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Abstract:   With the rapid development of the robotic industry, domestic robots have become increasingly popular. As domestic robots
are expected to be personal assistants, it is important to develop a natural language-based human-robot interactive system for end-users
who do not necessarily have much programming knowledge. To build such a system, we developed an interactive tutoring framework,
named “Holert”, which can translate task descriptions in natural language to machine-interpretable logical forms automatically. Com-
pared to previous works, Holert allows users to teach the robot by further explaining their intentions in an interactive tutor mode. Fur-
thermore, Holert  introduces a semantic dependency model to enable the robot to “understand” similar task descriptions. We have de-
ployed Holert on an open-source robot platform, Turtlebot 2. Experimental results show that the system accuracy could be significantly
improved by 163.9% with the support of the tutor mode. This system is also efficient. Even the longest task session with 10 sentences can
be handled within 0.7 s.

Keywords:    Human-robot  interaction,  semantic  parsing,  program  synthesis,  intelligent  robotic  systems,  natural  language  unders-
tanding.

 

1   Introduction

Modern  domestic  robots  are  expected  to  be  personal

assistants in the near future[1–3]. Although robots become

more capable of performing different kinds of tasks[4, 5], it

is still  not  convenient  for  end-users  to  instruct  their  ro-

bots to accomplish tasks as needed without programming

knowledge.

Some studies help end-users with visual programming

systems[6–8], which  provide  abstract  building  blocks  em-

bodying robot behavior. However, these systems still take

the  end-users  a  significant  amount  of  time  to  learn  the

usage  of  each building  block  and to  think about  how to

combine those blocks in a logical order.

Currently,  building  a  natural  language-based  human-

robot interactive system is increasingly appealing to end-

users[9],  because this  is  a  rich and intuitive method with

which end-users  can  offer  sufficient  and  flexible  instruc-

tions to support robot task planning[10, 11].

To  develop  such  systems,  many  studies  have  focused

on semantic parsing techniques that aim to translate nat-

ural  language  task  descriptions  into  machine-inter-

pretable logical forms. Traditional approaches[12–15] are of-

ten domain-specific  or  representation-specific.  These  ap-

proaches  are  heavily  dependent  on  high-quality  lexicons,

manually-built  templates  and  linguistic  features[16].

Therefore,  users  of  these systems are usually required to

use a set of predefined keywords, templates and grammar.

When  it  comes  to  undefined  situations,  the  developer

would have to manually add new keywords, templates or

grammar  to  expand  the  representational  ability  of  their

system.  Modern  approaches[17–21] use  machine  learning

methods  to  train  a  neural  network for  semantic  parsing.

However,  these  approaches  rely  on  a  large  annotated

dataset and efficient training algorithms during the train-

ing  phase.  Although  the  machine  learning  methods  are

general  for  different  domains,  they  still  need  to  collect

and annotate domain-specific data and train new models.

Since  the  user  demands  change  frequently,  domestic

robots are expected to perform different kinds of tasks as

the  user  requires.  However,  previous  semantic  parsing

methods rely on the developers to update their system for

undefined situations. This process is time consuming and

inconvenient for  users,  especially  for  emergency  situ-

ations,  because the developers must be involved to solve

the  problems.  The  ideal  semantic  parsing  system should

be  capable  of  extending  itself  automatically  to  support

users′ demands in undefined situations.

In  this  paper,  we  proposed  an  interactive  tutoring

framework,  named “Holert”,  which allows users  to teach

the robot by further explaining their intentions. If the ro-

bot cannot understand a complex sentence in the task de-

scription,  users  can  explain  the  complex  sentence  with

several simple sentences. Holert can automatically identi-

fy  the  corresponding  relationship  between  the  explained

sentences and the original one. This process runs recurs-

ively until the robot understands all of the sentences in a

task description.

In order to realize this  tutoring system, we defined a
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semantic  dependency  model  to  enhance  the  traditional

templates. There are three advantages of introducing the

dependency model. 1) The dependency model can help in

finding  the  relationship  between  the  user′s  original  task

description and the explanation dialogue, which is the key

for  the  tutoring  procedure.  2)  After  tutoring,  the  newly

generated  template  enhanced  by  the  dependency  model

can  be  applied  not  only  to  the  demand  just  explained,

but also to demands with similar grammatical structures.

3)  Templates  enhanced  by  the  dependency  model  are

more general, which could decrease the amount of manu-

ally designed initial templates.

In conclusion, the contribution of this paper lies in the

following aspects:

1)  We  proposed  an  interactive  tutoring  approach  for

semantic parsing,  which has two major  advantages  com-

pared to previous approaches: a) Interactive tutor mode.

In order to handle the user′s demands in undefined situ-

ations, new  templates  can  be  generated  from  the  guid-

ance of users in an interactive procedure. b) Dependency

model. The  dependency  model  is  carefully  designed  ac-

cording to  the  characteristics  of  natural  language.  Tem-

plates  enhanced  by  the  dependency  model  can  identify

sentences that have the same semantic characteristics.

2)  We  implemented  a  framework  named  “Holert”,

which can  synthesize  robot  programs  from  task  descrip-

tions in a short period of time. Furthermore, Holert works

as a robot operating system (ROS)[22] node so that it can

be easily deployed on different robot platforms.

3) We deployed Holert on an open-source robot plat-

form,  Turtlebot  2.  We  collected  129  unique  navigation

task descriptions  from volunteers.  The  experimental  res-

ults show that the system accuracy could be improved by

163.9% with the support of the tutor mode.

The rest of this paper is organized as follows. The mo-

tivation of this work is presented in Section 2. Section 3

explains the idea of Holert in detail. In Section 4, Holert

was deployed on an open-source robot platform and eval-

uated with 129 task descriptions. Section 5 discusses the

limitations and future works. Section 6 introduces the re-

lated work. Section 7 concludes this paper.

2   Motivation

Imagine a possible scenario for domestic robots where

an aged man is confronted with a heart attack. He needs

his  robot  to  call  the  emergency  center  immediately,  and

reach out to neighbors for help.

In  this  situation,  asking  developers  to  implement  a

new robot application or using a visual programming sys-

tem himself does not work, since it is time consuming and

this  aged  man might  not  have  enough  time  under  heart

attack conditions.

