A vast amount of movies, TV programs4

and home videos are being produced every year for various en-5

tertainment or education purposes. Under such circumstances,6

video summarization techniques are desperately required for7

the video digestion and filtering process by providing viewers8

an efficient tool to understand video storylines without watch-9

ing the entire video sequence.10

Currently, existing video summarization methods mainly fo-11

cus on news programs or home videos, which usually contain12

simple spatiotemporal structures and straightforward storylines.13

Those methods cannot successfully handle professionally edit-14

ed movies and TV programs, where directors tend to use more15

sophisticated screen techniques. For example, a movie may16

have two or several storylines alternately depicted in an irregu-17

lar sequence. Also, technically, many existing methods summa-18

rize a video sequence with collections of key frames or regions19

of interest (ROIs) without high-level information such as loca-20

tion and occurrence. We believe that these information should21

be carefully embedded in the video analysis and summarization22

process.23

Our goal is to present a visually pleasing and informative24

way to summarize the storylines of a movie sequence in one25

static image. There are many advantages of using a still image26

to summarize a video sequence [1, 2, 3, 4, 5], since an image27

is generally much smaller and easier for viewers to understand.28

The methods that use still images to visualize video clips can29

be classified into two types according to their applications. One30

is to visualize a short video clip, mainly focus on one or two31

characters and their spatial motion, e.g. [6, 7]; the other is to32

visualize a related longer video clip that is capable of telling a33

semantic story, e.g. [1, 2, 3, 5]. Our method belongs to the34

later. A common problem for this type of methods is that due to35

the highly compact form and losses of information (e.g. audio,36

text and motion), it’s nearly impossible for viewers to extrac-37

t the underlining stories without being aware of the context of38

the video or appropriate text descriptions. Even with this infor-39

mation provided, using previous methods is still very hard to40

recover the sophisticated storylines since they are lack of anal-41

ysis of scene relations. We believe that by properly considering42

vision and audio features and carefully designing visualization43

form, such a semantically difficult problem can be tackled for a44

good many of professionally edited movies and TV programs.45

In this paper, we present a new Visual Storylines method to46

assist viewers to understand important video contents by reveal-47

ing essential information of video story units and their relation-48

ships. Our approach can produce a concise and visually pleas-49

ing representation of video sequences, which highlights most50

important video contents and preserves the balance coverage51

of original sequences. Accompanying the original text descrip-52

tion of videos (plots), these results assist viewers to understand53

video topics and select their desired ones without watching all54
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of them. Specifically, we first present an automatic video analy-55

