

Synthesizing Robot Programs with Interactive Tutor Mode

Hao Li Yu-Ping Wang Tai-Jiang Mu

Tsinghua National Laboratory for Information Science and Technology (TNList), Department of

Computer Science and Technology, Tsinghua University, Beijing 100084, China

Abstract: With the rapid development of the robotic industry, domestic robots have become increasingly popular. As domestic robots
are expected to be personal assistants, it is important to develop a natural language-based human-robot interactive system for end-users
who do not necessarily have much programming knowledge. To build such a system, we developed an interactive tutoring framework,
named “Holert”, which can translate task descriptions in natural language to machine-interpretable logical forms automatically. Com-
pared to previous works, Holert allows users to teach the robot by further explaining their intentions in an interactive tutor mode. Fur-
thermore, Holert introduces a semantic dependency model to enable the robot to “understand” similar task descriptions. We have de-
ployed Holert on an open-source robot platform, Turtlebot 2. Experimental results show that the system accuracy could be significantly
improved by 163.9% with the support of the tutor mode. This system is also efficient. Even the longest task session with 10 sentences can
be handled within 0.7 s.

Keywords: Human-robot interaction, semantic parsing, program synthesis, intelligent robotic systems, natural language unders-
tanding.

1 Introduction

Modern domestic robots are expected to be personal

assistants in the near future[1–3]. Although robots become

more capable of performing different kinds of tasks[4, 5], it

is still not convenient for end-users to instruct their ro-

bots to accomplish tasks as needed without programming

knowledge.

Some studies help end-users with visual programming

systems[6–8], which provide abstract building blocks em-

bodying robot behavior. However, these systems still take

the end-users a significant amount of time to learn the

usage of each building block and to think about how to

combine those blocks in a logical order.

Currently, building a natural language-based human-

robot interactive system is increasingly appealing to end-

users[9], because this is a rich and intuitive method with

which end-users can offer sufficient and flexible instruc-

tions to support robot task planning[10, 11].

To develop such systems, many studies have focused

on semantic parsing techniques that aim to translate nat-

ural language task descriptions into machine-inter-

pretable logical forms. Traditional approaches[12–15] are of-

ten domain-specific or representation-specific. These ap-

proaches are heavily dependent on high-quality lexicons,

manually-built templates and linguistic features[16].

Therefore, users of these systems are usually required to

use a set of predefined keywords, templates and grammar.

When it comes to undefined situations, the developer

would have to manually add new keywords, templates or

grammar to expand the representational ability of their

system. Modern approaches[17–21] use machine learning

methods to train a neural network for semantic parsing.

However, these approaches rely on a large annotated

dataset and efficient training algorithms during the train-

ing phase. Although the machine learning methods are

general for different domains, they still need to collect

and annotate domain-specific data and train new models.

Since the user demands change frequently, domestic

robots are expected to perform different kinds of tasks as

the user requires. However, previous semantic parsing

methods rely on the developers to update their system for

undefined situations. This process is time consuming and

inconvenient for users, especially for emergency situ-

ations, because the developers must be involved to solve

the problems. The ideal semantic parsing system should

be capable of extending itself automatically to support

users′ demands in undefined situations.

In this paper, we proposed an interactive tutoring

framework, named “Holert”, which allows users to teach

the robot by further explaining their intentions. If the ro-

bot cannot understand a complex sentence in the task de-

scription, users can explain the complex sentence with

several simple sentences. Holert can automatically identi-

fy the corresponding relationship between the explained

sentences and the original one. This process runs recurs-

ively until the robot understands all of the sentences in a

task description.

In order to realize this tutoring system, we defined a

Research Article

Manuscript received March 2, 2018; accepted August 8, 2018;
published online November 6, 2018
Recommended by Associate Editor James Whidborne

© Institute of Automation, Chinese Academy of Sciences and
Springer-Verlag GmbH Germany, part of Springer Nature 2018

International Journal of Automation and Computing 16(4), August 2019, 462-474
DOI: 10.1007/s11633-018-1154-7

semantic dependency model to enhance the traditional

templates. There are three advantages of introducing the

dependency model. 1) The dependency model can help in

finding the relationship between the user′s original task

description and the explanation dialogue, which is the key

for the tutoring procedure. 2) After tutoring, the newly

generated template enhanced by the dependency model

can be applied not only to the demand just explained,

but also to demands with similar grammatical structures.

3) Templates enhanced by the dependency model are

more general, which could decrease the amount of manu-

ally designed initial templates.

In conclusion, the contribution of this paper lies in the

following aspects:

1) We proposed an interactive tutoring approach for

semantic parsing, which has two major advantages com-

pared to previous approaches: a) Interactive tutor mode.

In order to handle the user′s demands in undefined situ-

ations, new templates can be generated from the guid-

ance of users in an interactive procedure. b) Dependency

model. The dependency model is carefully designed ac-

cording to the characteristics of natural language. Tem-

plates enhanced by the dependency model can identify

sentences that have the same semantic characteristics.

2) We implemented a framework named “Holert”,

which can synthesize robot programs from task descrip-

tions in a short period of time. Furthermore, Holert works

as a robot operating system (ROS)[22] node so that it can

be easily deployed on different robot platforms.

3) We deployed Holert on an open-source robot plat-

form, Turtlebot 2. We collected 129 unique navigation

task descriptions from volunteers. The experimental res-

ults show that the system accuracy could be improved by

163.9% with the support of the tutor mode.

The rest of this paper is organized as follows. The mo-

tivation of this work is presented in Section 2. Section 3

explains the idea of Holert in detail. In Section 4, Holert

was deployed on an open-source robot platform and eval-

uated with 129 task descriptions. Section 5 discusses the

limitations and future works. Section 6 introduces the re-

lated work. Section 7 concludes this paper.

2 Motivation

Imagine a possible scenario for domestic robots where

an aged man is confronted with a heart attack. He needs

his robot to call the emergency center immediately, and

reach out to neighbors for help.

In this situation, asking developers to implement a

new robot application or using a visual programming sys-

tem himself does not work, since it is time consuming and

this aged man might not have enough time under heart

attack conditions.

Natural language-based human-robot interactive sys-

tems would be a better way to complete the task. The

aged man could describe his demand in natural language,

such as “Call the emergency center. Go out of the house

and ask the neighbors for help”. Then the task descrip-

tion would be translated into robot instructions and ex-

ecuted exactly as desired.

With the traditional template-based approaches, the

system may not understand every sentence. In this situ-

ation, the aged man has to ask the developers to update

the system with new templates. This procedure may take

days or even weeks to design and test the new templates,

which is not acceptable in this case.

As to the neural network-based approaches, similar

sentences may not exist in the training set. In this situ-

ation, the system may respond with incorrect actions, and

the aged man would have to ask the developers to re-

train the model by adding this case into the training set.

This procedure may also take a lot of time.

In an ideal system, the aged man can further explain

the original task “go out of the house” with simpler tasks,

such as “go to the door of the house”, “open the door”

and “go 1 meter forward”. If the system can understand

these three simpler tasks, it should understand the origin-

al task. Furthermore, the system should also have the

ability to understand similar sentences such as “go out of

the room” without the need of further explanation next

time.

To realize this system, some challenges remain to be

solved:

1) In the tutoring procedure, how to find the corres-

ponding relationship between the original sentence and

the explained sentences automatically, and generate a

new template for the original sentence?

2) How to design a general template that can cover as

many similar sentences as possible?

3) The system should be highly accurate and efficient.

To overcome these challenges, we propose Holert. We

will discuss the details of Holert in Section 3.

3 Approach

In this section, we will first introduce the architecture

of Holert and then discuss the details of each part.

3.1 Architecture

As shown in Fig. 1, Holert works as a middle layer

between users and robots. It is designed to accept task

descriptions from users and output machine-interpretable

logical forms to robots. Holert consists of four main parts:

natural language (NL) parser, template library, tutor

mode and synthesizer.