Natural language-based  human-robot  interactive  sys-

tems  would  be  a  better  way  to  complete  the  task.  The

aged man could describe his demand in natural language,

such as “Call the emergency center. Go out of the house

and ask  the  neighbors  for  help”.  Then  the  task  descrip-

tion would  be  translated  into  robot  instructions  and  ex-

ecuted exactly as desired.

With  the  traditional  template-based  approaches,  the

system may not understand every sentence.  In this  situ-

ation, the aged man has to ask the developers to update

the system with new templates. This procedure may take

days or even weeks to design and test the new templates,

which is not acceptable in this case.

As  to  the  neural  network-based  approaches,  similar

sentences may not exist  in the training set.  In this  situ-

ation, the system may respond with incorrect actions, and

the  aged  man  would  have  to  ask  the  developers  to  re-

train the model by adding this case into the training set.

This procedure may also take a lot of time.

In an ideal system, the aged man can further explain

the original task “go out of the house” with simpler tasks,

such  as  “go  to  the  door  of  the  house”,  “open  the  door”

and “go 1 meter forward”. If the system can understand

these three simpler tasks, it should understand the origin-

al  task.  Furthermore,  the  system  should  also  have  the

ability to understand similar sentences such as “go out of

the  room”  without  the  need  of  further  explanation  next

time.

To  realize  this  system,  some  challenges  remain  to  be

solved:

1) In  the  tutoring  procedure,  how to  find  the  corres-

ponding  relationship  between  the  original  sentence  and

the  explained  sentences  automatically,  and  generate  a

new template for the original sentence?

2) How to design a general template that can cover as

many similar sentences as possible?

3) The system should be highly accurate and efficient.

To overcome these challenges, we propose Holert. We

will discuss the details of Holert in Section 3.

3   Approach

In this section, we will first introduce the architecture

of Holert and then discuss the details of each part.

3.1   Architecture

As  shown  in Fig. 1,  Holert  works  as  a  middle  layer

between  users  and  robots.  It  is  designed  to  accept  task

descriptions from users and output machine-interpretable

logical forms to robots. Holert consists of four main parts:

natural  language  (NL)  parser,  template  library,  tutor

mode and synthesizer.

1) NL  parser  extracts  dependency  models  from  sen-

tences  of  the  task  description.  The  dependency  model  is

designed  to  express  the  inner  dependency  relations

between  word  tokens  of  a  sentence.  This  part  will  be

presented in Section 3.2.

2) Template library maps dependency models to logic-
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al skeletons. A logical skeleton is the skeleton of a logical

form.  A  key  insight  of  Holert  is  that  if  two  sentences

share the same dependency model,  they should have the

same  logical  skeleton.  This  part  will  be  presented  in

Section 3.3.

3)  Tutor  mode  tries  to  learn  new  templates  through

dialogue with users. With the tutor mode, Holert can ex-

pand  the  template  library  automatically.  This  part  will

be presented in Section 3.4.

4) Synthesizer  generates  target  logical  forms from lo-

gical skeletons and word tokens of the original sentences.

This part will be presented in Section 3.5.

S

LS S

LF

Algorithm  1  shows  the  process  of  generating  logical

forms from task descriptions with Holert. First, a task de-

scription is split into a sequence of sentences  (Line 2).

Second,  the  function GetLogicSkeleton is invoked  to  ob-

tain a logical skeleton  from each sentence  (Line 5).

The  function  will  first  extract  the  dependency  model  of

the sentence (Line 12) and then search the template lib-

rary for a corresponding logical  skeleton (Line 13).  If  no

corresponding logical skeleton is found from the template

library, tutor mode would be started to obtain the logic-

al skeleton of this sentence (Line 15). Finally, the target

logical form would be synthesized in Line 6 and added to

the logical form set  in Line 7.

Algorithm 1. Generating logical forms from task descrip-

tions

T TL.Input: Original task description ; template library 

LFOutput: Logic form set  of original task description.

T1) function MAIN( )

S ← SentencesAnnotation(T )2)　

LF ← ∅3)　

S ∈ S4)　for each  do

LS ← GetLogicSkeleton(S,TL)5)　　

LF ← Synthesizer(S,LS)6)　　

LF ← LF + LF7)　　

8)　end for

LF9)　return 

10) end function

S11) function GETLOGICSKELETON( )

DM← GetDependencyModel(S)12)　

LS ← TL.get(DM)13)　

LS = ∅14)　if  then

LS ← TutorMode(S)15)　　

16)　end if

LS17)　return 

18) end function

We  will  further  explain  the  algorithm  through  the

three  task  cases  below.  Suppose  that  Case  1  can  find  a

matched template in the template library. Cases 2 and 3

are  complex  sentences  for  which  Holert  needs  to  learn

new templates with the tutor mode.

Case 1. Move 5 meters forward.

Case 2. Give me the pen which you can pick up from

the table.

Case 3. Give me the pen on the table.

3.2   NL parser and dependency model

We  notice  that  even  though  some  task  descriptions

are  about  different  operations  on  different  objects,  such

as “open the door” and “break the window”,  they share

the  same  dependency  relations  between  word  tokens.  So

we can design a general model based on the dependency

relations to cover similar task descriptions. This is the de-

pendency model used in Holert. In this model, we replace

word tokens with their  part-of-speech (POS) tags[23], be-

cause POS tags are more general  than word tokens.  For

example, verb tags can represent different operations like

“open” and “break”, while noun tags can represent differ-

ent objects like “door” and “window”.

The NL parser extracts the dependency model from a

task  sentence  in  four  steps. Fig. 2 shows  the  process  for

Case 1.

 

User interface

NL task
description NL parser Dependency 

model
Template 

library

Tutor mode
Not found

New
template

Dialog

Logical
skeletonLogical form Synthesizer

 Found

Add

Searching
template
library

Holert

Word tokens

Robot interface

Fig. 1     Architecture of Holert. Holert accepts task descriptions from users and translates the natural language-based descriptions into
machine-interpretable logical forms through four main parts: NL parser, template library, tutor mode and synthesizer.
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1)  We  use  Stanford  natural  language  processing

(NLP)  tools[24] to  split  the  sentence  into  word  tokens

( ),  tag  each  token  with  POS  tags

( ), and parse the sentence into a de-

pendency tree. Each word token  corresponds to a node

on the tree. The dependency tree provides dependency re-

lations between word tokens in the sentence. The depend-

ency relation is defined as a triplet , where 

is the dependency relation between the governor node 

and  the  dependent  node . For  example,  the  depend-

ency  relation  between  nodes  “Move” and  “forward”  is

represented as .