sis method to extract video storylines by clustering video shot-56

s according to both visual and audio data. We also design a57

multi-level visual storyline method to visualize both abstract58

story relationships and important video segments. We have de-59

signed and performed preliminary user studies to evaluate our60

approach and collected very encouraging results.61

The main contribution of our approach is a series of automat-62

ic video analysis, image synthesis, and relationship quantifica-63

tion and visualization methods. We have seamlessly integrated64

techniques from different fields to produce an highly compact65

summary of video storylines. Both the results and evaluation66

demonstrate that our approach exceeds previous methods by67

highlighting important video contents and storylines from pro-68

fessionally edited movies and TV programs.69

The remainder of this paper is organized as follows. We first70

summarize related video summarization, analysis and represen-71

tation approaches in Section 2. Section 3 presents our automat-72

ic approach to analyzing video structures and extracting story-73

lines. Section 4 describes our multi-level storyline visualization74

method that significantly enriches abstract storylines through a75

series of video analysis and image synthesis methods. We de-76

scribe and discuss our user studies to evaluate our approach and77

provide experimental results in Section 5. Finally, Section 678

concludes the paper.79

2. Related Work80

Our work is closely related to video summarization, which81

has been an important research topic in the fields of Computer82

Vision, Multimedia and Graphics. Video summarization ap-83

proaches often focus on content summarization [8]. A good84

survey of both dynamic and static video summarization meth-85

ods has been provided by Huet and Merialdo [9]; in which they86

also presented a generic summarization approach using Max-87

imum Recollection Principle. Very recently, Correa et al. [6]88

proposed dynamic video narratives, which depicted motions of89

one or several actors over time. Barnes et al. [10] present-90

ed Video Tapestries which summarized video in the form of a91

multiscale image, where users can interactively view the sum-92

marization of different scales with continuous temporal zoom.93

These two methods represent state-of-the-art of dynamic sum-94

marization.95

In this paper we concentrate on approaches of static visual96

representations, which require synthesis of image segments ex-97

tracted from a video sequence. For example, the video booklet98

system [1] proposed by Hua et al. selected a set of thumbnails99

from original video and printed them out on a predefined set of100

templates. Although this approach achieved a variety of form-101

s, the layout of predefined booklet templates was usually not102

compact. Stained-glass visualization [2] was another kind of103

highly condensed video summary technique, in which selected104

key-frames with an interesting area were packed and visual-105

ized using irregular shapes like a stained-glass. Different from106

this approach, this paper synthesizes images and information107

collected from video sequences to produce smooth transitions108

between images or image ROIs. Yeung et al. presented a pic-109

torial summary of video content [3] by arranging video posters110

in a timeline, which summarized the dramatic incident in each111

story unit. Ma and Zhang [4] presented a video snapshot ap-112

proach that not only analyzed the video structure for represen-113

tative images, but also used visualization techniques to provide114

an efficient pictorial summary of video. These two approaches115

showed that key frame based representative images were insuf-116

ficient to recover important relations in a storyline. Among all117

forms of video representations, Video Collage [5] was the first118

to give a seamlessly integrated result. Different from their tech-119

nique, our approach reveals the information of locations and120

relations between interested objects and preserves important s-121

torylines.122

This paper is also related to the analysis of video scene struc-123

ture and detection of visual attention. For example, Rui et124

al. [11] and Yeung et al. [12] both presented methods to group125

video shots and used finite state machine to incorporate audio126

cues for scene change detection. Since these approaches are127

either bottom-up or top-down, they are difficult to achieve the128

global optimization result. Ngo et al. [13] solved this problem129

by adopting normalized cut on a graph model of video shots.130

Our work improves their method by counting on audio simi-131

larity between shots. Zhai and Shah [14] provided a method132

for visual attention detection using both spatial and temporal133

cues. Daniel and Chen [15] visualized video sequences with134

volume visualization techniques. Goldman et al. [7] presented135

a schematic storyboard for visualizing a short video sequence136

and provided a variety of visual languages to describe motions137

in the video shot. Although this method was not suitable for138

exploring relations of scenes in a long video sequence, their139

definition of visual languages inspires our work.140

Our Visual Storylines approach first clusters video shots ac-141

cording to both visual and audio data to form semantic video142

segments which we call sub-stories. The storylines are revealed143

by their similarities. Next, it calculates and selects the most im-144

portant background, foreground and character information to145

composite sub-story presenters. A multi-level storyline visual-146

ization method that optimizes information layout is designed to147

visualize both abstract story relationships and important video148

segments. The details are introduced in the following two sec-149

tions.150

3. Automatic Storyline Extraction151

It is necessary to extract the storylines from a video sequence152

before generating any type of video summaries. Automatic ap-153

proaches are desirable, especially for tasks like video preview-154

ing where no user interaction is allowed. We achieve an auto-155

matic storyline extraction method through segmenting a video156

into multiple sets of shot sequences and measuring their rela-157

tionships. Our approach considers both visual and audio fea-158

tures to achieve a meaningful storyline extraction.159

Our storyline is defined as important paths in a weighted160

undirected graph of sub-stories (video segments). To gener-161

ate a meaningful storyline, it is crucial to segment a video into162

a suitable number of video segments, which are sets of video163
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shots. A shot is a continuous strip of motion picture film that164

runs for an uninterrupted period of time. Since shots are gen-165

erally filmed with a single camera, a long video sequence may166

contain a large number of short video shots. These video shot-167

s can assist us to understand video contents; however, they do168

not reflect the semantic segmentation of original videos well.169

Therefore, they should be clustered as meaningful segments,170

which are called video events.171

Automatic shot clustering is a very challenging problem [11,172

12, 13], as in many movie sequences, several characters talk al-173

ternatively under similar scenes or scenes may change greatly174

while a character is giving a speech. Previously, Rui et al. [11]175

and Yeung et al. [12] presented methods to group video shots176

by using thresholds to decide whether a shot should belong to177

an existing group. Since a single threshold is usually not ro-178

bust enough for a whole sequence, these approaches may lead179

to over segmentation. Ngo et al. [13] used normalized cut to180

cluster the shots. In their work, the similarities between shots181

contain the color and temporal information. However, none of182

the existing approaches are robust for movie sequences.183

We believe that combining both visual and audio features184

of a video sequence can improve the results of shot cluster-185

ing, leading to more meaningful segmentations for visual sto-186

rylines. Figure 1 illustrates our video shot clustering algorithm,187

where we integrate several important video features to cluster188

video shots and calculate their relations. Although audio fea-189

tures have been utilized in video analysis [16, 17, 18], we are190

the first to use it as features for graph modeling of video shot191

clustering.192

video

shot clustering by
spatial features

temporal features
audio features

relations between clusters

shots

clusters

shot boundary detection

Figure 1: Our video shot clustering algorithm combines both visual and audio
features to generate a meaningful storyline.

