Visual Storylines: Semantic Visualization of Movie Sequence

Tao Chen¹, Ai-Dong Lu², Shi-Min Hu¹
¹TNList, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
²Department of Computer Science, University of North Carolina at Charlotte, USA

Abstract

This paper presents a video summarization approach that automatically extracts and visualizes movie storylines in a static image for the purposes of efficient representation and quick overview. A new type of video visualization, Visual Storylines, is designed to summarize video storylines in a succinct visual format while preserving the elegance of original videos. This is achieved with a series of video analysis, image synthesis, relationship quantification and geometric layout optimization techniques. Specifically, we analyze video contents and quantify video story unit relationships automatically through clustering video shots according to both visual and audio data. A multi-level storyline visualization method then organizes and synthesizes a suitable amount of representative information, including both locations and interested objects and characters, with the assistants of special visual languages, according to the relationships between video story units and temporal structure of the video sequence. Several results have demonstrated that our approach is able to abstract the storylines of professionally edited video such as commercial movies and TV series. Preliminary user studies have been performed to evaluate our approach and the results show that our approach can be used to assist viewers to grasp video contents efficiently, especially when they are familiar with the context of the video, or a text synopsis is provided.

Keywords: Video Summarization, Video Visualization, Geometric Layout.

1. Introduction

In recent years, both the quality and quantity of digital videos have been increasing impressively with the development of visual media technology. A vast amount of movies, TV programs and home videos are being produced every year for various entertainment or education purposes. Under such circumstances, video summarization techniques are desperately required for the video digestion and filtering process by providing viewers an efficient tool to understand video storylines without watching the entire video sequence.

Currently, existing video summarization methods mainly focus on news programs or home videos, which usually contain simple spatiotemporal structures and straightforward storylines. Those methods cannot successfully handle professionally edited movies and TV programs, where directors tend to use more sophisticated screen techniques. For example, a movie may have two or several storylines alternately depicted in an irregular sequence. Also, technically, many existing methods summarize a video sequence with collections of key frames or regions of interest (ROIs) without high-level information such as location and occurrence. We believe that these information should be carefully embedded in the video analysis and summarization process.

Our goal is to present a visually pleasing and informative way to summarize the storylines of a movie sequence in one static image. There are many advantages of using a still image to summarize a video sequence [1, 2, 3, 4, 5], since an image is generally much smaller and easier for viewers to understand. The methods that use still images to visualize video clips can be classified into two types according to their applications. One is to visualize a short video clip, mainly focus on one or two characters and their spatial motion, e.g. [6, 7]; the other is to visualize a related longer video clip that is capable of telling a semantic story, e.g. [1, 2, 3, 5]. Our method belongs to the later. A common problem for this type of methods is that due to the highly compact form and losses of information (e.g. audio, text and motion), it’s nearly impossible for viewers to extract the underlining stories without being aware of the context of the video or appropriate text descriptions. Even with this information provided, using previous methods is still very hard to recover the sophisticated storylines since they are lack of analysis of scene relations. We believe that by properly considering vision and audio features and carefully designing visualization form, such a semantically difficult problem can be tackled for a good many of professionally edited movies and TV programs.

In this paper, we present a new Visual Storylines method to assist viewers to understand important video contents by revealing essential information of video story units and their relationships. Our approach can produce a concise and visually pleasing representation of video sequences, which highlights most important video contents and preserves the balance coverage of original sequences. Accompanying the original text description of videos (plots), these results assist viewers to understand video topics and select their desired ones without watching all

Preprint submitted to Computers & Graphics December 6, 2011
of them. Specifically, we first present an automatic video analysis method to extract video storylines by clustering video shots according to both visual and audio data. We also design a multi-level visual storyline method to visualize both abstract story relationships and important video segments. We have designed and performed preliminary user studies to evaluate our approach and collected very encouraging results.

The main contribution of our approach is a series of automatic video analysis, image synthesis, and relationship quantification and visualization methods. We have seamlessly integrated techniques from different fields to produce an highly compact summary of video storylines. Both the results and evaluation demonstrate that our approach exceeds previous methods by highlighting important video contents and storylines from prosecutionally edited movies and TV programs.