1) NL parser extracts dependency models from sen-

tences of the task description. The dependency model is

designed to express the inner dependency relations

between word tokens of a sentence. This part will be

presented in Section 3.2.

2) Template library maps dependency models to logic-

H. Li et al. / Synthesizing Robot Programs with Interactive Tutor Mode 463

al skeletons. A logical skeleton is the skeleton of a logical

form. A key insight of Holert is that if two sentences

share the same dependency model, they should have the

same logical skeleton. This part will be presented in

Section 3.3.

3) Tutor mode tries to learn new templates through

dialogue with users. With the tutor mode, Holert can ex-

pand the template library automatically. This part will

be presented in Section 3.4.

4) Synthesizer generates target logical forms from lo-

gical skeletons and word tokens of the original sentences.

This part will be presented in Section 3.5.

S

LS S

LF

Algorithm 1 shows the process of generating logical

forms from task descriptions with Holert. First, a task de-

scription is split into a sequence of sentences (Line 2).

Second, the function GetLogicSkeleton is invoked to ob-

tain a logical skeleton from each sentence (Line 5).

The function will first extract the dependency model of

the sentence (Line 12) and then search the template lib-

rary for a corresponding logical skeleton (Line 13). If no

corresponding logical skeleton is found from the template

library, tutor mode would be started to obtain the logic-

al skeleton of this sentence (Line 15). Finally, the target

logical form would be synthesized in Line 6 and added to

the logical form set in Line 7.

Algorithm 1. Generating logical forms from task descrip-

tions

T TL.Input: Original task description ; template library

LFOutput: Logic form set of original task description.

T1) function MAIN()

S ← SentencesAnnotation(T)2)　

LF ← ∅3)　

S ∈ S4)　for each do

LS ← GetLogicSkeleton(S,TL)5)　　

LF ← Synthesizer(S,LS)6)　　

LF ← LF + LF7)　　

8)　end for

LF9)　return

10) end function

S11) function GETLOGICSKELETON()

DM← GetDependencyModel(S)12)　

LS ← TL.get(DM)13)　

LS = ∅14)　if then

LS ← TutorMode(S)15)　　

16)　end if

LS17)　return

18) end function

We will further explain the algorithm through the

three task cases below. Suppose that Case 1 can find a

matched template in the template library. Cases 2 and 3

are complex sentences for which Holert needs to learn

new templates with the tutor mode.

Case 1. Move 5 meters forward.

Case 2. Give me the pen which you can pick up from

the table.

Case 3. Give me the pen on the table.

3.2 NL parser and dependency model

We notice that even though some task descriptions

are about different operations on different objects, such

as “open the door” and “break the window”, they share

the same dependency relations between word tokens. So

we can design a general model based on the dependency

relations to cover similar task descriptions. This is the de-

pendency model used in Holert. In this model, we replace

word tokens with their part-of-speech (POS) tags[23], be-

cause POS tags are more general than word tokens. For

example, verb tags can represent different operations like

“open” and “break”, while noun tags can represent differ-

ent objects like “door” and “window”.

The NL parser extracts the dependency model from a

task sentence in four steps. Fig. 2 shows the process for

Case 1.

User interface

NL task
description NL parser Dependency

model
Template

library

Tutor mode
Not found

New
template

Dialog

Logical
skeletonLogical form Synthesizer

 Found

Add

Searching
template
library

Holert

Word tokens

Robot interface

Fig. 1 Architecture of Holert. Holert accepts task descriptions from users and translates the natural language-based descriptions into
machine-interpretable logical forms through four main parts: NL parser, template library, tutor mode and synthesizer.

 464 International Journal of Automation and Computing 16(4), August 2019

S
T = T1, T2, · · · , T|S|

Pt = P 1
t , P

2
t , · · · , P

|S|
t

Ti

⟨
Ti, D

j
i , Tj ⟩ Dj

i

Tj

Ti

⟨forward, advmod,Move ⟩

1) We use Stanford natural language processing

(NLP) tools[24] to split the sentence into word tokens

(), tag each token with POS tags

(), and parse the sentence into a de-

pendency tree. Each word token corresponds to a node

on the tree. The dependency tree provides dependency re-

lations between word tokens in the sentence. The depend-

ency relation is defined as a triplet , where

is the dependency relation between the governor node

and the dependent node . For example, the depend-

ency relation between nodes “Move” and “forward” is

represented as .

⟨
P i
t , D

j
i , P

j
t ⟩

2) We replace word tokens with their POS tags.

Therefore, the dependency relation triplet is transferred

to . For example, the token “Move” is re-

placed by “VB”, which means a verb, and “forward” is

replaced by “RB”, which means an adverb.

3) In order to remove the isomorphism of the tree

structure, we give each node a hash value and keep an in-

creasing order between sibling nodes.

Iit

P i
t Iit

Mi Ti

4) We traverse the tree in order and assign an index

number to each kind of POS tag according to the ac-

cess sequence, so that each node on the tree is unique.

That means the first visited “NN” node is assigned an in-

dex number “0”, and the second visited “NN” node is as-

signed an index number “1”, etc. We define _ as the

marker of the word token . After this step, the tree

is called a dependency model in this paper.

Dj
i Mi

Ti Dj
i

Ti Tj Mi

Ti

To find a dependency model more quickly, we use an

equivalent string-representation of the dependency model

instead of the tree-representation. The string-representa-

tion is an in-order traversal of the tree. We first visit the

root of the tree and then visit its children recursively

from left to right. _ are used to represent the vis-

ited nodes , where is the dependency relation

between and its governor node , and is the mark-

er of . Specifically, the dependency relation of the root

node is represented as “root”. Parentheses are used to

show the governor-dependent relations between nodes.

For example, the string-representation of the depend-

ency model for “Move 5 meters forward” is:

root_VB_0 (dobj_NNS_0 (nummod_CD_0), advmod_
RB_0).

3.3 Template library

The template library is a set of templates. Each tem-

plate is a key-value pair, where the key is a dependency

model and the value is a corresponding logical skeleton.

The template library is initialized manually based on

the instructions of the target robot. We construct the ini-

tial template library with three steps:

1) List all of the instructions of the target robot and

collect different expressions of the instruction in natural

language descriptions.

2) Extract dependency models from these descriptions.

3) Assign each dependency mode with a correspond-

ing logical skeleton manually.

For example, suppose the target robot has a “Move”

instruction, and the instruction has three parameters, in-

cluding an integer type distance value, a measure unit

and a direction. The possible natural language expression

of the instruction could be “go 35 feet backward”. For

this task description, the robot is expected to execute the

instruction “Move(35, feet, backward)”. We first extract

the dependency model of the task description. Then we

replace the name and parameters of this instruction with

corresponding markers in the dependency model. For ex-

ample, “go” is the action word that indicates the “Move”

instruction and its marker is “VB_0”, so we replace

“Move” with “VB_0”. Similarly, we replace the paramet-

ers with corresponding markers “CD_0”, “NNS_0” and

“RB_0”. Finally, we manually construct a template for

“go 35 feet backward”, which is shown in Fig. 3.

3.4 Tutor mode

In this subsection, we will explain the tutor mode us-

ing Cases 2 and 3.