Specifically, our shot clustering algorithm integrates the fol-193

lowing visual and audio features: shot color similarity, shot au-194

dio similarity, and temporal attraction between shots. Shots are195

obtained using the approach proposed in [19], which can han-196

dle complex scene transitions, such as hard cut, fade and dis-197

solve. The color similarity and temporal attraction is defined198

the same way as in [11], and the shot audio similarity is defined199

as an MFCC feature distance[20]. The Mel-frequency cepstral200

coefficients (MFCC) derived from a signal of short audio clip201

approximate the human auditory system’s response more close-202

ly than the linearly-spaced frequency bands used in the normal203

cepstrum. It can be used as a good audio similarity measure204

for speaker diarisation. For each shot, we calculate the mean205

vector and covariance matrix of all the MFCC feature vectors206

in the shot, the audio similarity of two shot is then defined as207

one minus the Mahalanobis distance between the shots.208

Thus, we define the overall similarity between two shots x209

and y as:210

S htS imx,y = Attrx,y × (WC ∗ S imCx,y + WA ∗ S imAx,y)211

where Attrx,y is temporal attraction between shots, WC and212

WA are the weights for color and audio measures S imCx,y and213

S imAx,y. Since we have the observation that larger similarity is214

more reliable, we define the weights as follows:215

WC =
ωc

ωc + ωa
, WA =

ωa

ωc + ωa
,216

where217

ωc(x, y) =

{
eλc(x,y) if S imCx,y > µc + σc

2
e−1 otherwise ,218

ωa(x, y) =

{
eλa(x,y) if S imAx,y > µa + σa

2
e−1 otherwise ,219

λc(x, y) = −
(1 − S imCx,y)2

(1 − µc −
σc
2 )2 ,220

λa(x, y) = −
(1 − S imAx,y)2

(1 − µa −
σa
2 )2 .221

µc and σc are the mean and variance of color similarities, µa222

and σa are the mean and variance of audio similarities.223

After calculating pairwise similarities, we build weighted224

undirected graph and adopt normalized cut to cluster the shots.225

An adaptive threshold is used for termination of recursively par-226

tition as in [13]. The incorporation of audio features improves227

the clustering result. For example, when cluster the movie228

sequence in Figure 5(a), the second sub-story (represented in229

the upright corner of the result image) has an outdoor/indoor230

change, using similarity defined in [13] will improperly parti-231

tion it to two cluster due to the large appearance change, but232

since the same character gives speech, the audio similarity is233

relatively large. Therefore, it gives a more semantic clustering234

by our similarity measure.235

We use each cluster to represent a sub-story. We denote clus-236

ters as S = {S ub− story1, S ub− story2, ..., S ub− storym}. Those237

sub-stories are usually not independent to each other, especial-238

ly in professionally edited movies. Some sub-stories may be239

strongly related although they are not adjacent. For example,240

some movies often contain more than one story thread and dif-241

ferent sub-stories occurred at different locations synchronously.242

To demonstrate this, filmmakers may cut two stories to multiple243

sub-stories and depict them alternately. To capture this impor-244

tant information, we calculate the relations between two sub-245

stories. They are defined as follows:246

ERi, j = WC ∗ Avgx∈Ei,y∈E j S imCx,y

+WA ∗ Avgx∈Ei,y∈E j S imAx,y
247
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To handle the situation that some shots are mis-clustered, we248

