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A B S T R A C T

Color misalignment correction is an important, yet unsolved problem, especially for multiview video captured by
large disparity camera setups. In this paper, we introduce a robust large-baseline color correction method that
preserves the original manifold structure of the input video. The manifold structure is extracted by locally linear
embedding (LLE), aimed at linearly representing each pixel based on its neighbors, assuming that they are all
clustered in a high-dimensional feature space. Besides the proposed manifold structure preservation constraint,
the proposed method enforces spatio-temporal color consistencies and gradient preservation. The multiview
color correction solution is obtained by solving a global optimization problem. Thorough objective and
subjective experimental results demonstrate that our proposed approach significantly and systematically
outperforms the state-of-the-art color correction methods on large-baseline multiview video data.

1. Introduction

Multiview video acquisition becomes ubiquitous thanks to its ability
of providing immersive information about the 3D scene and to the
recent advances in visualization technologies (e.g. interactive free
viewpoint television and autostereoscopic displays). Multiview video
is the backbone for a vast amount of applications including virtual
reality, digital entertainment, advertising, 3D graphics, broadcasting,
video production, to name a few. In foreseeable future, multiview
camera arrays will likely be small, sparse, and as easy to use as ordinary
video cameras are nowadays. In this rapidly evolving area, research
advances are needed in order to meet the severe demands concerning
acquisition, representation, transmission and processing of multiview
video.

While much work has been dedicated to this research domain, it
remains very difficult to make large scale use of multiview video and to
automatize production processes, as many steps still require the tedious
manual work of skilled professionals.

One of the major problems encountered in multiview video
acquisition systems is the color misalignment between sequences that
are captured by different cameras. In addition to leading to visual
fatigue and binocular rivalry [1,2], this problem does also further
impede view synthesis, compression or other challenging multiview
video processing techniques. Moreover, for large-baseline camera arrays,
aligning the color of videos captured by such systems will be particu-
larly difficult, due to the substantial variation of illumination condi-
tions and surface properties in the scene.

Typical multiview color correction techniques are mainly based on
histogram matching [3], with which both the style transfer and content-
preservation are coarsely achieved. However, histogram-matching
approaches suffer from introducing visual distortions: the color cor-
rected results are much worse than using the original sequences as the
color distribution of each view varies significantly in large-baseline
multiview video.

Recent research focus, such as the work presented in [4], is shifting
from processing globally accumulative mapping-based color transfer to
constructing more complicated spatio-temporal mapping, which aims at
preserving the gradient information to improve the color correction
effect. However, as it will be demonstrated in this paper, the gradient
information is far from sufficient to represent the detailed texture
information in images. Furthermore, to the best of our knowledge, there
is no solution in the literature specific for large-baseline multiview
color correction, where the local structural information of each video
should be well considered and preserved.

To address this problem, we present a manifold preservation
approach for effectively correcting the color of large-baseline multiview
videos. This paper is inspired by the recent progress on color correction
[3,4] and manifold-based edit propagation [5,6]. In principle, we
introduce the concept of robust color propagation in color-correction
processing. Essentially, instead of requiring similar pixels to have
similar results as usually enforced in histogram-based color correction
methods, we aim at maintaining the manifold structure constructed by
all pixels into a high-dimensional feature space. In order to better
preserve the original structural information and propagate the aligned
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colors from the reference video, a manifold structure extraction and
preservation constraint is proposed in our global optimization problem.
Additionally, the proposed method offers spatio-temporal consistency
and gradient preservation, similar to the approach in [4], effectively
avoiding over-smoothing and visual artifacts, typical in manifold-based
edit propagation.

In summary, the main contributions of this paper are as follows:

• We introduce a robust manifold preservation-based color correction
method, specifically designed for large-baseline multiview video;

• We solve the color correction problem and yield a globally optimal
solution;

• We provide objective and subjective evaluation results on various
large-baseline multiview videos. Our manifold preserving color
correction method outperforms all other existing approaches, de-
monstrating significant and systematic improvements over the state-
of-the-art.