The remainder of this paper is organized as follows. We first summarize related video summarization, analysis and representation approaches in Section 2. Section 3 presents our automaticic approach to analyzing video structures and extracting storylines. Section 4 describes our multi-level storyline visualization method that significantly enriches abstract storylines through series of video analysis and image synthesis methods. We describe and discuss our user studies to evaluate our approach and provide experimental results in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

Our work is closely related to video summarization, which has been an important research topic in the fields of Computer Vision, Multimedia and Graphics. Video summarization approaches often focus on content summarization [8]. A good survey of both dynamic and static video summarization methods has been provided by Huet and Merialdo [9]; in which they also presented a generic summarization approach using Max-Recollection Principle. Very recently, Correa et al. [6] proposed dynamic video narratives, which depicted motions of one or several actors over time. Barnes et al. [10] presented a Video Tapestry which summarized video in the form of a multiscale image, where users can interactively view the summarization of different scales with continuous temporal zoom.

These two methods represent state-of-the-art of dynamic summarization.

In this paper we concentrate on approaches of static visual representations, which require synthesis of image segments extracted from a video sequence. For example, the video booklet system [1] proposed by Hua et al. selected a set of thumbnails from original video and printed them out on a predefined set of templates. Although this approach achieved a variety of forms, the layout of predefined booklet templates was usually compact. Stained-glass visualization [2] was another kind of highly condensed video summary technique, in which selected key-frames with an interesting area were packed and visualized using irregular shapes like a stained-glass. Different from this approach, this paper synthesizes images and information collected from video sequences to produce smooth transitions between images or image ROIs. Yeung et al. presented a pictorial summary of video content [3] by arranging video posters in a timeline, which summarized the dramatic incident in each story unit. Ma and Zhang [4] presented a video snapshot approach that not only analyzed the video structure for representative images, but also used visualization techniques to provide an efficient pictorial summary of video. These two approaches showed that key frame based representative images were insufficient to recover important relations in a storyline. Among all forms of video representations, Video Collage [5] was the first to give a seamlessly integrated result. Different from their technique, our approach reveals the information of locations and relations between interested objects and preserves important storylines.

This paper is also related to the analysis of video scene structure and detection of visual attention. For example, Rui et al. [11] and Yeung et al. [12] both presented methods to group video shots and used finite state machine to incorporate audio cues for scene change detection. Since these approaches are either bottom-up or top-down, they are difficult to achieve the global optimization result. Ngo et al. [13] solved this problem by adopting normalized cut on a graph model of video shots. Our work improves their method by counting on audio similarity between shots. Zhai and Shah [14] provided a method for visual attention detection using both spatial and temporal cues. Daniel and Chen [15] visualized video sequences with volume visualization techniques. Goldman et al. [7] presented a schematic storyboard for visualizing a short video sequence and provided a variety of visual languages to describe motions in the video shot. Although this method was not suitable for exploring relations of scenes in a long video sequence, their definition of visual languages inspires our work.

Our Visual Storylines approach first clusters video shots according to both visual and audio data to form semantic video segments which we call sub-stories. The storylines are revealed by their similarities. Next, it calculates and selects the most important background, foreground and character information to composite sub-story presenters. A multi-level storyline visualization method that optimizes information layout is designed to visualize both abstract story relationships and important video segments. The details are introduced in the following two sections.

3. Automatic Storyline Extraction

It is necessary to extract the storylines from a video sequence before generating any type of video summaries. Automatic approaches are desirable, especially for tasks like video previewing where no user interaction is allowed. We achieve an automatic storyline extraction method through segmenting a video into multiple sets of shot sequences and measuring their relationships. Our approach considers both visual and audio features to achieve a meaningful storyline extraction.

Our storyline is defined as important paths in a weighted undirected graph of sub-stories (video segments). To generate a meaningful storyline, it is crucial to segment a video into a suitable number of video segments, which are sets of video
shots. A shot is a continuous strip of motion picture film that runs for an uninterrupted period of time. Since shots are generally filmed with a single camera, a long video sequence may contain a large number of short video shots. These video shots can assist us to understand video contents; however, they do not reflect the semantic segmentation of original videos well. Therefore, they should be clustered as meaningful segments, which are called video events.

Automatic shot clustering is a very challenging problem [11, 12, 13], as in many movie sequences, several characters talk alternatively under similar scenes or scenarios may change greatly while a character is giving a speech. Previously, Rui et al. [11] and Yeung et al. [12] presented methods to group video shots by using thresholds to decide whether a shot should belong to an existing group. Since a single threshold is usually not robust enough for a whole sequence, these approaches may lead to over segmentation. Ngo et al. [13] used normalized cut to cluster the shots. In their work, the similarities between shots contain the color and temporal information. However, none of the existing approaches are robust for movie sequences.