Dependency model: root_VB_0 (dobj_NNS_0 (nummod_CD_0), advmod_RB_0)

POS tags: VB CD NNS RB
Dependency tree:

Move

advmod dobj

forward Meters

5

VB VB VB_0

NNS_0 RB_0

CD_0

advmod advmod advmoddobj dobj dobj

RB NNS RBNNS

nummod nummod nummod

CD CD

(1) Original dependency tree (2) Replacing tokens
with POS tags

(4) Assigning an index number
to each kind of POS tags

(3) Removing isomorphism
of the tree structure

nummod

Tokens: Move 5 meters forward

Fig. 2 Extracting the dependency model of the sentence in Case 1

H. Li et al. / Synthesizing Robot Programs with Interactive Tutor Mode 465

For Case 2, “Give me the pen which you can pick up

from the table”, Holert would start a dialogue with the

user (see Fig. 4). Holert asked the user to further explain

the task. The user then split the task into two smaller

tasks: “Pick up the pen on the table” and “Give me the

pen”. Then, Holert would generate a new template for

the original task with the supplementary information and

add the new template into the initial library. When the

user asks the robot to “Give me the scarf which you can

pick up from the hanger” the next time, Holert could find

the learned template from the library directly.

Algorithm 2. Generate a new template in tutor

mode

S
DMS TL.

Input: Original task sentence , dependency model of

the sentence , template library

NTOutput: The new template of the original task

sentence.

T ← GetExplanationFromUser(S)1)

S ← SentencesAnnotation(T)2)

LS ← ∅3)

S̃ ∈ S4) for each do

L̃S ← GetLogicSkeleton(S̃)5)　

LS ← ReplaceMarker(L̃S)6)　

LS ← LS + LS7)　

8) end for

NT ← GenerateNewTemplate(DMS ,LS)9)

TL← TL+NT10)

Algorithm 2 shows how to generate a new template in

tutor mode. Fig. 5 shows the process of generating a new

template for Case 2 with this algorithm. There are four

steps:

T

S

1) Ask the user for further explanation of the ori-

ginal task sentence (Line 1). Split the explanation into a

sequence of sentences (Line 2).

S

L̃S

2) For each sentence in , invoke the function GetLo-

gicSkeleton of Algorithm 1 to generate the corresponding

logical skeleton (Line 5). If some explanation sen-

tences are still too complex, the tutor process will run re-

cursively until Holert “understands” all of the explana-

tion sentences. For Case 2, the explanation contains two

sentences, and the corresponding logical skeletons 1 and 2

(see Fig. 5) would be found in the template library.

L̃S

P 1
t I1t , P

2
t I2, · · · , Pn

t Int L̃S

T1, T2, · · · , Tn

P 1
t I1t , P

2
t I2, · · · , Pn

t Int

3) Replace the markers in with corresponding

markers of the original sentence (Line 6). Suppose

_ _ _ are the markers in , and

 are the tokens in the explanation sentences

for those markers. Holert would find the same token (see

the dotted line in Fig. 5) appearing in the original sen-

tence and replace _ _ _ with the cor-

responding markers for these tokens in the original sen-

tence. For example, there are three markers in the logic-

al skeleton 1: “VB_0”, ”NN_0” and “NN_1”. The tokens

for the three markers are “pick”, “pen” and “table”. We

searched the original sentences for the three tokens and

found that their corresponding markers were “VB_1”,

“NN_0” and “NN_1”, respectively. Then, we replaced

“VB_0” in logical skeleton 1 with “VB_1”.

4) Generate a new template, where the key is the de-

pendency model of the original sentence and the value is

the combination of the marker-replaced logical skeletons

in a sequence order (Line 9). Finally, add the new tem-

plate into the template library (Line 10).

There are two special situations when using the tutor

mode. One is that the explanation from the user contains

only a single sentence. The other is that action verbs are

missing in the original sentence.

Explanations in a single sentence. The user may

explain the original sentence with only one sentence. For

example, the user may explain “can you open the door?”

with “open the door for me”, and Holert cannot find a

template for “open the door for me” from the library

either. A radical strategy would be used to find a similar

template. The strategy is based on the experience that

some tokens in the sentence perform dependency roles

but contribute nothing to the semantic meaning. For ex-

ample, we can safely delete the two tokens “for” and

“me”, because they do not affect the meaning of the sen-

tence. When using the radical strategy, Holert would enu-

merate all of the cases of deleting some tokens (from 1

token to half of all tokens) in the sentence and search for

the dependency models of those sentences in the tem-

plate library. If matched, the sentence becomes a candid-

ate to be presented to the user. The user then chooses

one of them to continue the tutor process above. If none

of them meet the user requirement, the tutor process has

failed. Holert would record this sentence for manually

constructing a new template by developers.

Missing actions. Some complex task descriptions

contain missing actions, such as Case 3. “Give me the

pen on the table” is another way of expressing the task in

{

}
]

)

),

root_VB_0 (
dobj_NNS_0 (

call VB_0 [

nummod_CD_0
CD_0 ,
NNS_0 ,
RB_0

Key : dependency model Value : logic skeleton

advmod_RB_0

Fig. 3 A template example

User: Give me the pen which you can pick up from the table.

Robot: Sorry, can you explain the order?

User: Pick up the pen from the table. Give me the pen.

Robot: OK, I see.

A few days later

User: Give me the scarf which you can pick up from the hanger.
Robot: OK.

Fig. 4 A dialogue example with the user

 466 International Journal of Automation and Computing 16(4), August 2019

Case 2. In order to give the pen to the user, the robot

should pick up the pen from the table first. If the user

still splits the task into the same two smaller tasks (see

Fig. 6), then Holert cannot find a corresponding token

“pick” in the original sentence when generating a new

template. We use “Unknown” in the generated new tem-

plate to represent a missing action. If the user asks the

robot to “Give me the scarf on the hanger” the next time,

Holert would find the matched template in the library

and try to infer the missing action by program synthesis

techniques in Section 3.5.

3.5 Synthesizer

The synthesizer tries to fill the holes in the logical

skeleton with information from the task description.

There are two kinds of holes in a logical skeleton, 1) para-

meter marker and 2) function marker. The synthesizer

first assigns the parameter markers with typed values ex-

tracted from the task description and then finds the best-

matched robot instruction to instantiate the function

marker.

Parameter marker assignment. The parameter

markers contain node information from which we can find

the corresponding tokens in the original task descriptions.

The synthesizer first uses the general regular expressions

to identify the typed values from the tokens. If that pro-

cess fails, then it would search in a static mapping table.

If both have failed, the synthesizer would record the sen-

tence for manually constructing a new template by de-

velopers and report with an error message. The details of

the two identification methods are as follows:

1) Regular expressions. Some types of data can be eas-

ily recognized using regular expressions, such as integers,

dates, phone numbers, etc.

WDT_0 PRP_1 MD_0 RP_0 NN_1

VB_1

NN_0

VB_0

PRP_0

DT_0 call VB_1 [NN_0, NN_1]
call VB_0 [PRP_0, NN_0]

New template:

Dependency tree:

Tokens:
POS tags:

Give me the pen which you can pick up from the table
VB PRP DT NN WDT PRP MD VB RP IN DT NN

Logic skeleton 1:
{ call VB_0 [NN_0, NN_1] }

Marker replacing:
{ call VB_1 [NN_0, NN_1] }

Logic skeleton 2:
{ call VB_0 [PRP_0, NN_0] }

Marker replacing:
{ call VB_0 [PRP_0, NN_0] }

VB_0

NN_0

DT_0

PRP_0

Give

pen

the

me

T1: Pick up the pen from the table

the

table

from

the

up

Pick

pen

VB_0

RP_0 NN_0

NN_1DT_0

IN_0 DT_1

Give

me pen

the pick

which you can up table

root_VB_0 (
iobj_PRP_0, dobj_NN_0 (

det_DT_0, acl:relcl_VB_1 (
dobj_WDT_0,
nsubj_PRP_1,
aux_MD_0,
compound:prt_RP_0,
nmod:from_NN_1 (

case_IN_0, det_DT_1

T2: Give me the pen

IN_0 DT_1)
)

)
)

{

}

from the

Fig. 5 Generating a new template for Case 2

Tokens:
Markers:

T1:

T2:
New template: root_VB_0 (

 iobj_PRP_0,
 dobj_NN_0 (
 det_DT_0,
 nmod:on_NN_1 (
 case_IN_0,
 det_DT_1

Give me the pen on the table
VB_0
Pick up the pen
from the table

{ call VB_0 [NN_0, NN_1] }

Give me the pen

IN_0NN_0DT_0PRP_0 DT_0 NN_1

{ call VB_0 [PRP_0, NN_0] }

call Unknown
[NN_0, NN_1] ,
call VB_0
[PRP_0, NN_0]

}
)

)
)

{

Fig. 6 Generate a new template for Case 3, “Unknown” is used
to represent the missing action

H. Li et al. / Synthesizing Robot Programs with Interactive Tutor Mode 467

2) A static mapping table. Such as “last one”, which

would be mapped to an integer type value “–1”, and

“meter”, which would be mapped to a measurement type

value.