The paper is structured as follows. In the next section we relate our
work to the current state-of-the-art in multiview video color correction
and manifold-based edit propagation. Section 3 presents the proposed
approach in detail. Experimental results, including critical implementa-
tion details, objective evaluation and a user study are given in Section
4. Finally, Section 5 summarizes the conclusions of this work.

2. Related work

Our work draws from two rich bodies of previous literature:
multiview color correction and manifold modeling-based color proces-
sing. We thus review the related work in both areas.

Multiview color correction can be performed by hardware during
acquisition (e.g. in [7,8]), as a prefiltering step after acquisition or even
as part of the compression system. Here we focus on software-based
techniques employed in the prefiltering or coding processes, which are
most relevant to our work. Moreover, we review various key compo-
nents involved in color correction, such as color compensation and
correspondence matching.

One of pioneering methods of prefiltering is proposed by Fecker
et al. [9]. In their method, histogram matching is applied by adapting
the accumulative histogram of other camera views to that of the
reference view. This approach was extended in [3] to improve the
coding efficiency along with time-constant color conversion and global
disparity compensation. Doutre et al. [10] calculate the average color of
the matching points among all views and perform a least-squares
regression for each view to set their color to be as close as possible to
the average color. Kim et al. [11] consider focus correction in the color
compensation processing. In [12], a block-based histogram matching
method is proposed, whereby the blocks in reference frames are
matched to those in target frames through spatial prediction.
Yamamoto et al. [13] introduce lookup tables to dynamically correct
the multiview color differences. Other lookup table designs include
solutions based on dynamic programming [14] or polynomial basis
[15,16].

Ilie et al. [7] construct a linear transformation matrix-based color
modification solution. An over-determined linear system for color
calibration is formulated by Li et al. in [17]. Other color correction
solutions are based on linear scaling [18], pairwise basis functions [19]
or high-order polynomials [10]. [20] also computes a local color
transfer function by fixing a separate Gaussian distribution for each
texture region. Similar processing making use of Gaussian filtering has
been reported in [15].

However, most existing linear and nonlinear transformation meth-
ods easily suffer from artifacts, due to the difficulty in consistently
mapping the color from the reference view to the target one in
multiview video. To tackle this problem, Fezza et al. [21] applies
histogram matching on a temporal sliding window and only common

regions defined by an invariant feature detector are taken into account,
where the temporal correlation is expected to be maintained.
Nevertheless, local visual distortions in the textural structures may
arise due to the inaccurate guidance of histogram matching. To address
it, Lu et al. [4] proposed a color correction method enforcing spatio-
temporally consistencies of color and structural information in multi-
view video. This method however cannot perfectly represent the local
structure information in color correction processing, and, as shown in
the experimental section, yields moderate results for large-baseline
camera setups.

Correspondence matching is another key issue in multiview color
correction. Typical sparse feature matching methods are employed to
model this correspondence. For instance, Scale-invariant Feature
Transform (SIFT) [22] is adapted in [15,17,21,23,24], while Speeded-
up Robust Features (SURF) [25] has been used in [4,26]. Dense
matching approaches were also introduced to improve the accuracy
of frame-level correspondence matching. For example, a region match-
ing method is used in [27], while disparity estimation is used to find
corresponding points between views in [28]. In [23], the input image is
segmented and corrected by locally-matched key points. We note that
robust video segmentation is still an open issue in video processing.
Block-level matching is also introduced in [29] by assuming a close
similarity among spatio-temporally neighboring frames. However,
block-matching correction methods would still result in outliers and
color compensation based on them can easily suffer from blocking
artefacts. To avoid the inaccuracies of sparse matching, Ceulemans
et al. [26] further employed optical flow to construct spatio-temporal
matching such that each pixel in the input image gets bijectively
mapped to a reference pixel.

The proposed method is inspired from such full mapping-based
nonlinear color correction. However, we focus more on preserving the
high dimensional manifold structure originating from both the color
and spatial texture of the input video, which makes our algorithm
highly effective in aligning colors, particularly for large-baseline multi-
view videos.