⟨
P i
t , D

j
i , P

j
t ⟩

2)  We  replace  word  tokens  with  their  POS  tags.

Therefore,  the  dependency  relation  triplet  is  transferred

to . For  example,  the  token  “Move”  is  re-

placed  by  “VB”,  which  means  a  verb,  and  “forward”  is

replaced by “RB”, which means an adverb.

3)  In  order  to  remove  the  isomorphism  of  the  tree

structure, we give each node a hash value and keep an in-

creasing order between sibling nodes.

Iit

P i
t Iit

Mi Ti

4) We traverse the tree in order and assign an index

number  to each kind of POS tag according to the ac-

cess  sequence,  so  that  each  node  on  the  tree  is  unique.

That means the first visited “NN” node is assigned an in-

dex number “0”, and the second visited “NN” node is as-

signed an index number “1”, etc. We define _  as the

marker  of the word token . After this step, the tree

is called a dependency model in this paper.

Dj
i Mi

Ti Dj
i

Ti Tj Mi

Ti

To find a dependency model more quickly, we use an

equivalent string-representation of the dependency model

instead  of  the  tree-representation.  The  string-representa-

tion is an in-order traversal of the tree. We first visit the

root  of  the  tree  and  then  visit  its  children  recursively

from left  to  right. _  are used  to  represent  the  vis-

ited  nodes ,  where  is  the  dependency  relation

between  and its governor node , and  is the mark-

er of . Specifically, the dependency relation of the root

node  is  represented  as  “root”.  Parentheses  are  used  to

show the governor-dependent relations between nodes.

For example, the string-representation of the depend-

ency model for “Move 5 meters forward” is:

root_VB_0  (dobj_NNS_0  (nummod_CD_0),  advmod_
RB_0).

3.3   Template library

The template library is a set of templates. Each tem-

plate is a key-value pair,  where the key is a dependency

model and the value is a corresponding logical skeleton.

The template library is  initialized manually based on

the instructions of the target robot. We construct the ini-

tial template library with three steps:

1) List all  of  the instructions of the target robot and

collect  different  expressions  of  the  instruction  in  natural

language descriptions.

2) Extract dependency models from these descriptions.

3) Assign  each  dependency  mode  with  a  correspond-

ing logical skeleton manually.

For  example,  suppose  the  target  robot  has  a  “Move”

instruction, and the instruction has three parameters, in-

cluding  an  integer  type  distance  value,  a  measure  unit

and a direction. The possible natural language expression

of  the  instruction  could  be  “go  35  feet  backward”.  For

this task description, the robot is expected to execute the

instruction “Move(35,  feet,  backward)”.  We first  extract

the  dependency  model  of  the  task  description.  Then  we

replace the name and parameters of this instruction with

corresponding markers in the dependency model. For ex-

ample, “go” is the action word that indicates the “Move”

instruction  and  its  marker  is  “VB_0”,  so  we  replace

“Move” with “VB_0”. Similarly, we replace the paramet-

ers  with  corresponding  markers  “CD_0”,  “NNS_0”  and

“RB_0”.  Finally,  we  manually  construct  a  template  for

“go 35 feet backward”, which is shown in Fig. 3.

3.4   Tutor mode

In this subsection, we will explain the tutor mode us-

ing Cases 2 and 3.

 

Dependency model: root_VB_0 (dobj_NNS_0 (nummod_CD_0), advmod_RB_0)

POS tags:     VB   CD    NNS        RB
Dependency tree:

Move

advmod dobj

forward Meters

5

VB VB VB_0

NNS_0 RB_0

CD_0

advmod advmod advmoddobj dobj dobj

RB NNS RBNNS

nummod nummod nummod

CD CD

(1) Original dependency tree (2) Replacing tokens
with POS tags

(4) Assigning an index number
to each kind of POS tags

(3) Removing isomorphism
of the tree structure

nummod

Tokens:   Move   5    meters   forward

Fig. 2     Extracting the dependency model of the sentence in Case 1
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For Case 2, “Give me the pen which you can pick up

from the  table”,  Holert  would  start  a  dialogue  with  the

user (see Fig. 4). Holert asked the user to further explain

the  task.  The  user  then  split  the  task  into  two  smaller

tasks: “Pick up the pen on the table” and “Give me the

pen”.  Then,  Holert  would  generate  a  new  template  for

the original task with the supplementary information and

add the  new template  into  the  initial  library.  When the

user asks the robot to “Give me the scarf which you can

pick up from the hanger” the next time, Holert could find

the learned template from the library directly.

Algorithm 2. Generate  a  new  template  in  tutor

mode

S
DMS TL.

Input: Original  task  sentence ,  dependency  model  of

the sentence , template library 

NTOutput: The  new  template  of  the  original  task

sentence.

T ← GetExplanationFromUser(S)1) 

S ← SentencesAnnotation(T )2) 

LS ← ∅3) 

S̃ ∈ S4) for each  do

L̃S ← GetLogicSkeleton(S̃)5)　

LS ← ReplaceMarker(L̃S)6)　

LS ← LS + LS7)　

8) end for

NT ← GenerateNewTemplate(DMS ,LS)9) 

TL← TL+NT10) 

Algorithm 2 shows how to generate a new template in

tutor mode. Fig. 5 shows the process of generating a new

template  for  Case  2  with  this  algorithm.  There  are  four

steps:

T

S

1) Ask the user  for  further  explanation  of the ori-

ginal task sentence (Line 1). Split the explanation into a

sequence of sentences  (Line 2).

S

L̃S

2) For each sentence in , invoke the function GetLo-

gicSkeleton of Algorithm 1 to generate the corresponding

logical  skeleton  (Line 5).  If  some  explanation  sen-

tences are still too complex, the tutor process will run re-

cursively until  Holert  “understands”  all  of  the  explana-

tion sentences. For Case 2, the explanation contains two

sentences, and the corresponding logical skeletons 1 and 2

(see Fig. 5) would be found in the template library.