Table 1 shows all of the parameters found in the three

cases, such as the token “5” for marker “CD_0”, which is

mapped to an integer type value based on regular expres-

sions, and the token “meters” for marker “NNS_0”, which

is mapped to a measurement type value based on the

static mapping table.

Function marker instantiation. After assigning all

parameter markers with typed values, the synthesizer

tries to find a robot instruction for the function marker.

In order to find the correct robot instruction to instanti-

ate the function marker, we need to annotate the robot

instructions with two kinds of information:

1) Parameter type signatures of the instruction. This

gives the information that determines how many para-

meters this instruction would take in and what their

types are.

2) Keywords to summarize the function of the instruc-

tion. We will extend the keywords set automatically by

searching their synonyms from WordNet1.

The instantiation of the function markers is robot-de-

pendent. Suppose the target robot has 5 instructions as

shown in Table 2. The synthesizer would instantiate the

function markers in two steps. First, the synthesizer finds

a set of instruction candidates that are possible to instan-

tiate the function marker. Then, it selects the best one by

a ranking strategy.

Algorithm 3. Choosing the best robot instruction

P IInput: Parameter type set ; robot instruction set .

IOutput: The best-matched robot instruction to

replace the function marker.

C ← ∅1) /*Candidate set*/

I ∈ I2) for each do

PI ← GetParameterTypeList(I)3)　

|PI | = |P |4)　if then

P̃I ← {Pi
I |Pi

I ∈ PI ,Pi ∈ P , type(Pi
I) ̸= type(Pi)}5)　　

P̃I = ∅6)　　if then

C ← C + I7)　　　

8)　　end if

9)　end if

10) end for

C = ∅11) if then

12)　ReportError()

∅13)　return

14) end if

C̃ ← SortByRanking(C)15) /*Ranking strategy based

on tokens*/

C̃[0]16) return

CAlgorithm 3 shows the process. The candidates

should satisfy the type constraint, which means: a robot

instruction is a potential choice for instantiating the func-

tion marker only when 1) the instruction has the same

number of parameters as the number of parameter mark-

ers in the logical skeleton (Line 4), and 2) there are values

that are identified and whose types are the same as the

type signatures of the instruction parameters (Lines 5–8).

C

We use a ranking strategy to choose the best-matched

one from (Line 15). We first collected all correspond-

ing tokens for the markers in the logical skeleton, which

includes a list of parameter marker tokens and a function

marker token. If the function marker is “Unknown”, it

Table 1 Parameters found in the three cases

Exclude Marker Token Value Type Method

1 CD_0 5 5 Integer Regular expression

1 NNS_0 meters meter Measurement Static mapping table

1 RB_0 forward forward Direction Static mapping table

2, 3 PRP_0 me Master Person Static mapping table

2, 3 NN_0 pen pen SmallObject Static mapping table

2, 3 NN_1 table (x, y) Coordinate Static mapping table

Table 2 Instructions provided by the target robot

Number Instruction Type signatures Keywords

1 Move Integer, Measurement, Direction MOVE, GO, WALK

2 GrabFromTable SmallObject, Coordinate GRUB, PICK, TABLE

3 GrabFromHanger SmallObject, Coordinate GRUB, PICK, HANGER

4 Drop SmallObject, Coordinate DROP, LAY, OFF

5 Give SmallObject, Person GIVE, BRING

1WordNet provides a synonym searching service for English.

Refer to https://wordnet.princeton.edu/ for further information.

 468 International Journal of Automation and Computing 16(4), August 2019

would be omitted. Then, the synthesizer would rank the

instruction candidates by comparing the collected tokens

with the keywords of each instruction candidate. A can-

didate will get a higher score if its keyword tags match

more word tokens. Finally, the synthesizer would choose

the best-matched instruction with the highest score.

Table 3 shows the synthesized logical forms for the

three cases. For example, the logical skeleton “call VB_1
[NN_0, NN_1]” of Case 2 has two parameter markers,

“NN_0” and “NN_1”. Their corresponding tokens are

“pen” and “table”, which would be mapped to a Small-

Object type value and a Coordinate type value

(see Table 1). According to Algorithm 3, there are three

candidates to instantiate “VB_1”, i.e., instructions 2–4 in

Table 2, because they all satisfy the type constraint. The

GrabFromTable instruction gets the highest score with

the ranking strategy, since it has two matched keywords,

“PICK” and “TABLE”. As a result, the function marker

“VB_1” is instantiated with GrabFromTable. Finally, we

get the synthesized logical form “call GrabFromTable

[pen, (x, y)]”.

4 Evaluation

4.1 Environment setup

Preparing on robot. We deploy Holert on a Turtle-

bot 2 robot. This robot has a Kobuki base, which sup-

ports basic movement instructions. We use ROS as the

message-passing system on this robot. Holert works as a

ROS node that receives user task descriptions and pub-

lishes robot instructions. We also implemented two assist-

ant nodes to make the system more practical. One is the

user-interface node that interacts with users by automat-

ic speech recognition (ASR) and text-to-speech (TTS)

tools. The other is the robot-control node that translates

the logical form to robot instructions and maintains a

navigation instruction queue to be executed.

The Kobuki basic movement instructions are machine-

related and control the linear and angular velocity dir-

ectly. In order to enable the users to interact naturally

with the system, we defined and implemented 8 user-

friendly instructions (see Table 4). Those instructions are

close to natural language.

Constructing the initial template library. We

tagged the 8 extended instructions with type signatures

and keywords as shown in Table 4. For each instruction,

we use multiple natural language task descriptions to ex-

press it. For example, the rotate (Direction) instruction

can be expressed as “turn left”, “turn to the left” or

“make a left turn”. Then we extract the dependency

models of these descriptions and assigned a logical skelet-

on for each manually, which make up the initial tem-

plate library.

Table 3 Logic forms for the three cases

Case Logic skeleton Logic form

1 {call VB_0 [CD_0, NNS_0, RB_0]} {call Move [5, meter, forward]}

2 { {

　call VB_1 [NN_0, NN_1], 　call GrabFromTable [pen, (x, y)],

　call VB_0 [PRP_0, NN_0] 　call Give [pen, Master]

} }

3 { {

　call Unknown [NN_0, NN_1] , 　call GrabFromTable [pen, (x, y)],

　call VB_0 [PRP_0, NN_0] 　call Give [pen, Master]

} }

Table 4 Extended movement instructions for Turtlebot 2

Number Instruction Brief descriptions Parameter type signatures Keywords

1 go Keep going until receiving the stop instruction Direction GO, WALK, MOVE

2 go Walk a certain distance Integer, Measurement GO, WALK, MOVE

3 rotate Turn left/right/back Direction TURN, ROTATE

4 rotate Turn left/right at a certain degree/radian Direction, Integer, Measurement TURN, ROTATE

5 speed Speed up/down Boolean SPEED, FAST, QUICK, SLOW

6 rotateSpeed Rotate speed up/down Boolean ROTATE, TURN, SPEED, FAST, SLOW

7 charge Go to charge itself Coordinate CHARGE

8 stop Stop action ∅ STOP, QUIT, SHUTOFF

H. Li et al. / Synthesizing Robot Programs with Interactive Tutor Mode 469

Collecting task descriptions. We invited 10 volun-

teers to interact with the robot and to give 20 navigation

instructions. The volunteers were separated and did not

know the dialogue content of others. Finally, we ob-

tained 129 unique navigation instructions.