The idea of preserving the local structure has also been well studied
in a different context, namely color editing [30–32]. For instance, Qian
et al. [33] utilized the manifold alignment concept to preserve the local
geometries of color distribution and to align corresponding pixels for
image stitching. Xu et al. [34] performed edit propagation on bidirec-
tional texture functions in order to preserve the view independence
features. SmartColor [35] is introduced to blend the target color to the
background for head-mounted displays. More robust color distance
metrics have great potentials in improving the visual perception of
color editing. One example is geodesic distance based color harmoniza-
tion [36]. Chen et al. [5] employed LLE [37] to represent the manifold
structure and to propagate edits specified by the user. Ma et al. further
proposed a manifold-preserving color image editing approach in [6]. In
this method, the authors adaptively determine the size of pixel
neighborhoods, which are used to represent the manifold structure of
each pixel. We note that all these manifold-preserving methods focus on
interactive color editing for single image or video, while our solution
addresses adaptive color correction for multiview video.

3. Proposed algorithm

3.1. Overview

The proposed multiview color correction algorithm aims at auto-
matically propagating the reference colors to the corresponding pixels
in the target frames. To avoid inaccurate propagation that may result in
texture distortion, the local structure information should be well
preserved. Accordingly, in order to robustly perform color correction
for large-baseline multiview video, the local manifold structure is of
particular importance, and preserving this structure becomes a key
constraint in our global optimization framework.
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In essence, our global optimization framework comprises three
constraints, namely, preserving the local manifold structure, spatio-
temporal consistency and the original gradient information. We de-
scribe them in detail next.

3.2. Manifold structure preservation

Let It be the tth video frame whose color needs to be corrected, and
denote by It(x) the pixel with coordinate x in frame It. As introduced in
[37], the data in a high dimensional space can be projected to a lower
dimensional manifold where each sample can be represented by a linear
combination of its nearest neighbors. Similarly, the color of each pixel
in the image can also construct a local manifold structure with its
neighbors in the feature space [5,6]. Thus, to obtain a robust manifold
structure of It, a proper set of adjacent pixels should be selected for each
pixel It(x) from the original frame. In our solution, this is tackled by k-d
tree clustering [38] operating in a five-dimensional feature space
composed of three color channels, i.e. the red, green and blue values,
and two spatial position indicators m and n. Then, the original manifold
structure of each color frame is obtained by minimizing the following
equation:

∑ ∑ ∑I x ω x I x ω xmin ∥ ( ) − ( ) ( )∥ subject to ( ) = 1.
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In this equation, I x( )t k, is the kth adjacent pixel of It(x), N is the total
number of pixels in the frame and K is the number of neighbors in the
support region for the pixel It(x). One notes that the weights ω x( )k
satisfy a normalization constraint. After establishing the appropriate
neighborhood in the cluster, the weights ω x( )k are computed using the
LLE algorithm [39].

Thus, in the first phase, we get the original local manifold structure
including each pixel's support neighbors and their corresponding
weighting factors. In order to enforce manifold structure preservation
in multiview color correction, the weighting factors and the local
neighborhood of each pixel in the color corrected picture should be
preserved after performing color correction. Hence, the following
energy component should be minimized:
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where Ot(x) represents the color at x in the corrected video frame, and
O x( )t k, is the corrected color of k-th adjacent pixel in the same frame.
Note that in this equation the local neighborhood and the weights ω (·)k

are those obtained on the original frame from the minimization of Eq.
(1).

Note that Eq. (2) can be further written into the matrix form:

E O I W I W O= ( − ) ( − ) ,m t
T T

t (3)

where Ot is a N × 1 vector composed of all pixels in the corrected video
frame, I is a N-dimensional identity matrix and W is a N×N matrix
composed of weights ω (·)k .

3.3. Spatio-temporally consistent multiview color correction

Spatio-temporal consistency preservation. We follow the as-
sumption, as introduced in [28,21,4], that similar content should share
similar color in the scene. It is thus necessary to construct spatio-
temporal consistency terms based on both the input and reference views
in order to guide the color correction process.