L̃S

P 1
t I1t , P

2
t I2, · · · , Pn

t Int L̃S

T1, T2, · · · , Tn

P 1
t I1t , P

2
t I2, · · · , Pn

t Int

3)  Replace  the  markers  in  with  corresponding

markers  of  the  original  sentence  (Line  6).  Suppose

_ _ _  are  the  markers  in ,  and

 are the tokens in the explanation sentences

for those markers. Holert would find the same token (see

the  dotted  line  in Fig. 5) appearing  in  the  original  sen-

tence  and replace _ _ _  with the  cor-

responding markers  for  these  tokens  in  the  original  sen-

tence. For example, there are three markers in the logic-

al skeleton 1: “VB_0”, ”NN_0” and “NN_1”. The tokens

for the three markers are “pick”, “pen” and “table”. We

searched  the  original  sentences  for  the  three  tokens  and

found  that  their  corresponding  markers  were  “VB_1”,

“NN_0”  and  “NN_1”,  respectively.  Then,  we  replaced

“VB_0” in logical skeleton 1 with “VB_1”.

4) Generate a new template, where the key is the de-

pendency model of the original sentence and the value is

the  combination  of  the  marker-replaced  logical  skeletons

in a  sequence  order  (Line  9).  Finally,  add the  new tem-

plate into the template library (Line 10).

There are two special situations when using the tutor

mode. One is that the explanation from the user contains

only a single sentence. The other is that action verbs are

missing in the original sentence.

Explanations in a single sentence. The  user  may

explain the original sentence with only one sentence. For

example, the user may explain “can you open the door?”

with  “open  the  door  for  me”,  and  Holert  cannot  find  a

template  for  “open  the  door  for  me”  from  the  library

either. A radical strategy would be used to find a similar

template.  The  strategy  is  based  on  the  experience  that

some  tokens  in  the  sentence  perform  dependency  roles

but contribute nothing to the semantic meaning. For ex-

ample,  we  can  safely  delete  the  two  tokens  “for”  and

“me”, because they do not affect the meaning of the sen-

tence. When using the radical strategy, Holert would enu-

merate  all  of  the  cases  of  deleting  some  tokens  (from  1

token to half of all tokens) in the sentence and search for

the dependency  models  of  those  sentences  in  the  tem-

plate library. If matched, the sentence becomes a candid-

ate  to  be  presented  to  the  user.  The  user  then  chooses

one of them to continue the tutor process above. If none

of them meet the user requirement, the tutor process has

failed.  Holert  would  record  this  sentence  for  manually

constructing a new template by developers.

Missing actions. Some  complex  task  descriptions

contain  missing  actions,  such  as  Case  3.  “Give  me  the

pen on the table” is another way of expressing the task in

 

{

}
]

)

),

root_VB_0 (
dobj_NNS_0 (

call VB_0 [

nummod_CD_0 
CD_0 ,
NNS_0 ,
RB_0

Key : dependency model Value : logic skeleton

advmod_RB_0

 
Fig. 3     A template example

 

 

User: Give me the pen which you can pick up from the table.

Robot: Sorry, can you explain the order?

User: Pick up the pen from the table.  Give me the pen.

Robot: OK, I see.

A few days later

User: Give me the scarf which you can pick up from the hanger.
Robot: OK.

 
Fig. 4     A dialogue example with the user
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Case  2.  In  order  to  give  the  pen  to  the  user,  the  robot

should  pick  up  the  pen  from  the  table  first.  If  the  user

still  splits  the  task  into  the  same two smaller  tasks  (see

Fig. 6),  then  Holert  cannot  find  a  corresponding  token

“pick”  in  the  original  sentence  when  generating  a  new

template. We use “Unknown” in the generated new tem-

plate  to  represent  a  missing  action.  If  the  user  asks  the

robot to “Give me the scarf on the hanger” the next time,

Holert  would  find  the  matched  template  in  the  library

and try to infer the missing action by program synthesis

techniques in Section 3.5.

3.5   Synthesizer

The  synthesizer  tries  to  fill  the  holes  in  the  logical

skeleton  with  information  from  the  task  description.

There are two kinds of holes in a logical skeleton, 1) para-

meter  marker  and  2)  function  marker.  The  synthesizer

first assigns the parameter markers with typed values ex-

tracted from the task description and then finds the best-

matched  robot  instruction  to  instantiate  the  function

marker.

Parameter marker assignment. The  parameter

markers contain node information from which we can find

the corresponding tokens in the original task descriptions.

The synthesizer first uses the general regular expressions

to identify the typed values from the tokens. If that pro-

cess fails, then it would search in a static mapping table.

If both have failed, the synthesizer would record the sen-

tence for  manually  constructing  a  new  template  by  de-

velopers and report with an error message. The details of

the two identification methods are as follows:

1) Regular expressions. Some types of data can be eas-

ily recognized using regular expressions, such as integers,

dates, phone numbers, etc.

 

WDT_0 PRP_1 MD_0 RP_0 NN_1

VB_1

NN_0

VB_0

PRP_0

DT_0 call VB_1 [ NN_0,  NN_1]
call VB_0 [PRP_0, NN_0]

New template:

Dependency tree:

Tokens:
POS tags:

Give   me   the   pen   which   you   can   pick   up   from   the   table
VB   PRP  DT  NN    WDT  PRP   MD   VB   RP    IN     DT   NN

Logic skeleton 1: 
{ call VB_0 [ NN_0, NN_1 ] }

Marker replacing: 
{ call VB_1 [ NN_0, NN_1 ] }

Logic skeleton 2:
{ call VB_0 [ PRP_0, NN_0 ] }

Marker replacing:
{ call VB_0 [ PRP_0, NN_0 ] }

VB_0

NN_0

DT_0

PRP_0

Give

pen

the

me

T1: Pick up the pen from the table

the

table

from

the

up

Pick

pen

VB_0

RP_0 NN_0

NN_1DT_0

IN_0 DT_1

Give

me pen

the pick

which you can up table

root_VB_0 ( 
iobj_PRP_0, dobj_NN_0 ( 

det_DT_0, acl:relcl_VB_1 (
dobj_WDT_0,
nsubj_PRP_1, 
aux_MD_0,
compound:prt_RP_0,
nmod:from_NN_1 (

case_IN_0, det_DT_1 

T2: Give me the pen

IN_0 DT_1 )
)