We believe that combining both visual and audio features of a video sequence can improve the results of shot clustering, leading to more meaningful segmentations for visual storylines. Figure 1 illustrates our video shot clustering algorithm, where we integrate several important video features to cluster video shots and calculate their relations. Although audio features have been utilized in video analysis [16, 17, 18], we are the first to use it as features for graph modeling of video shot clustering.

Figure 1: Our video shot clustering algorithm combines both visual and audio features to generate a meaningful storyline.

Specifically, our shot clustering algorithm integrates the following visual and audio features: shot color similarity, shot audio similarity, and temporal attraction between shots. Shots are obtained using the approach proposed in [19], which can handle complex scene transitions, such as hard cut, fade and dissolve. The color similarity and temporal attraction is defined in the same way as in [11], and the shot audio similarity is defined as an MFCC feature distance [20]. The Mel-frequency cepstral coefficients (MFCC) derived from a signal of short audio clip approximate the human auditory system’s response more closely than the linearly-spaced frequency bands used in the normal cepstrum. It can be used as a good audio similarity measure for speaker diarisation. For each shot, we calculate the mean vector and covariance matrix of all the MFCC feature vectors in the shot, the audio similarity of two shot is then defined as one minus the Mahalanobis distance between the shots.

Thus, we define the overall similarity between two shots x and y as:

\[ShSim_{xy} = Attr_{xy} \times (W_c \cdot SimC_{xy} + W_A \cdot SimA_{xy}) \]

where \(Attr_{xy} \) is temporal attraction between shots, \(W_c \) and \(W_A \) are the weights for color and audio measures \(SimC_{xy} \) and \(SimA_{xy} \). Since we have the observation that larger similarity is more reliable, we define the weights as follows:

\[W_c = \frac{\omega_c}{\omega_c + \omega_a}, \quad W_A = \frac{\omega_A}{\omega_c + \omega_a}, \]

where

\[\omega_c(x, y) = \begin{cases} e^{1/(x,y)} & \text{if } SimC_{xy} > \mu_c + \frac{\sigma_c}{2} \\ e^{-1} & \text{otherwise} \end{cases} \]

\[\omega_A(x, y) = \begin{cases} e^{1/(x,y)} & \text{if } SimA_{xy} > \mu_a + \frac{\sigma_a}{2} \\ e^{-1} & \text{otherwise} \end{cases} \]

\[\lambda_c(x, y) = \frac{(1 - SimC_{xy})^2}{(1 - \mu_c - \frac{\sigma_c}{2})^2} \]

\[\lambda_a(x, y) = \frac{(1 - SimA_{xy})^2}{(1 - \mu_a - \frac{\sigma_a}{2})^2} \]

\(\mu_c \) and \(\sigma_c \) are the mean and variance of color similarities, \(\mu_a \) and \(\sigma_a \) are the mean and variance of audio similarities.

After calculating pairwise similarities, we build weighted undirected graph and adopt normalized cut to cluster the shots. An adaptive threshold is used for termination of recursively partition as in [13]. The incorporation of audio features improves the clustering result. For example, when cluster the movie sequence in Figure 5(a), the second sub-story (represented in the upright corner of the result image) has an outdoor sequence. Therefore, we define the overall similarity between two clusters \(E \) and \(F \) as

\[ER_{ij} = W_c \cdot Avg_{E \in E} SimC_{xy} + W_A \cdot Avg_{E \in E} SimA_{xy} \]

We use each cluster to represent a sub-story. We denote clusters as \(S = \{Sub_{story1}, Sub_{story2}, ..., Sub_{storym}\} \). Those sub-stories are usually not independent to each other, especially in professionally edited movies. Some sub-stories may be strongly related although they are not adjacent. For example, some movies often contain more than one story thread and different sub-stories occurred at different locations synchronously. To demonstrate this, filmmakers may cut two stories to multiple sub-stories and depict them alternately. To capture this important information, we calculate the relations between two sub-stories. They are defined as follows:

\[ER_{ij} = W_c \cdot Avg_{E \in E} SimC_{xy} + W_A \cdot Avg_{E \in E} SimA_{xy} \]

We believe that combining both visual and audio features of a video sequence can improve the results of shot clustering, leading to more meaningful segmentations for visual storylines. Figure 1 illustrates our video shot clustering algorithm, where we integrate several important video features to cluster video shots and calculate their relations. Although audio features have been utilized in video analysis [16, 17, 18], we are the first to use it as features for graph modeling of video shot clustering.
To handle the situation that some shots are mis-clustered, we empirically throw first and last 5 shots in a sub-story when calculating the average above. We further check all the shot clusters generated in our paper. The video events with larger similarity values are viewed as being more related. We will integrate the relation information during the generation process of visual storylines in Section 4.