Enforcing spatio-temporal consistencies takes into account the
following three sub-constraints: (1) the spatial correspondence between
the input video frame and the corresponding one in the reference video;
(2) the temporal correspondence between the input video frame and its
previous frame; and (3) the additional color correspondence by
histogram matching. Therefore, to preserve spatio-temporal consisten-

cies, the energy in the following equation should be minimized:
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where βct, βcp and βch are corresponding weighting factors of the
above-mentioned sub-constraints. Ωr is the domain composed of the
matched feature points between the current frame in the input video
and the corresponding frame in the reference video. Similarly, Ωp

represents the collection of matching points between the current frame
and the previous (corrected) frame. All other pixels in the input frame
that belong to neither Ωr nor Ωp are included then in Ωh. f (·)r and f (·)p
are the position mapping functions which indicate the positions of
matching points in the reference frame and in the previous frame,
respectively. Rt represents the t-th frame in the reference video and Ht is
the histogram matching result of It with Rt. Unlike other existing color
correction methods that usually employ SIFT or SURF to find the
matching features, we use the detector introduced in [40,41] because of
its more accurate and denser matching performance (more details are
reported in their papers).

Ec can be represented in the matrix format by combining the three
feature terms into a vector M and composing their corresponding
weights into a diagonal matrix A:

E O M A O M= ( − ) ( − ),c t
T

t (5)

Gradient preservation. Color correction should follow the princi-
ple that the structural information in the original scene should be
preserved as much as possible. Similar to the modeling in [4], this is
formulated by minimizing the gradient difference between the output
frame and the input frame. Mathematically, this is expressed by
minimizing:

∑E O x I x= ∥∇ ( ) − ∇ ( )∥ ,r
x

N

t t
=0

−1
2

(6)

where ∇ is the gradient operator for which the horizontal and vertical
gradient components are computed using the Sobel operator. Er can be
further represented as the matrix form:

E D O D I D O D I D O D I D O D I= ( − ) ( − ) + ( − ) ( − ),r x t x t
T

x t x t y t y t
T

y t y t (7)

in which Dx and Dy denote the horizontal and vertical gradient
components respectively.

Solution. Combining the above-mentioned three constraints, the
optimized color correction result can be solved by minimizing the
following total energy:

E β E β E β E= + + ,m m c c r r (8)

where βm, βc and βr are the weighting factors for the corresponding
energy terms.

The optimal color correction solution can be found by calculating
derivatives and solving the following linear system of equations:

β I W I W β A β D D D D O

β AM β D D D D I

[ ( − ) ( − ) + + ( + )]

= + ( + ) .
m c r x x y y t

c r x x y y t

T T T

T T (9)

This equation involves a sparse Laplacian matrix (the left-hand term
multiplying Ot) which can be solved efficiently using the Hierarchical
Sparsification and Compensation (HSC) method introduced in [42].

3.4. Analysis

In the proposed approach, the manifold preservation constraint
includes the local structure preservation energy given by Eq. (2)
together with the gradient preservation constraint, expressed by Eq.
(6). This constraint is much stricter than just enforcing gradient
preservation, as done in our previous method in [4]. The local manifold
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structure intrinsically describes the local color correlation (weighted
linear combination in this paper) between each pixel and its nearest
pixels, while the original gradient captures just the color differences
between each pixel and its four neighbors in the horizontal and vertical
directions, respectively. In the extreme case, if the neighboring radius
of the local manifold structure is equal to 1, the support domain in the
manifold will be drastically regressed. In this case, the contribution of
the manifold preservation constraint in the total energy given by Eq. (8)
will be similar to that of the gradient preservation constraint.