empirical throw first and last 5 shots in a sub-story when calcu-249

lating the average above. We further check all the shot cluster-250

ing results generated in our paper. The video events with larger251

similarity values are viewed as being more related. We will in-252

tegrate the relation information during the generation process253

of visual storylines in Section 4.254

In all five video sequences, we manually labeled 43 story255

cuts, the shot clustering with audio similarity provided 33 cor-256

rect story cuts, while it reduced to 21 without audio similarity257

(”correct” means a story cut is detected within a distance of 5258

shots from ground truth). This proves the use of audio similari-259

ty greatly increases the accuracy of shot clustering.260

4. Generation of Visual Storylines261

With the extracted storylines, we further visualize a movie262

sequence in a new type of static visualization. This is achieved263

with a multi-level visual storyline approach, which selects and264

synthesizes important story segments according to their rela-265

tionships in a storyline. Our approach also integrates image266

and information synthesis techniques to produce both semantic267

and visual appealing results.268

Previously, static summarization of a video is usually269

achieved by finding a keyframe from the sequence [3, 1, 4] or270

a ROI (region of interest) from the keyframe [2, 5]. Obvious-271

ly, one single keyframe or ROI is insufficient to represent many272

important information of a story, such as time, location, charac-273

ters and occurrence. Simply “stacking” all the images together,274

like “VideoCollage”, is still not enough to reveal a storyline or275

roles of different characters due to lack of relationships and em-276

phasis.277

Our design of the visual storyline approach is based on the278

observation that complicated stories are usually consists of mul-279

tiple simple stories; while simple stories are only involved of280

several key factors, such as characters and locations. General-281

ly, while commercial movies contain multiple sub-stories, the282

major storylines are rather straightforward. Therefore, we can283

design a visual storyline as an automatic poster to visualize var-284

ious movies.285

For handling complicated storylines, such as commercial286

movies, a multi-level approach is necessary to visualize vari-287

ous movies because of the following reasons.288

• First, since one still visualization can only provide a lim-289

ited amount of information, we need to control the details290

of visual storylines, so that they are presented at a suitable291

scale for viewers to observe.292

• Second, it is important to describe major events and main293

characters instead of details that are only relevant to some294

short sub-stories. Therefore, we always need to include295

the top levels of storylines and generate visual summaries296

at different scales.297

We have developed several methods to synthesize image and298

information collected from a video sequence. The following299

first introduces how to extract essential image segments by se-300

lecting background and foreground key elements, then describe301

our design of sub-story presenter, storyline layout and storyline302

visualization.303

4.1. Background Image Selection304

This step aims to find a frame which can best describe the lo-305

cation (or background) of a sub-story. Typically, it should be an306

image with the largest scene in the video sequence. Although307

detecting the scale from a single image is still a very hard308

problem in the areas of computer vision and machine learning,309

we can simplify this problem according to several assumptions310

summarized based on our observations:311

Shots containing scenes of larger scales usually have smoother312

temporal and spatial optical flow fields. This is because these313

background scenes are usually demonstrated by static or slow314

moving cameras. In this case, if the optical flow fields indi-315

cate a zooming-in or zooming-out transition, the first or the316

last frame should be selected respectively since they represent317

scenes of largest scale.318

We can remove the frames with good respondence to face de-319

tection to avoid the violation of characters’ feature shots, as320

they are not likely to be background scene.321

Very often, a shot containing this kind of frames appears at the322

beginning of the video sequence which is called establishing323

shot. The establishing shots mostly happen within first three324

shots of a sub-story.325

Therefore, we can detect the image with the largest scale au-326

tomatically using additional information collected from a video327

sequence. We run a dense optical flow calculation [21] and328

face detection algorithms [22] through the video sequence and329

discard shots with stable face detection respondence. The re-330

maining shots are sorted in the ascending order of optical flow331

discontinuity defined as follow.332

Optical flow discontinuity for S hoti from a video event (i is333

shot index in the video event):334

Discont(i) =
1

numFrmi
∗

numFrmi−1∑
j=1

(DscS j + DscT j)335

Here, numFrmi is the frame number of S hoti, DscS j is spatial336

optical flow discontinuity of frame j, and DscT j is temporal337

optical flow discontinuity between frame j and j+1. They are338

measured the same way as in [21].339

After sorting by this discontinuity value, a proper frame from340

each of the top ten shots is selected (due to zooming order) as341

the background candidate of a video sequence. To achieve this,342

we run a camera zoom detection for the shot according to [23],343

and choose the frame with smallest zoom value. We sequential-344

ly check the selected ten frames, if any of them belongs to the345

first three (in temporal) shots of the video sequence, it will be346

chosen as the background image of sub-story, as it has a large347

chance to be the establishing shot. Otherwise we just choose the348

one ranks first. A selected background image is demonstrated349

in the top-left corner of Figure 2.350
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4.2. Foreground ROIs Selection351