In all five video sequences, we manually labeled 43 story cuts, the shot clustering with audio similarity provided 33 correct story cuts, while it reduced to 21 without audio similarity ("correct" means a story cut is detected within a distance of 5 shots from ground truth). This proves the use of audio similarity greatly increases the accuracy of shot clustering.

4. Generation of Visual Storylines

With the extracted storylines, we further visualize a movie sequence in a new type of static visualization. This is achieved with a multi-level visual storyline approach, which selects and synthesizes important story segments according to their relationships in a storyline. Our approach also integrates image and information synthesis techniques to produce both semantic and visual appealing results generated in our paper. The video events with larger similarity greatly increases the accuracy of shot clustering.

4.1. Background Image Selection

This step aims to find a frame that can best describe the location (or background) of a sub-story. Typically, it should be an image with the largest scene in the video sequence. Although detecting the scale from a single image is still a very hard problem in the areas of computer vision and machine learning, we can simplify this problem according to several assumptions summarized based on our observations:

Shots containing scenes of larger scales usually have smoother temporal and spatial optical flow fields. This is because these background scenes are usually demonstrated by static or slow moving cameras. In this case, if the optical flow fields indicate a zooming-in or zooming-out transition, the first or the last frame should be selected respectively since they represent scenes of largest scale.

We can remove the frames with good correspondence to face detection to avoid the violation of characters’ feature shots, as they are not likely to be background scene. Very often, a shot containing this kind of frames appears at the beginning of the video sequence which is called establishing shot. The establishing shots mostly happen within first three shots of a sub-story.

Therefore, we can detect the image with the largest scale automatically using additional information collected from a video sequence. We run a dense optical flow calculation and face detection algorithms through the video sequence and discard shots with stable face detection response. The remaining shots are sorted in the ascending order of optical flow discontinuity defined as follow.

Optical flow discontinuity for Shot, from a video event \(i\) is

\[
\text{Discont}(i) = \frac{1}{\text{numFrm}_i} \sum_{j=1}^{\text{numFrm}_i-1} (DscS_j + DscT_{j+1})
\]

Here, \(\text{numFrm}_i\) is the frame number of \(\text{Shot}_i\), \(DscS_j\) is spatial optical flow discontinuity of frame \(j\), and \(DscT_j\) is temporal optical flow discontinuity between frame \(j\) and \(j+1\). They are measured the same way as in [21].

After sorting by this discontinuity value, a proper frame from each of the top ten shots is selected (due to zooming order) as the background candidate of a video sequence. To achieve this, we run a camera zoom detection for the shot according to [23], and choose the frame with smallest zoom value. We sequentially check the selected ten frames, if any of them belongs to the first three (in temporal) shots of the video sequence, it will be chosen as the background image of sub-story, as it has a large chance to be the establishing shot. Otherwise we just choose the one ranks first. A selected background image is demonstrated in the top-left corner of Figure 2.
4.2. Foreground ROIs Selection

There are three kinds of objects that are good candidates of foreground regions of interest (ROIs) for drawing visual attentions:

- Character faces. Characters often play major roles in many commercial movies, where more than half of the frames containing human characters.
- Objects with different motion from the background often draw temporal attentions.
- Objects with high contrast to the background often draw spatial attentions.

Therefore, we propose a method that integrates the detection algorithms of human faces and spatiotemporal attentions. We reuse the per frame face detection result from Section 4.1 and only preserve those stably detected in temporal space (detected in continuous 5 frames). Then, we define a face-aware spatial saliency map for each frame as:

\[
Sal(I) = \kappa_T \times SalT(I) + \kappa_S \times SalS(I) + \kappa_F \times SalF(I),
\]

Here, the spatiotemporal terms are exactly the same as in [14], though more advanced approach such as [24] could also be used. We add the face detection result to the saliency map with the last factor. Specifically, for pixels falling in the detected face regions, we set its saliency value \(SalF(I)\) as 1, or zero otherwise. \(\kappa_F\) is the weight for \(SalF(I)\). Without violating the dynamic model fusion (which means the weights are dynamically changed with the statistic value of \(SalT(I)\)), we set \(\kappa_F = \kappa_S\).

Next, we automatically select ROIs for each video sequence. To prevent duplicate object selection, we restrict that only one frame can be used for ROI selection in each shot. This frame is the one with the largest saliency value in the shot. Then for a new selected ROI, we check the difference between its local histogram and those of existed ROIs. If it is smaller than a threshold (0.1 Chi-square distance), only the one with the larger saliency value will be preserved. Those ROIs are then sorted by their saliency value per pixel. Different kinds of selected ROIs are demonstrated in Figure 2.