)
)

{

}

from the

Fig. 5     Generating a new template for Case 2
 

 

Tokens:
Markers:

T1:

T2:
New template: root_VB_0 (

    iobj_PRP_0,
    dobj_NN_0 (
          det_DT_0, 
          nmod:on_NN_1 (
                 case_IN_0,
                 det_DT_1 

Give me the pen on the table
VB_0
Pick up the pen
from the table

{ call VB_0 [ NN_0, NN_1 ] }

Give me the pen

IN_0NN_0DT_0PRP_0 DT_0 NN_1

{ call VB_0 [ PRP_0, NN_0 ] }

call Unknown
[ NN_0,  NN_1 ] ,
call VB_0
[ PRP_0, NN_0 ]

}
)

)
)

{

 
Fig. 6     Generate a new template for Case 3, “Unknown” is used
to represent the missing action
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2) A static mapping table.  Such as “last one”, which

would  be  mapped  to  an  integer  type  value  “–1”,  and

“meter”, which would be mapped to a measurement type

value.

Table 1 shows all of the parameters found in the three

cases, such as the token “5” for marker “CD_0”, which is

mapped to an integer type value based on regular expres-

sions, and the token “meters” for marker “NNS_0”, which

is  mapped  to  a  measurement  type  value  based  on  the

static mapping table.

Function marker instantiation. After assigning all

parameter  markers  with  typed  values,  the  synthesizer

tries to find a robot instruction for the function marker.

In order to find the correct robot instruction to instanti-

ate  the  function  marker,  we  need  to  annotate  the  robot

instructions with two kinds of information:

1)  Parameter  type signatures  of  the instruction.  This

gives the  information  that  determines  how  many  para-

meters  this  instruction  would  take  in  and  what  their

types are.

2) Keywords to summarize the function of the instruc-

tion.  We  will  extend  the  keywords  set  automatically  by

searching their synonyms from WordNet1.

The instantiation of the function markers is robot-de-

pendent.  Suppose  the  target  robot  has  5  instructions  as

shown in Table 2. The synthesizer would instantiate the

function markers in two steps. First, the synthesizer finds

a set of instruction candidates that are possible to instan-

tiate the function marker. Then, it selects the best one by

a ranking strategy.

Algorithm 3. Choosing the best robot instruction

P IInput: Parameter type set ; robot instruction set .

IOutput: The  best-matched  robot  instruction  to

replace the function marker.

C ← ∅1)     /*Candidate set*/

I ∈ I2) for each  do

PI ← GetParameterTypeList(I)3)　

|PI | = |P |4)　if  then

P̃I ← {Pi
I |Pi

I ∈ PI ,Pi ∈ P , type(Pi
I) ̸= type(Pi)}5)　　

P̃I = ∅6)　　if  then

C ← C + I7)　　　

8)　　end if

9)　end if

10) end for

C = ∅11) if  then

12)　ReportError()

∅13)　return 

14) end if

C̃ ← SortByRanking(C)15)  /*Ranking  strategy  based

on tokens*/

C̃[0]16) return 

CAlgorithm  3  shows  the  process.  The  candidates 

should satisfy the type constraint,  which means:  a robot

instruction is a potential choice for instantiating the func-

tion  marker  only  when  1)  the  instruction  has  the  same

number of parameters as the number of parameter mark-

ers in the logical skeleton (Line 4), and 2) there are values

that  are  identified  and whose  types  are  the  same as  the

type signatures of the instruction parameters (Lines 5–8).

C

We use a ranking strategy to choose the best-matched

one from  (Line 15).  We first  collected all  correspond-

ing tokens for the markers in the logical  skeleton, which

includes a list of parameter marker tokens and a function

marker  token.  If  the  function  marker  is  “Unknown”,  it

 

Table 1    Parameters found in the three cases

Exclude Marker Token Value Type Method

1 CD_0 5 5 Integer Regular expression

1 NNS_0 meters meter Measurement Static mapping table

1 RB_0 forward forward Direction Static mapping table

2, 3 PRP_0 me Master Person Static mapping table

2, 3 NN_0 pen pen SmallObject Static mapping table

2, 3 NN_1 table (x, y) Coordinate Static mapping table
 

 

Table 2    Instructions provided by the target robot

Number Instruction Type signatures Keywords

1 Move Integer, Measurement, Direction MOVE, GO, WALK

2 GrabFromTable SmallObject, Coordinate GRUB, PICK, TABLE

3 GrabFromHanger SmallObject, Coordinate GRUB, PICK, HANGER

4 Drop SmallObject, Coordinate DROP, LAY, OFF

5 Give SmallObject, Person GIVE, BRING
 

1WordNet provides a synonym searching service for English.

Refer to https://wordnet.princeton.edu/ for further information.
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would be omitted.  Then, the synthesizer would rank the

instruction candidates by comparing the collected tokens

with the keywords of  each instruction candidate.  A can-

didate  will  get  a  higher  score  if  its  keyword  tags  match

more word tokens.  Finally,  the synthesizer  would choose

the best-matched instruction with the highest score.

Table  3 shows  the  synthesized  logical  forms  for  the

three cases. For example, the logical skeleton “call VB_1
[NN_0,  NN_1]”  of  Case  2  has  two  parameter  markers,

“NN_0”  and  “NN_1”.  Their  corresponding  tokens  are

“pen”  and “table”,  which  would  be  mapped to  a  Small-

Object  type  value  and  a  Coordinate  type  value

(see Table 1). According to Algorithm 3, there are three

candidates to instantiate “VB_1”, i.e., instructions 2–4 in

Table 2, because they all satisfy the type constraint. The

GrabFromTable instruction  gets  the  highest  score  with

the ranking strategy, since it has two matched keywords,

“PICK” and “TABLE”. As a result, the function marker

“VB_1” is instantiated with GrabFromTable. Finally, we

get  the  synthesized  logical  form  “call  GrabFromTable

[pen, (x, y)]”.