On the other hand, the colors will not be well corrected when
performing our solution with too little (or even without) the gradient
preservation energy constraint (see the comparison in Section 4). One
notes that, to capture the relation between each pixel and its neighbors
in the manifold structure, not only the two spatial distances but also
three color components are taken into account. Thus, around or on
image contours, where each pixel's color may be much different from its
spatial neighbors in the image, the local manifold structure will not be
able to capture the pixel's relation with its spatial neighbors. In
contrast, the simple, yet accurate gradient information can effectively
build the bridges for pixels located on or very close to image contours.
This is the reason why we introduce the combination of manifold
preservation and gradient preservation constraints in our approach.

Note that in [4], the additional histogram matching-based sub-term
is used to ensure a one-to-one color mapping for all input pixels in the
spatio-temporal consistency term; in this way, [4] yields a closed-form
solution to the color correction problem. In contrast, our algorithm can
still yield a color corrected image without this additional sub-term.
Nevertheless, if we do so, i.e, when only considering the manifold
structure constraint Em, together with gradient preservation Er, and the
spatio-temporal consistency constraint Ec but only based on the sparse
feature points, the proposed solution turns out to be inadequate for
propagating the corrected colors to the entire image, especially for flat
areas where normally no feature points are detected (see the detailed
comparison in Section 4). Therefore, the histogram matching compo-
nent is still necessary as an additional reference for those pixels for
which the sparse spatio-temporal feature matching fails to find appro-
priate correspondences.

4. Experimental results

The proposed method is experimentally evaluated using various
multiview video sequences with large camera baselines. As reference
techniques we report color correction results using three different
algorithms, namely, the histogram matching method [3] (with the
abbreviation of Histogram), the algorithm presented in [4] (denoted by
TMM), and our proposed algorithm (denoted by Proposed). To compare
the results of such different approaches, the objective evaluation is
investigated in terms of the Peak Signal-to-noise Ratio (PSNR) and the
Structural Similarity (SSIM) [43] metrics, which are normally used for
image quality evaluation. We also perform a user study to subjectively
assess the color correction results.

The proposed color correction algorithm has been applied to various
standard multiview sequences, including the Objects2, Race1 and Crowd
as well as two uncalibrated sequences shot in our lab, namely Etroshot
and Beers.

The input and reference views are chosen so as to have a large
baseline between the view pairs. Specifically, for the standard se-
quences employed in this paper, view pairs with large baselines are
selected according to the sequence description1 and our visual percep-
tion. For the Etroshot and Beers sequences, the view angle difference is
around 20 degrees between camera positions. Detailed parameters of
the test view pairs are listed in Table 1. In this table, It and “Rt”

represent the view numbers of the input and the reference cameras,
respectively. “BL” is the distance between the input and the reference
view, and “Frm” indicates the number of frames for each video
sequence.

4.1. Implementation parameters

Our color correction system is implemented in Microsoft Visual
Studio C++2013 combined with the implementation of Laplace matrix
optimization in MATLAB 2012 on a PC equipped with an Intel Xeon
CPU 3.5 GHz processor and 64 G RAM.

As described in Eq. (9), in our system there are three categories of
weights associated with the manifold structure, spatio-temporal con-
sistency and gradient preservation constraints, respectively. Since the
spatio-temporal consistency constraint consists of three sub-terms, the
weight for spatial sparse correspondence sub-term is empirically fixed
as 600, while the weight assigned to temporal matching sub-term is
attenuated from 600 by the factor of

N
N

pre

ref
, where Nref and Npre represent

the numbers of the spatial feature points and of the temporal feature
points respectively. The additional correspondence sub-term with
histogram matching points is weighted by 300. By fixing all the
above-mentioned parameters, more detailed investigations are then
focused on selecting the weights of the manifold structure and gradient
preservation terms. Fig. 1 shows the experimental results on the nd2
frame of the Objects2. In this figure, the manifold preservation energy is
plotted in logarithm scale. For each chosen parameter assigned to the
manifold preservation term, when the weight of the gradient preserva-
tion term is gradually increased, the PSNR firstly increases to a peak
value and then goes down, while the SSIM keeps going up. One can tell
from this figure that emphasizing too much on the gradient term would
well preserve the original spatial structure of the image, but the
reconstructed color may be distorted (see the decreased PSNR). On
the contrary, too high weighting on the manifold preservation term will
impair the performance of both the PSNR and SSIM. This phenomenon
verifies the analysis in Section 3.4. Thus, based on extensive experi-
ments, we set the final weights for the manifold structure term and the
gradient preservation term to 100 and 5, respectively. We thus set all
parameters to fixed values and use them for all test sequences in our
experiments.