4.3. Sub-story Presenter

We design a method to generate a static poster for presenting simple sub-stories. Our approach is inspired by popular commercial movie posters, which usually have a large stylized background and featured character portraits, along with multiple (relative smaller) most representative film shots. This layered representation not only induces the user to focus on the most important information, but also provides state-of-the-art visual appearance.

Our sub-story presenter contains at least four layers. The bottom layer is the background image frame extracted in section 4.1. The layer next to bottom contains ROIs with no face detected, while other layers are composed of other ROIs extracted in section 4.2. The higher layer contains ROIs with higher order, i.e. higher saliency values. We use a greedy algorithm to calculate the layout, as illustrated in Figure 2.

We start from the bottom layer, i.e. the background image. We initialize the global saliency map with the saliency map of background image. Then we add each layer overlapping on the presenter from the lowest layer to the top layer. For each layer, we add ROIs from the one with the highest saliency value to the lowest. For each ROI, we first resize it according to its saliency degree, then search for a position that minimizes the global saliency value of the presenter covered by the ROI. After adding a new ROI, the global saliency map is updated by replacing covered region’s saliency with newly added ROI’s.

In this progress, we use a threshold \(\varphi\), which we called level of detail controller, to control the amount of presented ROIs. That means, when adding a new ROI, every objects in the presenter including background image) must preserve at least \(\varphi\) portion of its original saliency value in the global saliency map (detected face region has the exception that it should never be covered, to prevent half face). When this is violated, the ROI with least saliency will be removed from the presenter, and re-calculate the layout. With this “LOD” control, when the video sequence we represented becomes more complicated, we can ensure each presented part still provides sufficient information.

After adding each layer, we use graph cut to solve labeling problem followed by \(\alpha\)-poisson image blending [25]. To emphasize the importance of foreground objects, we stylize each layer as shown in Figure 2. We compute the average hue value of background image, use this value to tint each layer, and lower layers will be tinted by larger proportions. Figure 3 shows six basic event presenters synthesized by our approach. They are able to represent most important information of the video event such as locations, characters, and also preserve the original video style.

4.4. Storyline Geometric Layout

Now the remaining problem is how to arrange sub-story presenters on the final visual storylines to reveal their relationships. We prefer to preserve the style of movie posters, so that visual storylines are intuitive for general users to understand. Here, we present an automatic algorithm of storyline geometric layout through utilizing all the extracted information from video analysis.

Given \(n\) sub-story presenters \([R_1, R_2, ..., R_n]\) for \(n\) sub-stories and their relations, and a canvas of size \(l \times m\), we first resize all the sub-story presenters:

\[
size(R_i) = \max(0.25, L(R_i)) \times \frac{l \times m}{1.5n},
\]

where \(L(R_i)\) is the length (in frame) of the \(\text{Sub-story}_i\), \(L_{max}\) is the maximal duration of all the sub-stories. Let \((x_i, y_i)\) denotes the shift vector of the sub-story presenters \(R_i\) on canvas, then we minimize the following energy function:

\[
E = E_{ovl} + w_{sal} \times E_{sal} + w_{rela} \times E_{rela} + w_{time} \times E_{time},
\]

overlay term \(E_{ovl} = -A_{ovl}\) is the negative of the overlay area of all the basic event presenters on the canvas; Saliency cost \(E_{sal}\)
Figure 2: Synthesis progress of the sub-story presenter.

Figure 3: Storyline geometric layout. The right figure is a synthesized visual storyline for a video sequence of 30 min, which is clustered to 10 sub-stories. For limited spaces, the figures on the left show six sub-story presenters.

is negative saliency value of composed saliency map; Relation term is defined as:

\[E_{rela} = \sum_{i=0}^{n} \sum_{j=i+1}^{n-1} \left(\text{Dist}(i, j) - \sqrt{\text{lm}(\text{ER}_{\text{max}} - \text{ER}_{i,j})} \right)^2, \]

where \(\text{ER}_{i,j}, \text{ER}_{\text{max}} \) and \(\text{ER}_{\text{min}} \) are relationships measured between \(\text{Sub}_{\text{story}} \) and \(\text{Sub}_{\text{story}} \), maximal relationship and minimal relationship respectively. \(\text{Dist}(i, j) \) is the distance between the centers of two basic event presenters. This term attempts to position sub-story presenters with larger relationship closer to each other in x coordinate; Temporal order term is defined as:

\[E_{time} = \sum_{i=0}^{n-1} \delta_i \]

where

\[\delta_i = \begin{cases}
0 & \text{if } y_i + \epsilon < y_{i+1} < y_i + h_i - \epsilon \\
1 & \text{otherwise}
\end{cases} \]

\(h_i \) is the height of resized \(R_i \), and \(\epsilon = 30 \). This term attempts to position sub-story presenters with respect to temporal order in y coordinate while preserve some overlapping. We set \(w_{\text{sal}} = 0.15, w_{\text{rela}} = 0.1, w_{\text{time}} = 0.1 \).