There are three kinds of objects that are good candidates of352

foreground regions of interest (ROIs) for drawing visual atten-353

tions:354

Character faces. Characters often play major roles in many355

commercial movies, where more than half of the frames con-356

taining human characters.357

Objects with different motion from the background often draw358

temporal attentions.359

Objects with high contrast to the background often draw spa-360

tial attentions.361

Therefore, we propose a method that integrates the detection362

algorithms of human faces and spatiotemporal attentions. We363

reuse the per frame face detection result from Section 4.1 and364

only preserve those stably detected in temporal space (detected365

in continuous 5 frames). Then, we define a face-aware spa-366

tiotemporal saliency map for each frame as:367

S al(I) = κT × S alT (I) + κS × S alS (I) + κF × S alF(I),368

Here, the spatiotemporal terms are exactly the same as in [14],369

though more advanced approach such as [24] could also be370

used. We add the face detection result to the saliency map with371

the last factor. Specifically, for pixels falling in the detected372

face regions, we set its saliency value S alF(I) as 1, or zero oth-373

erwise. κF is the weight for S alF(I). Whitout violating the dy-374

namic model fusion (which means the weights are dynamically375

changed with the statistic value of S alT (I)), we set κF = κS .376

Next, we automatically select ROIs for each video sequence.377

To prevent duplicate object selection, we restrict that only one378

frame can be used for ROI selection in each shot. This frame379

is the one with the largest saliency value in the shot. Then for380

a new selected ROI, we check the difference between its local381

histogram and those of existed ROIs. If it is smaller than a382

threshold (0.1 Chi-square distance), only the one with the larger383

saliency value will be preserved. Those ROIs are then sorted by384

their saliency value per pixel. Different kinds of selected ROIs385

are demonstrated in Figure 2.386

4.3. Sub-story Presenter387

We design a method to generate a static poster for present-388

ing simple sub-stories. Our approach is inspired by popular389

commercial movie posters, which usually have a large stylized390

background and featured character portraits, along with multi-391

ple (relative smaller) most representative film shots. This lay-392

ered representation not only induces the user to focus on the393

most important information, but also provides state-of-the-art394

visual appearance.395

Our sub-story presenter contains at least four layers. The396

bottom layer is the background image frame extracted in sec-397

tion 4.1. The layer next to bottom contains ROIs with no face398

detected, while other layers are composed of other ROIs ex-399

tracted in section 4.2. The higher layer contains ROIs with400

higher order, i.e. higher saliency values. We use a greedy algo-401

rithm to calculate the layout, as illustrated in Figure 2.402

We start from the bottom layer, i.e. the background image.403

We initialize the global saliency map with the saliency map of404

background image. Then we add each layer overlapping on the405

presenter from the lowest layer to the top layer. For each layer,406

we add ROIs from the one with the highest saliency value to407

the lowest. For each ROI, we first resize it according to its408

saliency degree, then search for a position that minimizes the409

global saliency value of the presenter covered by the ROI. After410

adding a new ROI, global saliency map is updated by replacing411

covered region’s saliency with newly added ROI’s.412

In this progress, we use a threshold ϕ, which we called level413

of detail controller, to control the amount of presented ROIs.414

That means, when adding a new ROI, every objects in the p-415

resenter (including background image) must preserve at least ϕ416

portion of its original saliency value in the global saliency map417

(detected face region has the exception that it should never be418

covered, to prevent half face). When this is violated, the ROI419

with least saliency will be removed from the presenter, and re-420

calculate the layout. With this ”LOD” control, when the video421

sequence we represented becomes more complicated, we can422

ensure each presented part still provides sufficient information.423

After adding each layer, we use graph cut to solve labeling424

problem followed by α-poisson image blending [25]. To em-425

phasize the importance of foreground objects, we stylize each426

layer as shown in Figure 2. We compute the average hue value427

of background image, use this value to tint each layer, and low-428

er layers will be tinted by larger proportions. Figure 3 shows six429

basic event presenters synthesized by our approach. They are430

able to represent most important information of the video even-431

t such as locations, characters, and also preserve the original432

video style.433

4.4. Storyline Geometric Layout434

Now the remaining problem is how to arrange sub-story pre-435

senters on the final visual storylines to reveal their relationships.436

We prefer to preserve the style of movie posters, so that visual437

storylines are intuitive for general users to understand. Here,438

we present an automatic algorithm of storyline geometric lay-439

out through utilizing all the extracted information from video440

analysis.441

Given n sub-story presenters {R1,R2, ...,Rn} for n sub-stories442

and their relations, and a canvas of size l ×m, we first resize all443

the sub-story presenters:444

size(Ri) = max(0.25,
L(Ri)
Lmax

) ×
l ∗ m
1.5n

,445

where L(Ri) is the length (in frame) of the S ub − storyi, Lmax is446

the maximal duration of all the sub-stories. Let (xi, yi) denotes447

the shift vector of the sub-story presenters Ri on canvas, then448

we minimize the following energy function:449

E = Eovl + wsal ∗ Esal + wrela ∗ Erela + wtime ∗ Etime,450

overlay term Eovl = −Aovl is the negative of the overlay area of451

all the basic event presenters on the canvas; Saliency cost Esal452

5



Figure 2: Synthesis progress of the sub-story presenter.