The execution time for correcting one frame is mainly spent on the
following processing steps: 1) clustering using k-d tree and retrieving
neighboring pixels under this tree; 2) calculating LLE for each color
component, 3) performing feature matching; and 4) solving the final
optimization problem. The total runtime cost of the proposed approach

Table 1
Average numerical results of forward-reverse correction.

Video Size View Parameters
(I R→ , BL, Frmt t )

Metrics Histo-
gram
[3]

TMM [4] Ours

Objects2 640×480 (0 → 7, 140 cm, 300) PSNR 23.86 27.47 28.50
SSIM 0.845 0.951 0.971

Crowd 640×480 (0→4, 40 cm,300) PSNR 38.69 41.34 43.50
SSIM 0.981 0.992 0.996

Race1 640×480 (0 → 7, 140 cm, 300) PSNR 35.26 36.66 41.96
SSIM 0.947 0.967 0.997

Etroshot 960×540 (−→−,20°, 150) PSNR 35.53 37.27 37.65
SSIM 0.975 0.989 0.993

Beers 960×540 (−→−,20°, 150) PSNR 29.98 31.77 33.05
SSIM 0.941 0.970 0.981

1 ftp://vqeg.its.bldrdoc.gov/Documents/Meetings/ITUT_SG9/May04/T01-SG09-
040510-TD-GEN-0060!!MSW-E.doc
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for a video frame with HD resolution is about 20 s in release mode on a
single CPU core. One points out that, in our approach, solving the
sparse Laplacian linear system shares similar computational complexity
with the method introduced in [4], where the runtime cost is about 8 s
for a video frame with HD resolution. The computational consumption
on the first step, i.e. pixel clustering and retrieving, is close to that of
the final solver (i.e. about 8 s), while the second and third processing
steps need much less time (about 4 s). As to the memory consumption,
it takes 236MB for pixel clustering and retrieving, 600MB for solving
the LLE problem, and around 860 MB to solve the sparse Laplacian
matrix system for an HD frame.

4.2. Color correction results

The results obtained on the publicly available video sequences are
shown in Figs. 2, 3 and 4. In Fig. 2, it is obvious that [3] easily produces
visual artifacts on the blocks (see the 3rd row) and on the flowerpot
(the 4th row). [4] eliminates part of the artifacts, but it still introduces a
shadow at the right bottom of the blocks (the 3rd row) which does not
appear in the source image, and the color transition on the flowerpot is
also not smooth enough. Comparatively, the proposed result corrects
the color through the whole image but still retains the original structure
such as shadowing and transitions. The result using our proposed
algorithm is more reddish which is more close to the reference
compared to those obtained using [3,4], especially on the wall.
Therefore, the proposed result can be considered as the best among
the tested techniques on this sequence.

Similarly, in Fig. 3, one can see that the results of [3,4] are too
yellowish compared to the reference as well as the source, while the
color palette of proposed result looks much closer to that of the
reference. In Fig. 4, the reference frame looks reddish but the source
frame that needs to be color-corrected looks yellowish. However, the
corrected results using [3,4] are too yellow which are again far from not
only the source but also the reference. For the proposed result, it is
obvious that it appears more reddish compared to the source, and it is
the most similar to the reference in color compared with the results
obtained using [3,4]. To show the color consistency between neighbor-
ing frames, we provide several successive video frames of the corrected
sequence Objects2, their corresponding original frames as well as
reference frames (see Fig. 5).