Minimize the energy function above will maximize the overlay area of all basic event presenters which visualize temporal order in y coordinate and visualize relations in x coordinate. We use a heuristic approach to solve this layout. We start from the first sub-story presenter, when each new presenter is put in, the algorithm calculates its position that minimize the current energy function. As this method can not ensure that all pixels are covered, we can choose those obsoleted ROIs from adjacent basic event presenters to fill the hole. An alternative is to adopt the layout optimization method described [26] in Overlapped region will be labeled by graph cut and \(\alpha \)-poisson image blending. Since overlapping may cause the violation of LOD control, it is necessary to recalculate the layout for sub-story presenters.

Figure 3 shows the events layout and the LOD control effect. It shows when the represented video sequence becomes complicated, our results will not be cluttered as other methods while...
still provide essential video information.

4.5. Storyline Visualization

The final visual storylines are enriched with a sequence of arrow shapes to represent key storylines. This is achieved by building a storyline graph, which uses video sub-stories as nodes. For two adjacent video sub-stories in the visual storylines, if the relationship between them is larger than a threshold, we add an edge in between. After traversing all the nodes, circles will be cut off at the edge between two nodes with largest ϕ temporal distance. Then, each branch in this acyclic graph represents a story line. We add an arrow around the intersection of location between any two connected sub-story presenters with the restriction that no ROI is covered. The directions of arrows illustrating the same storyline are calculated according to a B-spline, which is generated by connecting all the arrow centers and saliency-weighted centers of involved sub-story presenters on this storyline. This can produce a most smooth and natural illustration from the storyline. The arrow bottom is reduced to disappear among the previous event to emphasize the direction of storylines. Different storylines are distinguished by the colors of arrows.

![Figure 4](image)

Figure 4: A failed case of our system when representing 25 minutes video sequence from the commercial movie Lock, Stock, and Two Smoking Barrels.

User studies show this summary can’t reveal the true storylines of the movie sequence.

5. Experiments and Evaluations

5.1. Experimental Results

Figure 5 shows example results of visual storylines. Their computation times on a Core 2 Duo 2.0Ghz machine and LOD thresholds (ϕ) are shown in Table 1.

<table>
<thead>
<tr>
<th>Video clip</th>
<th>Length</th>
<th>Time cost</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.5(a): StarsW</td>
<td>30min</td>
<td>125min</td>
<td>40%</td>
</tr>
<tr>
<td>Fig.5(b): Lost</td>
<td>20min</td>
<td>80min</td>
<td>60%</td>
</tr>
<tr>
<td>Fig.5(c): Heroes</td>
<td>22min</td>
<td>90min</td>
<td>70%</td>
</tr>
<tr>
<td>Fig.5(d): Crazy</td>
<td>15min</td>
<td>62min</td>
<td>40%</td>
</tr>
</tbody>
</table>

Table 1: Computation times for each representation result.

Figure 5(b) and (c) visualize two fast-paced TV programs. They both have multiple storylines progressed together, which is a popular technique in modern TV-series. Our approach extracts the main storylines for each program. Although one storyline (threaded by the pink arrows) in (c) has merged two semantic scenes together due to the very similar scene presences, our later user studies show that viewers can still understand the plot with our visual stories. Note user can adjust LOD threshold ϕ to generate multi-level results. The multi-level visual storylines generated by different thresholds for Figure 5(b) and (c) are demonstrated in the supplementary file.

Figure 5(d) visualizes a movie clip that alternately features two groups of characters, which finally meet each other. Our visual storylines reveal this important feature with two merging storylines.

In summary, our approach of visual storylines is suitable for visualizing the movie scenes with salient appearance attribute, like desert, meadow, sky and other outdoor scenes, or indoor scenes with artistic stylized illumination. The changes of characters may also help the system distinguishing different scenes.