Figure 3: Storyline geometric layout. The right figure is a synthesized visual storyline for a video sequence of 30 min, which is clustered to 10 sub-stories. For
limited spaces, the figures on the left show six sub-story presenters.

is negative saliency value of composed saliency map; Relation453

term is defined as:454

Erela =

n∑
i=0

i+3∑
j=i+1

(Dist(i, j) −

√
lm(ERmax − ERi, j)
ERmax − ERmin

)2,455

where ERi, j, ERmax and ERmin are relationships measured be-456

tween S ub− storyi and S ub− story j, maximal relationship and457

minimal relationship respectively. Dist(i, j) is the distance be-458

tween the centers of two basic event presenters. This term at-459

tempts to position sub-story presenters with larger relation clos-460

er to each other in x coordinate; Temporal order term is defined461

as:462

Etime =

n−1∑
i=0

δi463

where464

δi =

{
0 if yi + ε < yi+1 < yi + hi − ε
1 otherwise465

hi is the height of resized Ri, and ε = 30. This term attempts to466

position sub-story presenters with respect to temporal order in467

y coordinate while preserve some overlapping. We set wsal =468

0.15, wrela = 0.1, wtime = 0.1.469

Minimize the energy function above will maximize the over-470

lay area of all basic event presenters which visualize temporal471

order in y coordinate and visualize relations in x coordinate.472

We use a heuristic approach to solve this layout. We start from473

the first sub-story presenter, when each new presenter is put in,474

the algorithm calculates its position that minimize the current475

energy function. As this method can not ensure that all pixels476

are covered, we can choose those obsoleted ROIs from adjacent477

basic event presenters to fill the hole. An alternative is to adopt478

the layout optimization method described [26] in Overlapped479

region will be labeled by graph cut and α-poisson image blend-480

ing. Since overlapping may cause the violation of LOD control,481

it is necessary to recalculate the layout for sub-story presenters.482

Figure 3 shows the events layout and the LOD control effect. It483

shows when the represented video sequence becomes compli-484

cated, our results will not be cluttered as other methods while485
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still provide essential video information.486

4.5. Storyline Visualization487

The final visual storylines are enriched with a sequence of488

arrow shapes to represent key storylines. This is achieved by489

building a storyline graph, which uses video sub-stories as n-490

odes. For two adjacent video sub-stories in the visual storylines,491

if the relationship between them is larger than a threshold, we492

add an edge in between. After traversing all the nodes, cir-493

cles will be cut off at the edge between two nodes with largest494

temporal distance. Then, each branch in this acyclic graph rep-495

resents a story line. We add an arrow around the intersection496

location between any two connected sub-story presenters with497

the restriction that no ROI is covered. The directions of arrows498

illustrating the same storyline are calculated according to a B-499

spline, which is generated by connecting all the arrow centers500

and saliency-weighted centers of involved sub-story presenters501

on this storyline. This can produce a most smooth and natu-502

ral illustration from the storyline. The arrow bottom is reduced503

to disappear among the previous event to emphasize the direc-504

tion of storylines. Different storylines are distinguished by the505

colors of arrows.506

Figure 4: A failed case of our system when representing 25 minutes video
sequence from the commercial movie Lock, Stock, and Two Smoking Barrels.
User studies show this summary can’t reveal the true storylines of the movie
sequence.

5. Experiments and Evaluations507

5.1. Experimental Results508

Figure 5 shows example results of visual storylines. Their509

computation times on a Core 2 Duo 2.0Ghz machine and LOD510

thresholds (ϕ) are shown in Table 1.511

The video sequence used in Figure 5(a) is a classic movie512

clip that features two scenes (different locations and characters)513

alternately. Our approach successfully extracts the two story-514

lines. Note that the movie title in the result is a manually added515

ROI, which replaces the correspondence part in Figure 3.516

Video clip Length Time cost ϕ

Fig.5(a): StarWars 30min 125min 40%
Fig.5(b): Lost 20min 80min 60%
Fig.5(c): Heroes 22min 90min 70%
Fig.5(d): Crazy 15min 62min 40%

Table 1: Computation times for each representation result.