We also investigate the performance of the proposed method
obtained when removing part of the proposed constraints (see the
visual results in Fig. 6). First, we apply our solution when only using the
manifold preservation and spatio-temporal consistency constraints that
are based just on the sparse feature points, while for the manifold
structure we perform clustering only considering each pixel's spatial
distance (instead of with its 5D features). As shown in Fig. 6 (a), the
colors are badly spatially propagated due to the lack of color correlation

in the manifold construction. In contrast, in Fig. 6 (b) the output image
is somewhat improved when the original RGB color information is
involved in the manifold structure construction. However, it is notice-
able that in some areas the textural information is not well preserved,
and overall, the results are far from acceptable. As discussed in Section
3.4, if only the manifold structure is considered to represent the local
structure information, the system always intends to generate an over
smoothing effect. We also perform our algorithm by just removing the
gradient preservation constraint, the results being shown in Fig. 6 (c). It
is obvious that, while the color palette starts to become acceptable,
there are some significant reconstruction errors that render the overall
result as far from acceptable. The last image in this figure is generated
when we remove the histogram matching-based sub-term in the spatio-
temporal consistency constraint. Again, as described in Section 3.4,
without this additional sub-term, it is still difficult for the system to
propagate all the reference colors to the output image, although the
contours and important structures are well reconstructed. Investigation
has also been done involving Lab color space instead of RGB color space
in the k-d tree clustering and retrieving step described in Section 3.2.
The corresponding results will be discussed in Section 4.3.

4.3. Evaluation and comparison against the state-of-the-art

The purpose of this paper is to render the color of input view to be
as similar as possible to that of the reference view. This turns out to be a
particularly difficult problem when the disparity between the two views
is large. The objective evaluation of the proposed method is based on
the methodology proposed in [4]. In this methodology, the color
distortion for the proposed and reference color-correction methods is
determined. Additionally, we also follow a user study to subjectively
assess the color correction results.

Objective evaluation. Objective metrics such as the PSNR and
SSIM are commonly used to measure the quality of the reconstructed
image, while they cannot be directly applied in multiview color
correction due to the lack of ground truth. To address this problem,
we employ the forward-reverse assessment methodology introduced in
[4]. In this methodology, forward color correction is firstly performed,
where the input color is corrected according to the reference view.
Reverse color correction is subsequently performed with the same
method as used in forward correction, but the reference is the original
input view and the input is the result of forward correction [4]. After
that, the PSNR and SSIM are computed between the output of reverse
color correction and the original input frame which serves as ground
truth.

This forward-reverse evaluation methodology is also performed for
[3,4] to compare their results against those obtained with the proposed
approach. Detailed average numerical results over Red, Blue and Green
color components are shown in Figs. 7 and 8. These averages are then

Fig. 1. Parameter selection for the proposed system.
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Fig. 3. Color corrected result of the Race1 sequence (28th frame). Source: the input view; Histogram: the result with [3]; TMM: the result with [4]; Proposed: the result with our method.

Fig. 4. Color corrected result of the Crowd sequence (60th frame). Source: input view that color correction need to be performed; Histogram: result with [3]; TMM: result with [4];
Proposed: result with our method.

Fig. 2. Color corrected result of the Objects2 sequence (7th frame). Source: the input view; Histogram: the result with [3]; TMM: the result with [4]; Proposed: the result with our method.
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averaged over the number of corrected frames and the results for each
sequence are shown in Table 1. With the proposed method, the minimal
gain in terms of average PSNR over the number of frames is +2.12 dB
compared to [3] and +0.38 dB compared to [4] (sequence Etroshot). The
maximal gain can be up to +6.7 dB against [3] and +5.3 dB against [4]
(sequence Race1).

In terms of the average SSIM over the number of frames, which is
more appropriate than PSNR to evaluate texture structure information,
the proposed algorithm gains range from +1.5% (Crowd sequence) to
+12.6% (Objects2 sequence) when compared to [3], and from +0.4%
(Crowd and Etroshot sequences) to +3% (Race1 sequence) in comparison
to [4].

Fig. 5. Successive frames showing the color consistency of the source video and the corrected results of sequence Objects2 using our proposed algorithm.