One failed case is shown in Figure 4. Commercial movie Lock, Stock, and Two Smoking Barrels is famous for its fast scene changes and techniques of expressing multiple storylines. In this movie, most scenes in those different storylines are indoor scenes with indistinguishable color models. What’s more, character groups in different scenes have complex interaction with each other. Therefore, our approach cannot extract correct storylines. The extracted storylines are with respect to the temporal order of the sub-story presenter.

5.2. User Studies and Discussion

We have designed three user studies to evaluate our approach. The first user study is designed to check the aesthetic measure and representative measure comparing with other methods.

Twenty subjects are invited for this user study, including fourteen graduate students and six undergraduate students (majoring in computer science, architecture and art) who are unaware of our system. Four kinds of video summaries (Booklet, Pictorial, Video Collage and Visual Storylines) are created for sequences shown in Figure 5. After watching the video sequences, users have been asked to answer the following questions with scale 1 (definitely no) to 5 (definitely yes), as used in [25, 5]. Here we list our questions and provide the average scores and standard deviances for each method after their names.

- Are you satisfied with this summary in general?
 Visual Storylines(4.10, 0.62), Video Collage(3.50, 0.67), Pictorial(2.30, 0.90), Booklet(2.45, 0.97)
• Do you believe that this result can represent the whole video sequence?

Visual Storylines (4.20, 0.68), Video Collage (3.65, 0.65), Pictorial (3.30, 0.64), Booklet (3.15, 0.57)

• Do you believe this presentation is compact?

Visual Storylines (4.00, 0.71), Video Collage (3.90, 0.70), Pictorial (2.60, 0.49), Booklet (2.35, 0.57)

• Would you like to use this result as a poster of the video?

Visual Storylines (4.65, 0.48), Video Collage (3.70, 0.71), Pictorial (1.4), Booklet (3.1)

• Do you believe that this presentation produces the correct storylines?

Visual Storylines (4.85, 0.36), Video Collage (2.25, 0.70), Pictorial (2.5, 0.74), Booklet (1.75, 0.83)

The results demonstrate that our approach achieves the highest scores in all the categories; therefore, it is the most representative and visually appealing summary among these four approaches. This also shows that Visual Storylines is the only approach that extracts and visualizes video storylines.

The other two user studies are designed to evaluate if our results can help users quickly grasp major storylines without watching a video. Note that it’s generally very difficult for someone to understand the semantic storylines of a movie or TV program from a single image without knowing any contexts.

In the second user study, subjects were asked to watch some video clips related to the test video. Specifically, fifteen more subject s were invited and confirmed that they have not seen any of the movies or TV programs appeared in Figure 4 and Figure 5 before. Ten of them are assigned to “test group”, the other five were assigned to “evaluation group”. We showed the test group the five movies/TV programs used in our paper but skipped the parts that used to generate the video summaries. The evaluation group was allowed to watch the full movies or TV programs. Then in the test group, half of the subjects were provided with five summaries generated by our method, while the other half were provided with five summaries generated by “Video Collage” (since it’s most competitive in the first user study). Then these ten subjects were asked to write text summaries for the five video clips they missed. These text summaries were shown to the evaluation group, and evaluated from 1 to 5.

In the third user study, we invited ten more subjects. They were asked to read text synopsis for the five videos tested in our paper. They were also provided with the summaries (Visual Storylines for half, Video Collage for the other half). Then they were asked to circle the corresponding regions in the summaries for some previously marked keywords in the synopsis, which included locations, objects and character names. We manually checked the correctly circled regions and list the result in Table 2.

Table 2 shows when viewers know the content of the video, for example the main characters and their relationship, the preceeding and succeeding stories, they can easily understand the stories with our visual storylines. It also shows viewers can quickly establish correct connections between the text synopsis and our summaries. Note the two statistic results of Lock, Stock, and Two Smoking Barrels are lower than 3 and lower than 60%.

The user studies reveal two potential applications for our approach. First, if a viewer misses an Episode of TV show or a part of the movie, visual storylines can be synthesized to help the viewer quickly grasp the missing information. Second, when providing our result together with the text synopsis of the video, viewers get a visual impression of the story described in the synopsis. Therefore, our automatically generated results can be easily integrated into the TV guide newspapers, movie review magazines and movie websites as illustration of the text synopsis.