4   Evaluation

4.1   Environment setup

Preparing on robot. We deploy Holert on a Turtle-

bot 2  robot.  This  robot  has  a  Kobuki  base,  which  sup-

ports  basic  movement  instructions.  We  use  ROS  as  the

message-passing system on this  robot.  Holert  works as  a

ROS node  that  receives  user  task  descriptions  and  pub-

lishes robot instructions. We also implemented two assist-

ant nodes to make the system more practical. One is the

user-interface node that interacts with users by automat-

ic  speech  recognition  (ASR)  and  text-to-speech  (TTS)

tools. The other is the robot-control node that translates

the  logical  form  to  robot  instructions  and  maintains  a

navigation instruction queue to be executed.

The Kobuki basic movement instructions are machine-

related and  control  the  linear  and  angular  velocity  dir-

ectly.  In  order  to  enable  the  users  to  interact  naturally

with  the  system,  we  defined  and  implemented  8  user-

friendly instructions (see Table 4). Those instructions are

close to natural language.

Constructing the initial template library. We

tagged  the  8  extended  instructions  with  type  signatures

and keywords as shown in Table 4. For each instruction,

we use multiple natural language task descriptions to ex-

press  it.  For  example,  the rotate (Direction)  instruction

can  be  expressed  as  “turn  left”,  “turn  to  the  left”  or

“make  a  left  turn”.  Then  we  extract  the  dependency

models of these descriptions and assigned a logical skelet-

on for  each  manually,  which  make  up  the  initial  tem-

plate library.

 

Table 3    Logic forms for the three cases

Case Logic skeleton Logic form

1 {call VB_0 [CD_0, NNS_0, RB_0]} {call Move [5, meter, forward]}

2 { {

　call VB_1 [NN_0, NN_1], 　call GrabFromTable [pen, (x, y)],

　call VB_0 [PRP_0, NN_0] 　call Give [pen, Master]

} }

3 { {

　call Unknown [NN_0, NN_1] , 　call GrabFromTable [pen, (x, y)],

　call VB_0 [PRP_0, NN_0] 　call Give [pen, Master]

} }
 

 

Table 4    Extended movement instructions for Turtlebot 2

Number Instruction Brief descriptions Parameter type signatures Keywords

1 go Keep going until receiving the stop instruction Direction GO, WALK, MOVE

2 go Walk a certain distance Integer, Measurement GO, WALK, MOVE

3 rotate Turn left/right/back Direction TURN, ROTATE

4 rotate Turn left/right at a certain degree/radian Direction, Integer, Measurement TURN, ROTATE

5 speed Speed up/down Boolean SPEED, FAST, QUICK, SLOW

6 rotateSpeed Rotate speed up/down Boolean ROTATE, TURN, SPEED, FAST, SLOW

7 charge Go to charge itself Coordinate CHARGE

8 stop Stop action ∅ STOP, QUIT, SHUTOFF
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Collecting task descriptions. We invited 10 volun-

teers to interact with the robot and to give 20 navigation

instructions.  The  volunteers  were  separated  and  did  not

know the  dialogue  content  of  others.  Finally,  we  ob-

tained 129 unique navigation instructions.

4.2   Accuracy

Table 5 shows the experimental accuracy of Holert on

the  129  user-collected  cases.  In  order  to  test  the  Holert

node  individually,  we  manually  omit  the  influence  of

speech  recognition  errors.  In  practice,  all  the  dialogues

(text mode) are delivered to a supervisor (human) at the

same time. If the speech recognition errors appeared from

the  user-interface  node,  the  supervisor  would  ask  the

users to repeat their requests. We first run Holert on the

129  cases  without  the  tutor  mode.  Only  36  out  of  129

(27.9%) can  be  handled  directly  using  the  initial  tem-

plate  library.  Then,  we  turn  on  the  tutor  mode  partly

without  the  support  of  the  two  special  situations  that

were discussed in Section 3.4. Holert can successfully syn-

thesize correct robot instructions for 79 (61.2%) cases. Fi-

nally, we  turn  on  the  support  for  the  two  special  situ-

ations,  and the  accuracy rate  has  been further  increased

to 73.6% (95  out  of  129).  Overall,  the  experimental  res-

ult shows that the system accuracy could be improved by

163.9% with the support of tutor mode.

4.3   Efficiency

In Holert, a task description would be split into a set

of  sentences,  as  the  sentences  are  the  basic  units  to  be

handled. As shown in Fig. 7, the more sentences included

in a task session, the more execution time is needed, and

this relation is almost linear. Besides, Holert can respond

to users  in a short  period of  time.  Most  of  the task ses-

sions,  which contain no more than 4 sentences,  could be

handled  within  0.2 s.  Even  the  longest  task  session  with

10 sentences could be handled within 0.7 s.

4.4   User effort

We  first  define  the  user  effort  of  explaining  a  single

sentence  and  a  task.  Then  we  will  show  the  user  effort

statistics of explaining the 129 user-collected task descrip-

tions.

S D(S)
In Holert,  the  user  effort  of  explaining  a  single  sen-

tence  is  defined  as  the  depth  of  the  dialogue 

(Q/A rounds to understand the sentence), which is calcu-

lated  using  (1).  The  user  effort  of  explaining  a  task  is

equal to explaining its most complicated sentence.

D(S) =



0,
if the dependency model of S falls in the
template library

1,
if explained in a single sentence

Max(D(S1), D(S2), · · · , D(Sn)) + 1,
if explained in multiple sentences S1S2 · · · Sn.

As  shown  in Table  6,  Holert  is  easy  to  use.  In  most

situations  (117/129),  the  tutor  process  can  end  up  with

no more than 2 Q/A rounds, and the robot can success-

fully  understand  most  of  them  (92/117).  In  a  few  cases

(12/129),  when  the  user  effort  reaches  3  (4),  it  becomes

more and more difficult to find a corresponding mapping

relation between the  original  sentence  and the  explained

sentences.  As  a  result,  the  accuracy  of  Holert  rapidly

dropped to 30% (0%).