Fig. 6. Our color correction results obtained when removing part of the proposed constraints. (a): results when only considering the manifold preservation and two sparse matching-based
consistency sub-terms, but in the manifold only each pixel's spatial information is considered (i.e. no color information is accounted for). (b): the same constraints as in (a), while the
manifold is built using the proposed 5D feature space. Results obtained (c): without considering the gradient preservation constraint, and (d): without the additional histogram matching-
based sub-term.
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To illustrate the effectiveness of our proposed algorithm for
correcting colors of large-baseline multiview videos, experiments have
also been performed under various baseline distances, and the examples
are shown in Fig. 9. It is obvious that the color correction performance
of [3] dramatically is degraded when the input and reference cameras
are far away, while our proposed algorithm is able to achieve much
better results under large baseline distances.

As mentioned in Section 4.2, different color spaces involved in the
k-d tree clustering and retrieving step for preserving manifold structure
have been investigated. Fig. 10 illustrates the results with Lab color
space and with RGB color space, respectively. Experimental results
using algorithms in [3,4] are also shown in this figure. Our results are

surprisingly the best in the RGB color space instead of the Lab color
space, although the latter is usually regarded as a linear space. The
main reason would be that under RGB color space the linearly
weighting of the correlated high-dimensional features are more suitable
for the k-d tree clustering, local manifold extraction and structure
preservation optimization in our solution.

User Study. In addition to quantifying the PSNR and SSIM using the
forward-reverse methodology of [4], we have also performed a user
study to evaluate the color correction obtained with the proposed
system. The subjective evaluation has been performed in a standard-
compliant Rec. ITU-R BT 500-13 visual-quality test facility, employed
in classical still-image evaluations. The screen used in the subjective

Fig. 7. Forward-reverse color correction results obtained on the Objects2, Crowd and Race1 sequences. Histogram: the result with [3]; TMM: the result with [4]; Proposed: the result with
our method.
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assessment is a color-calibrated HDTV with a 16/9 format ratio. The
viewing distance was three meters and the maximum observation angle
was around 30 degrees. We invited fifteen participants to the visual
tests, five of them having professional background in computer vision
or computer graphics and the remaining having little or no experience
in these fields. The subjects presented no acuity or color deficiencies.
Again, five sequences, i.e. Objects2, Crowd, Race1, Etroshot and Beers,
were shown to each participant one by one. For each sequence, the
reference view as well as three output views obtained using the three
aforementioned color correction methods were shown at the same time.
Participants were asked to vote which output has the most similar
colors to that of the reference view.

The voting result is surprisingly convincing: the proposed method is
always selected except of only two participants outside this field
preferring the result of [4] in the Objects2 sequence. This user study
demonstrates that our proposed algorithm is substantially preferred
over the state-of-the-art.

5. Conclusions

In this paper, we present a color correction method for large-
baseline multiview video. Color correction is formulated as a global
optimization problem whereby spatio-temporal color consistencies and
gradient preservation are enforced. A major contribution of the
proposed approach lies in incorporating a manifold-preservation con-
straint extracted from the original video frames into the global
optimization problem. Both objective metrics and subjective evaluation
results show that our proposed approach outperforms the state-of-the-
art.

There are several avenues for future work and applications. One of
the future research directions may focus on adapting our algorithm to
various color spaces in order to achieve more robust color correction
results. Improving computational performance by exploring multicore-
and GPU-based implementations of the proposed method would be
another research topic. In addition, it would be interesting to incorpo-

Fig. 8. Forward-reverse Correction of the Etroshot and Beers sequences. Histogram: the result with [3]; TMM: the result with [4]; Proposed: the result with the proposed method.

Fig. 9. Objective evaluation under different baseline distances. The x-axis indicated by the camera numbers represents the baseline distance and the y-axis indicates the values of PSNR
and SSIM.
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rate our color correction method into virtual view synthesis (e.g. [44–
46]), multiview video compression and other immersive applications.
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