Except the comparison with the methods of generating static summarization for long video sequence, we’d also like to discuss and compare with those state-of-the-art video summarization methods. As [6, 7] mainly focus on one or two characters and their spatial motion, their summarization is very suitable for visualizing one or several shots. On the other hand, they can’t deal with long video sequences like our method. However, if we incorporate their static representations of character motion into our sub-story representation, the visual storylines can be more compact and less visually repetitive. The Video Tapestries [10] provides similar static summarization form to ours except their shot layout is purely sequential. But when the multiscale summarization is interactively viewed by the user, it can provide more information than our method. However, our static result is more suitable for traditional paper media.

Here, we discuss some limitations of our approach and possible improvements. As the failure case indicated, our approach generates limited result for indistinguishable scenes. In addition, as it selects important candidates according to low level features such as visual saliency and frequency, the visualization may still miss crucial semantic information. For example, the coffin, which plays an important role in the result collage of Lost sequence is barely recognizable. Another issue about our approach is that even with LOD control, our result may still suffer from repetitively showing main characters as in other methods. One solution, as mentioned above, is to adopt the character motion representations described in [6, 7], or generate motion photography in static image similar to [27]. We may also try to recognize repeating characters or foreground objects from their appearance and segmentation silhouettes by the boundary band map matching method introduced in [28]. A recently emerged candid portrait selection approach [29] which learned a model from subjective annotation could also help us to find more visually appealing character candidates. The α-poisson image blending we adopted to composite the visualizations sometimes generates undesirable cross-fading, which could be resolved by recent developed blending methods such as hybrid blending [30] or environment-sensitive cloning [31]. Lastly, our preliminary user study could also be improved. The questions in the first user study are too general and subjective, which may bias the evaluation due to the understanding of the video sequences of each individual. The second user study is too complicatedly
Table 2: The statistic results for user study 2 and 3.

<table>
<thead>
<tr>
<th>User Study 2 (Scores)</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Min</th>
<th>Max</th>
<th>Clock</th>
<th>Lock</th>
<th></th>
<th>User Study 3 (Correct)</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Min</th>
<th>Max</th>
<th>Clock</th>
<th>Lock</th>
</tr>
</thead>
<tbody>
<tr>
<td>StarWars // 28</td>
<td>5.1</td>
<td>0.9</td>
<td>4.4</td>
<td>5.9</td>
<td>4.6</td>
<td>2.9</td>
<td>3.4</td>
<td>StarWars // 28</td>
<td>5.1</td>
<td>0.9</td>
<td>4.4</td>
<td>5.9</td>
<td>4.6</td>
<td>2.9</td>
</tr>
<tr>
<td>User Studyd</td>
<td>Mean</td>
<td>Std Dev</td>
<td>Min</td>
<td>Max</td>
<td>Clock</td>
<td>Lock</td>
<td></td>
<td>User Studyd</td>
<td>Mean</td>
<td>Std Dev</td>
<td>Min</td>
<td>Max</td>
<td>Clock</td>
<td>Lock</td>
</tr>
<tr>
<td>StarWars // 28</td>
<td>5.1</td>
<td>0.9</td>
<td>4.4</td>
<td>5.9</td>
<td>4.6</td>
<td>2.9</td>
<td>3.4</td>
<td>StarWars // 28</td>
<td>5.1</td>
<td>0.9</td>
<td>4.4</td>
<td>5.9</td>
<td>4.6</td>
<td>2.9</td>
</tr>
</tbody>
</table>

6. Conclusion

This paper presents a multi-level visual storyline approach to abstract and synthesize important video information into succinct still images. Our approach generates visually appealing summaries through designing and integrating techniques of automatic video analysis and information synthesis. We have also designed and performed preliminary user studies to evaluate our approach and compare with several classical video summary methods. The evaluation results demonstrate that our visual storylines reveal more semantic information than previous approaches, especially on preserving main storylines. The techniques of video visualization and summary are an important addition to handle the enormous volume of digital videos, as they allow viewers to grasp the main storylines of a video quickly without watching the entire video sequence, especially when they are familiar with the context of the video or a text synopsis is provided. With the efficiency provided by video visualization techniques, we believe that they can also be used to assist other video operations, such as browsing and documentation for entertainment and educational purposes.

7. Acknowledgements

This work was supported by the Natural Basic Research Project of China (Project Number 2011CB302205), the Natural Science Foundation of China (Project Number 6110106007/61033012).

References

munication and Image Representation 2008;19(2):121–43. doi:DOI:
Figure 5: Visual storylines of (a) a 30 minutes sequence from the commercial movie *Star Wars: Attack of the Clones*, (b) a 20 minutes sequence from the TV program *Lost*, (c) a 30 minutes sequence from the TV program *Heroes*, (d) a 20 minutes sequence from the commercial movie *The Gods Must Be Crazy 2*.