4.5   Successful task cases

4.5.1   Simple tasks without tutor mode

Table  7 shows  some  simple  task  cases  that  could  be

handled directly without tutor mode. The second column

gives the task description. The third column lists the in-

structions involved. There are 43 templates in the initial

 

Table 5    Accuracy of the 129 user-collected cases

Without tutor
mode

Tutor mode
(partly)

Tutor
mode

Successful cases 36 79 95

Accuracy 27.9% 61.2% 73.6%
 

 

Table 6    User effort of explaining the 129 tasks

User effort (Depth of dialogue) Count Successful cases Accuracy

0 36 36 100%

1 55 40 72.7%

2 26 16 61.5%

3 10 3 30%

4 2 0 0%

Total 129 95 73.6%
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Fig. 7     Efficiency  analysis.  Each  black  dot  in  the  figure
represents  a  task. The X-axis  is  the number  of  total  sentences
handled in the task session, which includes sentences both in the
original task description and in the tutor mode dialogue. The Y-
axis  is  the  execution  time  in milliseconds. The  user′ s  response
time in tutor mode is omitted.
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template  library.  The  last  column  shows  the  matched

template IDs for these task sentences.

As shown in the last column of Table 7, the depend-

ency  model  is  capable  of  expressing  multiple  task  types.

For  example,  “Move”  and  “Stop”  share  the  same

matched  template.  “Move  3  meters  ahead”  and  “Go  5

meters forward” also share the same matched template.
4.5.2   Complex tasks with tutor mode

We choose  three  complex  task  cases  to  show the  tu-

tor mode in different situations.

Explanations in a single sentence. As  shown  in

Fig. 8, the user ordered the robot to turn back with “Can

you  turn  back”  and  explained  it  in  only  one  sentence

“Turn back please”. However, the initial library does not

contain  the  matched  template.  Therefore,  Holert  starts

the radical strategy to randomly delete some nodes in the

dependency tree  of  the  sentence  and get  a  list  of  poten-

tial  candidates  ([“turn  back”,  “turn  please”,  “back

please”]). After searching each candidate in the template

library,  only  “turn  back”  has  a  matched  template.  So

Holert  asked  the  user  for  confirmation.  Then,  it  used

“turn back” as the explanation for “Can you turn back”.

Finally,  the  tutor  mode  generated  a  new  template  for

“Can you turn back” and executed the order successfully.

Conjunction words. Fig. 9 shows how to handle the

conjunction  words,  such  as  “and”,  in  Holert.  The  user

ordered  the  robot  to  “Turn  30  degrees  left  and  move

ahead”.  Although  it  is  straightforward  for  humans  that

the  task  can  be  split  into  two  smaller  tasks  of  “turn  30

degrees left”  and  “move  ahead”,  Holert  cannot  under-

stand the word “and”.  Since Holert  neither  analyzes  the

sentence grammatically  nor  tries  to  understand  the  de-

pendency relations  semantically,  it  only  extracts  the  de-

pendency model for the entire sentence and cannot find a

matched template. In this case, the tutor mode is needed.

Explain in split sentences recursively. As  shown

in Fig. 10,  the  user  gave  a  complex  task  sentence  “Turn

back after going 1 meter to the left”. Holert searched the

template  library  and  failed  to  find  a  matched  template.

Therefore, tutor mode is started. The user explained the

sentence with two simpler sentences. 1) Go 1 meter to the

left.  2)  Turn  back.  However,  Holert  cannot  find  a

matched template  for  the  first  sentence.  So  it  starts  the

tutor  process  for  the  first  sentence  recursively.  After

learning  the  template  of  the  first  task,  Holert  generates

the final template for the original task sentence.

4.6   Analysis on failed cases

We  analyzed  the  failed  cases  and  found  three  main

reasons causing these failures:

1) Undefined robot instructions. For example, the user

asked the robot to “go upstairs”. However, the robot can

only walk on the ground and does not provide an instruc-

tion  like  “upstairs”.  In  this  case,  Holert  could  only  find

the corresponding  logical  skeleton  but  failed  to  synthes-

ize the correct logical form.

2)  Undefined  template  for  robot  instructions.  The

template  library  is  the  knowledge  base  of  Holert.

However,  the  initial  temporary  library  is  constructed

manually.  Although  efforts  have  been  made  to  express

the 8 basic instructions with descriptions that have differ-

ent dependency models, it is still highly possible that we

would  miss  some  of  them,  since  the  natural  language  is

too flexible to enumerate them all.

3)  Tiny  changes  to  the  dependency  model.  Holert  is

dependency-sensitive. The  dependency  model  is  extrac-

ted  based  on  the  Stanford  dependency  analysis  of  the

task sentences.  The Stanford parser  defined 45 main de-

pendency relations between the governor and dependent.

Tiny changes to the sentence could lead to a different de-

pendency model. For example, “turn left” and “turn left

please” have  the  same  semantic  meaning  but  their  de-

pendency models are different.

5   Limitations and future works

In addition to the limitations discussed in Section 4.6,

 

Table 7    Simple task cases without tutor mode

No. Task description Instruction Template ID

1 Move 3 meters ahead go 3

2 Turn back rotate 12

3 Turn 45 degrees to the left rotate 17

4 Go 5 meters forward. Turn back. go, rotate 3, 12

5 Turn left at 45 degrees. Move. rotate, go 19, 1

Move slower. Stop. Go to charge. speed, stop, charge 24, 1, 41
 

 

User:
Robot:

User:
Robot:

User:
Robot: OK, I see.

Yes.
Do you want me to turn back?
Turn back please.
Sorry, can you explain the order?
Can you turn back?

 
Fig. 8     Part of the dialogue with the user (Ⅰ)

 

 

User:
Robot:

User:
Robot:

Turn 30 degrees left and move ahead.
Sorry, can you explain the order?
Turn 30 degrees left. Move ahead.
OK, I see.

 
Fig. 9     Part of the dialogue with the user (Ⅱ)

 

 

User:
Robot:

User:
Robot:

User:
Robot:

Turn back after going 1 meter to the left.
Sorry, can you explain the order?
Go 1 meter to the left. Turn back.
Sorry, can you explain the order "Go 1 meter to the left"?
Turn left. Go 1 meter forward.
OK, I see.

 
Fig. 10     Part of the dialogue with the user (Ⅲ)
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Holert has another three limitations.