Figure 5(b) and (c) visualize two fast-paced TV programs.517

They both have multiple storylines progressed together, which518

is a popular technique in modern TV-series. Our approach ex-519

tracts the main storylines for each program. Although one sto-520

ryline (threaded by the pink arrows) in (c) has merged two se-521

mantic scenes together due to the very similar scene presences,522

our later user studies show that viewers can still understand the523

plot with our visual stories. Note user can adjust LOD threshold524

ϕ to generate multi-level results. The multi-level visual story-525

lines generated by different thresholds for Figure 5(b) and (c)526

are demonstrated in the supplementary file.527

Figure 5(d) visualizes a movie clip that alternately features528

two groups of characters, which finally meet each other. Our529

visual storylines reveal this important feature with two merging530

storylines.531

In summary, our approach of visual storylines is suitable for532

visualizing the movie scenes with salient appearance attribute,533

like desert, meadow, sky and other outdoor scenes, or indoor534

scenes with artistic stylized illumination. The changes of char-535

acters may also help the system distinguishing different scenes.536

One failed case is shown in Figure 4. Commercial movie537

Lock, Stock, and Two Smoking Barrels is famous for its fast538

scene changes and techniques of expressing multiple storylines.539

In this movie, most scenes in those different storylines are in-540

door scenes with indistinguishable color models. What’s more,541

character groups in different scenes have complex interaction542

with each other. Therefore, our approach cannot extract cor-543

rect storylines. The extracted storylines are with respect to the544

temporal order of the sub-story presenter.545

5.2. User Studies and Discussion546

We have designed three user studies to evaluate our approach.547

The first user study is designed to check the aesthetic measure548

and representative measure comparing with other methods.549

Twenty subjects are invited for this user study, including550

fourteen graduate students and six undergraduate students (ma-551

joring in computer science, architecture and art) who are un-552

aware of our system. Four kinds of video summaries (Book-553

let, Pictorial, Video Collage and Visual Storylines) are created554

for sequences shown in Figure 5. After watching the video se-555

quences, users have been asked to answer the following ques-556

tions with scale 1 (definitely no) to 5 (definitely yes), as used557

in [25, 5]. Here we list our questions and provide the average s-558

cores and standard deviances for each method after their names.559

• Are you satisfied with this summary in general?560

Visual Storylines(4.10, 0.62), Video Collage(3.50, 0.67),561

Pictorial(2.30, 0.90), Booklet(2.45, 0.97)562
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• Do you believe that this result can represent the whole563