4.2 Accuracy

Table 5 shows the experimental accuracy of Holert on

the 129 user-collected cases. In order to test the Holert

node individually, we manually omit the influence of

speech recognition errors. In practice, all the dialogues

(text mode) are delivered to a supervisor (human) at the

same time. If the speech recognition errors appeared from

the user-interface node, the supervisor would ask the

users to repeat their requests. We first run Holert on the

129 cases without the tutor mode. Only 36 out of 129

(27.9%) can be handled directly using the initial tem-

plate library. Then, we turn on the tutor mode partly

without the support of the two special situations that

were discussed in Section 3.4. Holert can successfully syn-

thesize correct robot instructions for 79 (61.2%) cases. Fi-

nally, we turn on the support for the two special situ-

ations, and the accuracy rate has been further increased

to 73.6% (95 out of 129). Overall, the experimental res-

ult shows that the system accuracy could be improved by

163.9% with the support of tutor mode.

4.3 Efficiency

In Holert, a task description would be split into a set

of sentences, as the sentences are the basic units to be

handled. As shown in Fig. 7, the more sentences included

in a task session, the more execution time is needed, and

this relation is almost linear. Besides, Holert can respond

to users in a short period of time. Most of the task ses-

sions, which contain no more than 4 sentences, could be

handled within 0.2 s. Even the longest task session with

10 sentences could be handled within 0.7 s.

4.4 User effort

We first define the user effort of explaining a single

sentence and a task. Then we will show the user effort

statistics of explaining the 129 user-collected task descrip-

tions.

S D(S)
In Holert, the user effort of explaining a single sen-

tence is defined as the depth of the dialogue

(Q/A rounds to understand the sentence), which is calcu-

lated using (1). The user effort of explaining a task is

equal to explaining its most complicated sentence.

D(S) =

0,
if the dependency model of S falls in the
template library

1,
if explained in a single sentence

Max(D(S1), D(S2), · · · , D(Sn)) + 1,
if explained in multiple sentences S1S2 · · · Sn.

As shown in Table 6, Holert is easy to use. In most

situations (117/129), the tutor process can end up with

no more than 2 Q/A rounds, and the robot can success-

fully understand most of them (92/117). In a few cases

(12/129), when the user effort reaches 3 (4), it becomes

more and more difficult to find a corresponding mapping

relation between the original sentence and the explained

sentences. As a result, the accuracy of Holert rapidly

dropped to 30% (0%).

4.5 Successful task cases

4.5.1 Simple tasks without tutor mode

Table 7 shows some simple task cases that could be

handled directly without tutor mode. The second column

gives the task description. The third column lists the in-

structions involved. There are 43 templates in the initial

Table 5 Accuracy of the 129 user-collected cases

Without tutor
mode

Tutor mode
(partly)

Tutor
mode

Successful cases 36 79 95

Accuracy 27.9% 61.2% 73.6%

Table 6 User effort of explaining the 129 tasks

User effort (Depth of dialogue) Count Successful cases Accuracy

0 36 36 100%

1 55 40 72.7%

2 26 16 61.5%

3 10 3 30%

4 2 0 0%

Total 129 95 73.6%

0
0

100
200
300
400
500
600
700
800

1 2 3 4 5 6 7 8
Number of sentences in a task session

Ti
m

e
(m

s)

9 10 11

Fig. 7 Efficiency analysis. Each black dot in the figure
represents a task. The X-axis is the number of total sentences
handled in the task session, which includes sentences both in the
original task description and in the tutor mode dialogue. The Y-
axis is the execution time in milliseconds. The user′ s response
time in tutor mode is omitted.

 470 International Journal of Automation and Computing 16(4), August 2019

template library. The last column shows the matched

template IDs for these task sentences.

As shown in the last column of Table 7, the depend-

ency model is capable of expressing multiple task types.

For example, “Move” and “Stop” share the same

matched template. “Move 3 meters ahead” and “Go 5

meters forward” also share the same matched template.
4.5.2 Complex tasks with tutor mode

We choose three complex task cases to show the tu-

tor mode in different situations.

Explanations in a single sentence. As shown in

Fig. 8, the user ordered the robot to turn back with “Can

you turn back” and explained it in only one sentence

“Turn back please”. However, the initial library does not

contain the matched template. Therefore, Holert starts

the radical strategy to randomly delete some nodes in the

dependency tree of the sentence and get a list of poten-

tial candidates ([“turn back”, “turn please”, “back

please”]). After searching each candidate in the template

library, only “turn back” has a matched template. So

Holert asked the user for confirmation. Then, it used

“turn back” as the explanation for “Can you turn back”.

Finally, the tutor mode generated a new template for

“Can you turn back” and executed the order successfully.

Conjunction words. Fig. 9 shows how to handle the

conjunction words, such as “and”, in Holert. The user

ordered the robot to “Turn 30 degrees left and move

ahead”. Although it is straightforward for humans that

the task can be split into two smaller tasks of “turn 30

degrees left” and “move ahead”, Holert cannot under-

stand the word “and”. Since Holert neither analyzes the

sentence grammatically nor tries to understand the de-

pendency relations semantically, it only extracts the de-

pendency model for the entire sentence and cannot find a

matched template. In this case, the tutor mode is needed.

Explain in split sentences recursively. As shown

in Fig. 10, the user gave a complex task sentence “Turn

back after going 1 meter to the left”. Holert searched the

template library and failed to find a matched template.

Therefore, tutor mode is started. The user explained the

sentence with two simpler sentences. 1) Go 1 meter to the

left. 2) Turn back. However, Holert cannot find a

matched template for the first sentence. So it starts the

tutor process for the first sentence recursively. After

learning the template of the first task, Holert generates

the final template for the original task sentence.

4.6 Analysis on failed cases

We analyzed the failed cases and found three main

reasons causing these failures:

1) Undefined robot instructions. For example, the user

asked the robot to “go upstairs”. However, the robot can

only walk on the ground and does not provide an instruc-

tion like “upstairs”. In this case, Holert could only find

the corresponding logical skeleton but failed to synthes-

ize the correct logical form.

2) Undefined template for robot instructions. The

template library is the knowledge base of Holert.

However, the initial temporary library is constructed

manually. Although efforts have been made to express

the 8 basic instructions with descriptions that have differ-

ent dependency models, it is still highly possible that we

would miss some of them, since the natural language is

too flexible to enumerate them all.

3) Tiny changes to the dependency model. Holert is

dependency-sensitive. The dependency model is extrac-

ted based on the Stanford dependency analysis of the

task sentences. The Stanford parser defined 45 main de-

pendency relations between the governor and dependent.

Tiny changes to the sentence could lead to a different de-

pendency model. For example, “turn left” and “turn left

please” have the same semantic meaning but their de-

pendency models are different.

5 Limitations and future works

In addition to the limitations discussed in Section 4.6,

Table 7 Simple task cases without tutor mode

No. Task description Instruction Template ID

1 Move 3 meters ahead go 3

2 Turn back rotate 12

3 Turn 45 degrees to the left rotate 17

4 Go 5 meters forward. Turn back. go, rotate 3, 12

5 Turn left at 45 degrees. Move. rotate, go 19, 1

Move slower. Stop. Go to charge. speed, stop, charge 24, 1, 41

User:
Robot:

User:
Robot:

User:
Robot: OK, I see.