Although the enhanced template used in Holert is do-

main-independent, we still need to manually annotate the

robot  instructions  with  parameter  type  signatures  and

some keywords to support the synthesis algorithm. In the

future, we will try to extract the parameter type informa-

tion and keywords automatically from the robot instruc-

tion documents.

Another limitation results from the ambiguity of nat-

ural  language.  The  extraction  of  the  dependency  model

depends  on  the  correct  dependency  analysis  by  NLP

tools. Although Holert uses the state-of-art Stanford NLP

tools, the  parser  may fail  to  extract  the  correct  depend-

ency model because of the ambiguity of natural language.

If  the parser  made the wrong analysis,  Holert  would get

the wrong result as well. We will pay attention to the de-

velopment  of  NLP techniques  and  keep  updating  Holert

with better NLP tools.

Finally,  a  radical  strategy  is  used  in  the  situation  of

explaining  in  a  single  sentence,  which  aims  to  overcome

the  dependency-sensitive  problem.  The  strategy  would

randomly  delete  some  nodes  from  the  dependency  tree,

with  the  hope  that  the  remaining  tree  not  only  reserves

the  semantic  meaning  of  the  original  sentence  but  also

has a corresponding template in our library. However, the

number  of  nodes  to  be  deleted  is  at  most  half  of  the

length of the sentence, which is an empirical value. If we

delete too many nodes,  there is  a risk that the semantic

meaning  of  the  original  sentence  would  be  changed.

Therefore, this solution is not good enough. In our future

work, we will try to find a better strategy to solve the de-

pendency-sensitivity  problem,  such  as  slightly  modifying

the  dependency  tree  of  the  original  sentence  to  find  a

“nearby” logical skeleton in the template library.

6   Related work

Human-robot  interactive  systems  are  a  critical  and

widely-studied aspect of domestic robots, and natural lan-

guage  instructions  are  a  key  component  of  human-robot

interaction.  Previous  studies  have  treated  the  task  as  a

problem of parsing natural language descriptions into ma-

chine-interpretable logical forms.

Several systems parse natural language descriptions to

sequences  of  atomic  actions  that  must  be  grounded  into

fully  specified  world  models.  Look  et  al.[25] presented  an

ontology that addressed the problem of expressing the se-

mantics that define how a particular space is used. Kollar

et al.[26] extracted a sequence of spatial description clauses

from natural language input with given information about

the environmental geometry and detected visible objects,

and then used a probabilistic model to connect them to-

gether to find a path for the robot. These approaches as-

sume an  initial  knowledge  map,  which  describes  a  com-

plex  indoor  environment  with  object  and  land-marks.

Other systems are heavily dependent on high-quality lex-

icons, manually-built templates or linguistic features. For

example,  Bugmann et  al.[27] implemented  an  instruction-

based learning (IBL) system with 15 primitive functions,

each  of  which  had  a  fixed  parameter  list.  MacMahon  et

al.[28] inferred a set of pre-defined actions from the know-

ledge of both linguistic conditional phrases and local con-

figurations.  Rybski  et  al.[29] proposed  a  system  that  can

learn simple action scripts from natural language, but the

instructions must follow a pre-defined grammar. Matuszek′s
work[11] trained a parser based on example pairs of natur-

al language orders and corresponding control language ex-

pressions. The parser allowed a robot to interpret naviga-

tion instructions  online  while  moving  through  a  previ-

ously  unknown  environment.  In  contrast  to  our  work,

users of these systems are usually required to use a set of

predefined  keywords,  templates  and  grammar.  Besides,

most of these approaches rely on a manually constructed

parser, rather than learning relations from dialogues.

Some  systems  also  teach  robots  new  knowledge

through  dialogues.  They  are  similar  to  how  our  tutor

mode works but with a different focus. Thomason et al.[30]

used  a  three-component  (action,  patient  and  recipient)

template  to  support  two kinds  of  robot  actions  (walking

and bringing items). The learning system in this work fo-

cused on  lexicons.  It  learned  new  lexical  items  by  map-

ping  them  to  the  three  components  through  dialogues.

She  et  al.[31] focused  on  learning  new  actions.  Through

dialogues, users of this system can teach the robot how to

construct complicated  actions  with  three  primitive  ac-

tions.  Unlike  this,  Holert  focuses  on  the  grammatical

structure of natural language. It learns new grammatical

structures  through  finding  the  relationship  between  the

dependency models of original sentences and explanation

dialogues.

Recently, some researchers have tried to solve the se-

mantic parsing  problem  with  machine  learning  tech-

niques.  Dong  and  Lapata[16] presented  an  encoder-de-

coder neural  network  model  for  mapping  natural  lan-

guage  descriptions  to  their  meaning  representations.

Their  model  encoded  natural  language  descriptions  into

vectors and generated logical forms as sequences or trees

using  recurrent  neural  networks  with  long  short-term

memory units.  Grefenstette  et  al.[32] proposed a different

architecture for  semantic  parsing  based  on  the  combina-

tion  of  two  neural  network  models.  The  first  model

learned the  shared  representations  from  pairs  of  ques-

tions and their translations into knowledge-based queries,

whereas the  second  model  generated  the  queries  condi-

tioned on the learned representations. However, these ap-

proaches  rely  on  big  annotated  datasets  and  efficient

training algorithms  in  the  training  phase.  Besides,  ad-

versarial  inputs  would  make  them  vulnerable  and  cause

the neural networks to misclassify[33, 34].

7   Conclusions

In  this  paper,  we  proposed  an  interactive  tutoring
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framework  named  “Holert”  for  human-robot  interaction.

The main idea is  to enable the robot to learn from end-

user  explanations  under  a  novel  designed  tutor  mode.

With the tutor mode, the users can teach their robot new

skills  through  dialogues.  Developer  supports  are  not

needed  in  this  process,  which  would  save  a  significant

amount of time and manual work. The experimental res-

ult on Turtlebot 2 shows that Holert can successfully syn-

thesize correct instructions for 73.6% of the task descrip-

tions collected and that the system accuracy could be im-

proved  by  163.9%  with  the  support  of  the  tutor  mode.

Furthermore,  the  process  is  efficient.  Even  the  longest

task session, which contains 10 sentences, can be handled

within 0.7 s.
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