video sequence?564

Visual Storylines(4.20, 0.68), Video Collage(3.65, 0.65),565

Pictorial(3.30, 0.64), Booklet(3.15, 0.57)566

• Do you believe this presentation is compact?567

Visual Storylines(4.00, 0.71), Video Collage(3.90, 0.70),568

Pictorial(2.60, 0.49), Booklet(2.35, 0.57)569

• Would you like to use this result as a poster of the video?570

Visual Storylines(4.65, 0.48), Video Collage(3.70, 0.71),571

Pictorial(1.4), Booklet(3.1)572

• Do you believe that this presentation produces the correct573

storylines?574

Visual Storylines(4.85, 0.36), Video Collage(2.25, 0.70),575

Pictorial(2.5, 0.74), Booklet(1.75, 0.83)576

The results demonstrate that our approach achieves the high-577

est scores in all the categories; therefore, it is the most repre-578

sentative and visual appealing summary among these four ap-579

proaches. This also shows that Visual Storylines is the only580

approach that extracts and visualizes video storylines.581

The other two user studies are designed to evaluate if our582

results can help user quickly grasp major storylines without583

watching a video. Note that it’s generally very difficult for584

someone to understand the semantic storylines of a movie or585

TV program from a single image without knowing any contexts.586

In the second user study, subjects are asked to watch some video587

clips related to the test video. Specifically, fifteen more subject-588

s are invited and confirmed that they have not seen any of the589

movies or TV programs appeared in Figure 4 and Figure 5 be-590

fore. Ten of them are assigned to “test group”, the other five591

were assigned to “evaluation group”. We showed the test group592

the five movies/TV programs used in our paper but skipped the593

parts that used to generate the video summaries. The evaluation594

group was allowed to watch the full movies or TV program-595

s. Then in the test group, half of the subjects were provided596

with five summaries generated by our method, while the other597

half were provided with five summaries generated by “Video598

Collage” (since it’s most competitive in the first user study).599

Then these ten subjects were asked to write text summaries for600

the five video clips they missed. These text summaries were601

shown to the evaluation group, and evaluated from 1 (very bad602

summaries) to 5 (very good summaries). The average score for603

each video by different methods is shown in Table 2.604

In the third user study, we invited ten more subjects. They605

were asked to read text synopsis for the five videos tested in our606

paper. They were also provided with the summaries (Visual S-607

torylines for half, Video Collage for the other half). Then they608

were asked to circle the corresponding regions in the summaries609

for some previously marked keywords in the synopsis, which610

included locations, objects and character names. We manually611

checked the correctly circled regions and list the result in Ta-612

ble 2.613

Table 2 shows when viewers know the context of the video,614

for example the main characters and their relationship, the pre-615

ceding and succeeding stories, they can easily understand the616

stories with our visual storylines. It also shows viewers can617

quickly establish correct connections between the text synopsis618

and our summaries. Note the two statistic results of Lock, S-619

tock, and Two Smoking Barrels are lower than 3 and lower than620

60%.621

The user studies reveal two potential applications for our ap-622

proach. First, if a viewer misses an Episode of TV show or a623

part of the movie, visual storylines can be synthesized to help624

the viewer quickly to grasp the missing information. Second,625

when providing our result together with the text synopsis of the626

video, viewers get a visual impression of the story described627

in the synopsis. Therefore, our automatically generated results628

can be easily integrated into the TV guide newspapers, movie629

review magazines and movie websites as illustration of the text630

synopsis.631

Except the comparison with the methods of generating static632

summarization for long video sequence, we’d also like to dis-633

cuss and compare with those state-of-the-art video summariza-634

tion methods. As [6, 7] mainly focus on one or two characters635

and their spatial motion, their summarization is very suitable636

for visualizing one or several shots. On the other hand, they637

can’t deal with long video sequences like our method. How-638

ever, if we incorporate their static representations of character639

motion into our sub-story representation, the visual storylines640

can be more compact and less visually repetitive. The Video641

Tapestries [10] provides similar static summarization form to642

ours except their shot layout is purely sequential. But when the643

multiscale summarization is interactively viewed by the user, it644

can provide more information than our method. However, our645

static result is more suitable for traditional paper media.646

Here, we discuss some limitations of our approach and possi-647

ble improvements. As the failure case indicated, our approach648

generates limited result for indistinguishable scenes. In addi-649

tion, as it selects important candidates according to low level650

features such as visual saliency and frequency, the visualization651

may still miss crucial semantic information. For example, the652

coffin, which plays an important role in the result collage of653

Lost sequence is barely recognizable. Another issue about our654

approach is that even with LOD control, our result may still suf-655

fer from repetitively showing main characters as in other meth-656

ods. One solution, as mentioned above, is to adopt the character657

motion representations described in [6, 7], or generate motion658

photography in static image similar to [27]. We may also try to659

recognize repeating characters or foreground objects from their660

appearance and segmentation silhouettes by the boundary band661

map matching method introduced in [28]. A recently emerged662

candid portrait selection approach [29] which learned a model663

from subjective annotation could also help us to find more visu-664

al appealing character candidates. The α-poisson image blend-665

ing we adopted to composite the visualizations sometimes gen-666

erates undesirable cross-fading, which could be resolved by re-667

cent developed blending methods such as hybrid blending [30]668

or environment-sensitive cloning [31]. Lastly, our preliminary669

user study could also be improved. The questions in the first670

user study are too general and subjective, which may bias the671

evaluation due to the understanding of the video sequences of672

each individual. The second user study is too complicatedly673
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User Study 2 (Scores)
StarWars Lost Heroes Crazy Lock

Our method 4.52 3.28 4.08 4.12 2.76
Video Collage 2.64 2.08 1.84 3.48 1.64

User Study 3 (Correct/All)
StarWars Lost Heroes Crazy Lock

Our method 26.6/28 34.6/39 21.2/27 34.4/36 21/37
Video Collage 20/28 16.4/39 13.2/27 26.6/36 17.4/37

Table 2: The statistic results for user study 2 and 3.

designed and may bias from the writing skill of the individual.674

6. Conclusion675

This paper presents a multi-level visual storyline approach to676

abstract and synthesize important video information into suc-677

cinct still images. Our approach generates visually appealing678

summaries through designing and integrating techniques of au-679

tomatic video analysis and image and information synthesis We680

have also designed and performed preliminary user studies to e-681

valuate our approach and compare with several classical video682

summary methods. The evaluation results demonstrate that our683

visual storylines reveal more semantic information than previ-684

ous approaches, especially on preserving main storylines.685

The techniques of video visualization and summary are an686

important addition to handle the enormous volume of digital687

videos, as they allow viewers to grasp the main storylines of688

a video quickly without watching the entire video sequence,689

especially when they are familiar with the context of the video,690

or a text synopsis is provided. With the efficiency provided by691

video visualization techniques, we believe that they can also692

be used to assist other video operations, such as browsing and693

documentation for entertainment and educational purposes.694
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(a)

(b)

(c)

(d)

Figure 5: Visual storylines of (a) a 30 minutes sequence from the commercial movie Star Wars: Attack of the Clones, (b) a 20 minutes sequence from the TV
program Lost, (c) a 30 minutes sequence from the TV program Heroes, (d) a 20 minutes sequence from the commercial movie The Gods Must Be Crazy 2.
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