Yes.
Do you want me to turn back?
Turn back please.
Sorry, can you explain the order?
Can you turn back?

Fig. 8 Part of the dialogue with the user (Ⅰ)

User:
Robot:

User:
Robot:

Turn 30 degrees left and move ahead.
Sorry, can you explain the order?
Turn 30 degrees left. Move ahead.
OK, I see.

Fig. 9 Part of the dialogue with the user (Ⅱ)

User:
Robot:

User:
Robot:

User:
Robot:

Turn back after going 1 meter to the left.
Sorry, can you explain the order?
Go 1 meter to the left. Turn back.
Sorry, can you explain the order "Go 1 meter to the left"?
Turn left. Go 1 meter forward.
OK, I see.

Fig. 10 Part of the dialogue with the user (Ⅲ)

H. Li et al. / Synthesizing Robot Programs with Interactive Tutor Mode 471

Holert has another three limitations.

Although the enhanced template used in Holert is do-

main-independent, we still need to manually annotate the

robot instructions with parameter type signatures and

some keywords to support the synthesis algorithm. In the

future, we will try to extract the parameter type informa-

tion and keywords automatically from the robot instruc-

tion documents.

Another limitation results from the ambiguity of nat-

ural language. The extraction of the dependency model

depends on the correct dependency analysis by NLP

tools. Although Holert uses the state-of-art Stanford NLP

tools, the parser may fail to extract the correct depend-

ency model because of the ambiguity of natural language.

If the parser made the wrong analysis, Holert would get

the wrong result as well. We will pay attention to the de-

velopment of NLP techniques and keep updating Holert

with better NLP tools.

Finally, a radical strategy is used in the situation of

explaining in a single sentence, which aims to overcome

the dependency-sensitive problem. The strategy would

randomly delete some nodes from the dependency tree,

with the hope that the remaining tree not only reserves

the semantic meaning of the original sentence but also

has a corresponding template in our library. However, the

number of nodes to be deleted is at most half of the

length of the sentence, which is an empirical value. If we

delete too many nodes, there is a risk that the semantic

meaning of the original sentence would be changed.

Therefore, this solution is not good enough. In our future

work, we will try to find a better strategy to solve the de-

pendency-sensitivity problem, such as slightly modifying

the dependency tree of the original sentence to find a

“nearby” logical skeleton in the template library.

6 Related work

Human-robot interactive systems are a critical and

widely-studied aspect of domestic robots, and natural lan-

guage instructions are a key component of human-robot

interaction. Previous studies have treated the task as a

problem of parsing natural language descriptions into ma-

chine-interpretable logical forms.

Several systems parse natural language descriptions to

sequences of atomic actions that must be grounded into

fully specified world models. Look et al.[25] presented an

ontology that addressed the problem of expressing the se-

mantics that define how a particular space is used. Kollar

et al.[26] extracted a sequence of spatial description clauses

from natural language input with given information about

the environmental geometry and detected visible objects,

and then used a probabilistic model to connect them to-

gether to find a path for the robot. These approaches as-

sume an initial knowledge map, which describes a com-

plex indoor environment with object and land-marks.

Other systems are heavily dependent on high-quality lex-

icons, manually-built templates or linguistic features. For

example, Bugmann et al.[27] implemented an instruction-

based learning (IBL) system with 15 primitive functions,

each of which had a fixed parameter list. MacMahon et

al.[28] inferred a set of pre-defined actions from the know-

ledge of both linguistic conditional phrases and local con-

figurations. Rybski et al.[29] proposed a system that can

learn simple action scripts from natural language, but the

instructions must follow a pre-defined grammar. Matuszek′s
work[11] trained a parser based on example pairs of natur-

al language orders and corresponding control language ex-

pressions. The parser allowed a robot to interpret naviga-

tion instructions online while moving through a previ-

ously unknown environment. In contrast to our work,

users of these systems are usually required to use a set of

predefined keywords, templates and grammar. Besides,

most of these approaches rely on a manually constructed

parser, rather than learning relations from dialogues.

Some systems also teach robots new knowledge

through dialogues. They are similar to how our tutor

mode works but with a different focus. Thomason et al.[30]

used a three-component (action, patient and recipient)

template to support two kinds of robot actions (walking

and bringing items). The learning system in this work fo-

cused on lexicons. It learned new lexical items by map-

ping them to the three components through dialogues.

She et al.[31] focused on learning new actions. Through

dialogues, users of this system can teach the robot how to

construct complicated actions with three primitive ac-

tions. Unlike this, Holert focuses on the grammatical

structure of natural language. It learns new grammatical

structures through finding the relationship between the

dependency models of original sentences and explanation

dialogues.

Recently, some researchers have tried to solve the se-

mantic parsing problem with machine learning tech-

niques. Dong and Lapata[16] presented an encoder-de-

coder neural network model for mapping natural lan-

guage descriptions to their meaning representations.

Their model encoded natural language descriptions into

vectors and generated logical forms as sequences or trees

using recurrent neural networks with long short-term

memory units. Grefenstette et al.[32] proposed a different

architecture for semantic parsing based on the combina-

tion of two neural network models. The first model

learned the shared representations from pairs of ques-

tions and their translations into knowledge-based queries,

whereas the second model generated the queries condi-

tioned on the learned representations. However, these ap-

proaches rely on big annotated datasets and efficient

training algorithms in the training phase. Besides, ad-

versarial inputs would make them vulnerable and cause

the neural networks to misclassify[33, 34].

7 Conclusions

In this paper, we proposed an interactive tutoring

 472 International Journal of Automation and Computing 16(4), August 2019

framework named “Holert” for human-robot interaction.

The main idea is to enable the robot to learn from end-

user explanations under a novel designed tutor mode.

With the tutor mode, the users can teach their robot new

skills through dialogues. Developer supports are not

needed in this process, which would save a significant

amount of time and manual work. The experimental res-

ult on Turtlebot 2 shows that Holert can successfully syn-

thesize correct instructions for 73.6% of the task descrip-

tions collected and that the system accuracy could be im-

proved by 163.9% with the support of the tutor mode.

Furthermore, the process is efficient. Even the longest

task session, which contains 10 sentences, can be handled

within 0.7 s.

Acknowledgements

This work was supported by Tsinghua University Ini-

tiative Scientific Research Program (No. 20141081140).

References

 J. Scholtz. Theory and evaluation of human robot interac-
tions. In Proceedings of the 36th Annual Hawaii Interna-
tional Conference on System Sciences, IEEE, Big Island,
USA, 2003. DOI: 10.1109/HICSS.2003.1174284.

[1]

 I. G. Alonso, M. Fernández, J. M. Maestre, M. del Pilar
Almudena García Fuente. Service Robotics within the Di-
gital Home: Applications and Future Prospects,
Dordrecht, Holland: Springer, 2011. DOI: 10.1007/978-94-
007-1491-5.

[2]

 R Borja, J. R. De La Pinta, A. Álvarez, J. M. Maestre. In-
tegration of service robots in the smart home by means of
UPnP: A surveillance robot case study. Robotics and
Autonomous Systems, vol. 61, no. 2, pp. 153–160, 2013.
DOI: 10.1016/j.robot.2012.10.005.

[3]

 C. Zhou, M. H. Jin, Y. C. Liu, Z. Zhang, Y. Liu, H. Liu.
Singularity robust path planning for real time base atti-
tude adjustment of free-floating space robot. International
Journal of Automation and Computing, vol. 14, no. 2,
pp. 169–178, 2017. DOI: 10.1007/s11633-017-1055-1.

[4]

 K. C. D. Fu, Y. Nakamura, T. Yamamoto, H. Ishiguro.
Analysis of motor synergies utilization for optimal move-
ment generation for a human-like robotic arm. Interna-
tional Journal of Automation and Computing, vol. 10,
no. 6, pp. 515–524, 2013. DOI: 10.1007/s11633-013-0749-2.

[5]

 S. Alexandrova, Z. Tatlock, M. Cakmak. RoboFlow: A
flow-based visual programming language for mobile ma-
nipulation tasks. In Proceedings of IEEE International
Conference on Robotics and Automation, Seattle, USA,
pp. 5537–5544, 2015. DOI: 10.1109/ICRA.2015.7139973.

[6]

 C. Datta, C. Jayawardena, I. H. Kuo, B. A. MacDonald.
RoboStudio: A visual programming environment for rapid
authoring and customization of complex services on a per-
sonal service robot. In Proceedings of IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Vil-
amoura, Portugal, pp. 2352–2357, 2012. DOI: 10.1109/
IROS.2012.6386105.

[7]

 J. Li, A. Q. Xu, G. Dudek. Graphical state space program-
ming: A visual programming paradigm for robot task spe-
cification. In Proceedings of IEEE International Confer-
ence on Robotics and Automation, Shanghai, China,

[8]

pp. 4846–4853, 2011. DOI: 10.1109/ICRA.2011.5979630.

 M. A. Goodrich, A. C. Schultz. Human- robot interaction:
A survey. Foundations and Trends in Human-computer
Interaction, vol. 1, no. 3, pp. 203–275, 2007. DOI: 10.1561/
1100000005.

[9]

 J. Dzifcak, M. Scheutz, C. Baral, P. Schermerhorn. What
to do and how to do it: Translating natural language dir-
ectives into temporal and dynamic logic representation for
goal management and action execution. In Proceedings of
IEEE International Conference on Robotics and Automa-
tion, Kobe, Japan, pp. 4163–4168, 2009. DOI: 10.1109/RO-
BOT.2009.5152776.

[10]

 C. Matuszek, E. Herbst, L. Zettlemoyer, D. Fox. Learning
to parse natural language commands to a robot control
system. In Proceedings of the 13th International Symposi-
um on Experimental Robotics, Springer, Heidelberg, Ger-
many, pp. 403–415, 2013. DOI: 10.1007/978-3-319-00065-
7_28.

[11]

 R. F. Ge, R. J. Mooney. A statistical semantic parser that
integrates syntax and semantics. In Proceedings of the 9th
Conference on Computational Natural Language Learn-
ing, Association for Computational Linguistics, Ann Ar-
bor, USA, pp. 9–16, 2005. DOI: 10.3115/1706543.1706546.

[12]

 K. Zhao, L. Huang. Type-driven incremental semantic
parsing with polymorphism. In Proceedings of Human
Language Technologies: The Annual Conference of the
North American Chapter of the ACL, Denver, USA, 2015.
DOI: 10.3115/v1/N15-1162.

[13]

 Y. Artzi, L. Zettlemoyer. Bootstrapping semantic parsers
from conversations. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, Edin-
burgh, UK, pp. 421–432, 2011.

[14]

 J. Berant, A. Chou, R. Frostig, P. Liang. Semantic pars-
ing on freebase from question-answer pairs. In Proceed-
ings of Conference on Empirical Methods in Natural Lan-
guage Processing, Washington, USA, 2013.

[15]

 L. Dong, M. Lapata. Language to logical form with neural
attention. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics, Berlin,
Germany, 2016. DOI: 10.18653/v1/P16-1004.

[16]

 Y. Kim. Convolutional neural networks for sentence classi-
fication. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, Doha, Qatar,
2014. DOI: 10.3115/v1/D14-1181.

[17]

 Y. N. Dauphin, D. Z. Hakkani-Tur, G. Tur, L. P. Heck.
Deep learning for semantic parsing including semantic ut-
terance classification, USA. Patent 20150310862, October
2015.

[18]

 R. Collobert, J. Weston. A unified architecture for natural
language processing: Deep neural networks with multitask
learning. In Proceedings of the 25th International Confer-
ence on Machine Learning, ACM, Helsinki, Finland,
pp. 160–167, 2008. DOI: 10.1145/1390156.1390177.

[19]

 Z. P. Tu, Z. D. Lu, Y. Liu, X. H. Liu, H. Li. Modeling cov-
erage for neural machine translation. In Proceedings of the
54th Annual Meeting of the Association for Computation-
al Linguistics, Berlin, Germany, 2016. DOI: 10.18653/
v1/P16-1008.

[20]

 A. M. Rush, S. Chopra, J. Weston. A neural attention
model for sentence summarization. In Proceedings of Con-
ference on Empirical Methods in Natural Language Pro-
cessing, Lisbon, Portugal, 2015. DOI: 10.18653/v1/D15-
1044.

[21]

H. Li et al. / Synthesizing Robot Programs with Interactive Tutor Mode 473

http://dx.doi.org/10.1109/HICSS.2003.1174284
http://dx.doi.org/10.1007/978-94-007-1491-5
http://dx.doi.org/10.1007/978-94-007-1491-5
http://dx.doi.org/10.1007/978-94-007-1491-5
http://dx.doi.org/10.1016/j.robot.2012.10.005
http://dx.doi.org/10.1007/s11633-017-1055-1
http://dx.doi.org/10.1007/s11633-013-0749-2
http://dx.doi.org/10.1109/ICRA.2015.7139973
http://dx.doi.org/10.1109/IROS.2012.6386105
http://dx.doi.org/10.1109/IROS.2012.6386105
http://dx.doi.org/10.1109/ICRA.2011.5979630
http://dx.doi.org/10.1561/1100000005
http://dx.doi.org/10.1561/1100000005
http://dx.doi.org/10.1109/ROBOT.2009.5152776
http://dx.doi.org/10.1109/ROBOT.2009.5152776
http://dx.doi.org/10.1109/ROBOT.2009.5152776
http://dx.doi.org/10.1007/978-3-319-00065-7_28
http://dx.doi.org/10.1007/978-3-319-00065-7_28
http://dx.doi.org/10.1007/978-3-319-00065-7_28
http://dx.doi.org/10.3115/1706543.1706546
http://dx.doi.org/10.3115/v1/N15-1162
http://dx.doi.org/10.18653/v1/P16-1004
http://dx.doi.org/10.3115/v1/D14-1181
http://dx.doi.org/10.1145/1390156.1390177
http://dx.doi.org/10.18653/v1/P16-1008
http://dx.doi.org/10.18653/v1/P16-1008
http://dx.doi.org/10.18653/v1/D15-1044
http://dx.doi.org/10.18653/v1/D15-1044
http://dx.doi.org/10.1109/HICSS.2003.1174284
http://dx.doi.org/10.1007/978-94-007-1491-5
http://dx.doi.org/10.1007/978-94-007-1491-5
http://dx.doi.org/10.1007/978-94-007-1491-5
http://dx.doi.org/10.1016/j.robot.2012.10.005
http://dx.doi.org/10.1007/s11633-017-1055-1
http://dx.doi.org/10.1007/s11633-013-0749-2
http://dx.doi.org/10.1109/ICRA.2015.7139973
http://dx.doi.org/10.1109/IROS.2012.6386105
http://dx.doi.org/10.1109/IROS.2012.6386105
http://dx.doi.org/10.1109/ICRA.2011.5979630
http://dx.doi.org/10.1561/1100000005
http://dx.doi.org/10.1561/1100000005
http://dx.doi.org/10.1109/ROBOT.2009.5152776
http://dx.doi.org/10.1109/ROBOT.2009.5152776
http://dx.doi.org/10.1109/ROBOT.2009.5152776
http://dx.doi.org/10.1007/978-3-319-00065-7_28
http://dx.doi.org/10.1007/978-3-319-00065-7_28
http://dx.doi.org/10.1007/978-3-319-00065-7_28
http://dx.doi.org/10.3115/1706543.1706546
http://dx.doi.org/10.3115/v1/N15-1162
http://dx.doi.org/10.18653/v1/P16-1004
http://dx.doi.org/10.3115/v1/D14-1181
http://dx.doi.org/10.1145/1390156.1390177
http://dx.doi.org/10.18653/v1/P16-1008
http://dx.doi.org/10.18653/v1/P16-1008
http://dx.doi.org/10.18653/v1/D15-1044
http://dx.doi.org/10.18653/v1/D15-1044

 M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J.
Leibs, R. Wheeler, A. Y. Ng. ROS: An open-source robot
operating system. In Proceedings of ICRA Workshop on
Open Source Software, Kobe, Japan, 2009.

[22]

 A. Voutilainen. Part-of-speech tagging. The Oxford Hand-
book of Computational Linguistics, R. Mitkov, Ed., Ox-
ford, UK: Oxford University Press, pp. 219–232, 2003.

[23]

 D. Q. Chen, C. Manning. A fast and accurate dependency
parser using neural networks. In Proceedings of Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, Association for Computational Linguistics, Doha,
Qatar, 2014.

[24]

 G. Look, B. Kottahachchi, R. Laddaga, H. Shrobe. A loca-
tion representation for generating descriptive walking dir-
ections. In Proceedings of the 10th International Confer-
ence on Intelligent User Interfaces, ACM, San Diego, USA,
pp. 122–129, 2005. DOI: 10.1145/1040830.1040862.

[25]

 T. Kollar, S. Tellex, D. Roy, N. Roy. Toward understand-
ing natural language directions. In Proceedings of the 5th
ACM/IEEE International Conference on Human-robot In-
teraction, Osaka, Japan, pp. 259–266, 2010. DOI:
10.1109/HRI.2010.5453186.

[26]

 G. Bugmann, E. Klein, S. Lauria, T. Kyriacou. Corpus-
based robotics: A route instruction example. In Proceed-
ings of the 8th International Conference on Intelligent
Autonomous Systems, Amsterdam, Netherlands, pp. 96–
103, 2004.

[27]

 M. MacMahon, B. Stankiewicz, B. Kuipers. Walk the talk:
Connecting language, knowledge, and action in route in-
structions. In Proceedings of National Conference on Arti-
ficial Intelligence, AAAI, Austin, UK, 2006.

[28]

 P. E. Rybski, J. Stolarz, K. Yoon, M. Veloso. Using dialog
and human observations to dictate tasks to a learning ro-
bot assistant. Intelligent Service Robotics, vol. 1, no. 2,
pp. 159–167, 2008. DOI: 10.1007/s11370-008-0016-5.

[29]

 J. Thomason, S. Q. Zhang, R. J. Mooney, P. Stone. Learn-
ing to interpret natural language commands through hu-
man-robot dialog. In Proceedings of the 24th Internation-
al Conference on Artificial Intelligence, AAAI, Buenos
Aires, Argentina, pp. 1923–1929, 2015.

[30]

 L. B. She, S. H. Yang, Y. Cheng, Y. Y. Jia, J. Y. Chai, N.
Xi. Back to the blocks world: Learning new actions
through situated human-robot dialogue. In Proceedings of
the 15th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, Philadelphia, USA, pp. 89–97,
2014.

[31]

 E. Grefenstette, P. Blunsom, N. de Freitas, K. M. Her-
mann. A deep architecture for semantic parsing. In Pro-
ceedings of the ACL Workshop on Semantic Parsing, As-
sociation for Computational Linguistics, Baltimore, USA,
2014.

[32]

 N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B.
Celik, A. Swami. The limitations of deep learning in ad-

[33]

versarial settings. In Proceedings of IEEE European Sym-
posium on Security and Privacy, Saarbrucken, Germany,
pp. 372–387, 2016. DOI: 10.1109/EuroSP.2016.36.

 B. Biggio, B. Nelson, P. Laskov. Support vector machines
under adversarial label noise. In Proceedings of the 3rd
Asian Conference on Machine Learning, Taoyuan, China,
pp. 97–112, 2011.

[34]

Hao Li received the B. Sc. degree in com-
puter science and technology from Xidian
University, China in 2012. He is now a
Ph.D. degree candidate at Tsinghua Uni-
versity, China under the supervision of
professor Shi-Min Hu. His work has been
published in journals including Communic-
ations in Information and Systems, Inter-
national Journal of Software Engineering

and Knowledge Engineering.
 His research interests include program synthesis and system
reliability.
 E-mail: roselonelh@gmail.com
 ORCID iD: 0000-0003-3606-9969

Yu-Ping Wang received the Ph. D. de-
gree in computer science and technology
from Tsinghua University, China in 2009.
He is currently an associate professor of
Tsinghua University, China. He has pub-
lished papers in important journals and
conferences, including IEEE Transactions
on Visualization and Computer Graphics,
IEEE Transactions on Computers, Journ-

al of Systems and Software, USENIX Annual Technical Confer-
ence, International Symposium on Code Generation and Optim-
ization, International Symposium on Software Reliability Engin-
eering, IEEE International Conference on Computers, Software
and Applications (COMPSAC) and Asia-Pacific Software Engin-
eering Conference. He received the COMPSAC 2014 Best Paper
Award.
 His research interests include robotic system and system reli-
ability.
 E-mail: wyp@tsinghua.edu.cn (Corresponding author)
 ORCID iD: 0000-0003-4129-7704

Tai-Jiang Mu received the B. Sc. and
Ph. D. degrees in computer science and
technology from Tsinghua University,
China in 2011 and 2016, respectively. He is
currently a postdoctoral researcher in De-
partment of Computer Science and Tech-
nology, Tsinghua University, China.
 His research interests include computer
graphics, image/video processing and hu-

man-robot interaction.
 E-mail: dejungle@mail.tsinghua.edu.cn

 474 International Journal of Automation and Computing 16(4), August 2019

http://dx.doi.org/10.1145/1040830.1040862
http://dx.doi.org/10.1145/1040830.1040862
http://dx.doi.org/10.1145/1040830.1040862
http://dx.doi.org/10.1109/HRI.2010.5453186
http://dx.doi.org/10.1007/s11370-008-0016-5
http://dx.doi.org/10.1109/EuroSP.2016.36
http://dx.doi.org/10.1109/EuroSP.2016.36
http://dx.doi.org/10.1109/EuroSP.2016.36
http://dx.doi.org/10.1145/1040830.1040862
http://dx.doi.org/10.1145/1040830.1040862
http://dx.doi.org/10.1145/1040830.1040862
http://dx.doi.org/10.1109/HRI.2010.5453186
http://dx.doi.org/10.1007/s11370-008-0016-5
http://dx.doi.org/10.1109/EuroSP.2016.36
http://dx.doi.org/10.1109/EuroSP.2016.36
http://dx.doi.org/10.1109/EuroSP.2016.36
http://dx.doi.org/10.1145/1040830.1040862
http://dx.doi.org/10.1145/1040830.1040862
http://dx.doi.org/10.1145/1040830.1040862
http://dx.doi.org/10.1109/HRI.2010.5453186
http://dx.doi.org/10.1007/s11370-008-0016-5
http://dx.doi.org/10.1145/1040830.1040862
http://dx.doi.org/10.1145/1040830.1040862
http://dx.doi.org/10.1145/1040830.1040862
http://dx.doi.org/10.1109/HRI.2010.5453186
http://dx.doi.org/10.1007/s11370-008-0016-5
http://dx.doi.org/10.1109/EuroSP.2016.36
http://dx.doi.org/10.1109/EuroSP.2016.36
http://dx.doi.org/10.1109/EuroSP.2016.36
http://dx.doi.org/10.1109/EuroSP.2016.36
http://dx.doi.org/10.1109/EuroSP.2016.36
http://dx.doi.org/10.1109/EuroSP.2016.36

