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ABSTRACT

Stereo matching has been a one of the most active research
topics in computer vision domain for many years resulting
in a large number of techniques proposed in the literature.
Nevertheless, improper combinations of available tools can-
not fully utilize the advantages of each method and may even
lower the performance of the stereo matching system. More-
over, state-of-the-art techniques are usually optimized to per-
form well on a certain input dataset. In this paper we propose
a framework to combine existing tools into a stereo matching
pipeline and three different architectures combining existing
processing steps to build stereo matching systems which are
not only accurate but also efficient and robust under different
operating conditions. Thorough experiments on three well-
known datasets confirm the effectiveness of our proposed sys-
tems on any input data.

Index Terms— Stereo matching, depth estimation, dis-
parity estimation, binocular stereo

1. INTRODUCTION

Stereo matching aims to find pixel correspondences between
multiple images of the same scene captured from different
view points. Those correspondences form a disparity map,
which represents a horizontal displacement between the pix-
els and their matches in another view. Finally, the disparity
map can be easily converted into a depth map of the original
scene given the intrinsic and extrinsic camera parameters.

Thanks to this close disparity-depth relationship together
with a wide range of applications of depth information, stereo
matching has been receiving a lot of attention from the com-
puter vision community for many years. Typically, stereo
matching methods in the literature generally follow a process-
ing pipeline with four main steps: (1) matching cost computa-
tion, (2) matching cost aggregation, (3) disparity calculation
and (4) disparity refinement [17]. These methods are most
commonly classified into two main groups: local and global

methods. Algorithms classified into the first group calculate
the disparity value for each pixel separately while the others
formulate an optimization problem for the whole image and
solve it for the disparity labeling function [17].

In the early days, the stereo matching problem was solved
mainly using local methods. After that, due to the appear-
ance of very efficient minimization techniques such as graph
cuts and belief propagation, global methods became dominat-
ing. Most of the researchers in the domain focused on find-
ing the best way to formulate the stereo matching problem
and on improving the optimization algorithms [20, 19, 10, 3,
24]. Global methods proved to generate state-of-the-art re-
sults [24, 22, 13] and are widely used until now. Recently,
the matching cost aggregation step attracted a lot of attention
making adaptive support weight for cost aggregation process-
ing step an active research direction [27, 8, 1, 11, 23]. How-
ever, the trend seems to be deviating in the direction of ma-
chine learning stereo matching-based algorithms [26, 14], as
large datasets containing ground-truth disparity maps became
available.

Until now a great number of articles have been published
in stereo matching domain and many techniques have been
proposed for each of the four main processing steps. Nev-
ertheless, this domain still receives a lot of interest from the
community due to the high demand for a method which per-
forms not only accurately but also efficiently and robustly un-
der varying operating conditions. Building an effective sys-
tem is still challenging due to several reasons. Firstly, design-
ing a good integration to maximize the powers of existing
ideas is not straightforward [24, 12]. Secondly, most of the
proposed algorithms were only evaluated and compared us-
ing the standard Middlebury benchmark [18], which consists
of stereo pairs captured under controlled laboratory settings.
The problem is that methods focusing only on one dataset are
likely to be optimized for the certain input and may not per-
form well in other conditions. In particular, many methods
achieving best results in the Middlebury ranking do not pro-
duce accurate disparity maps when applied to KITTI input



images [4], which are captured outdoors using moving cam-
eras. Similarly, multiple top-ranked algorithms fail to gener-
ate high quality results for the MPEG FTV dataset [21].

In this paper, we describe a simple, yet effective frame-
work to combine available tools in order to build a stereo
matching method which is accurate, efficient and robust under
varying test conditions. Based on that, we propose and com-
pare three depth estimation architectures, employing three dif-
ferent widely used disparity computation techniques. All three
prototypes use Census transform for matching cost calcula-
tion and employ a discontinuity-preserving disparity compu-
tation tool. Finally, estimated disparity maps are refined by
utilizing weighted-median filtering. The experimental results
show (i) the superior performance of the proposed methods
compared to their baselines, and (ii) one of the three methods
is ranked among the best local methods on the KITTI bench-
mark.

To sum up, the main contributions of our paper are as fol-
lows:

• A framework to integrate existing stereo matching tech-
niques, in order to build a method with high effective-
ness, efficiency and robustness

• A thorough evaluation of different stereo matching meth-
ods on three well-known datasets with different charac-
teristics

The remainder of the paper is organized as follows: Section
2 presents our integration framework of different processing
techniques and Section 3 explains in detail the proposed pro-
totype methods. Next, Section 4 describes the experiments
and their results. Finally, we conclude the paper in Section 5.

2. ROBUST STEREO MATCHING FRAMEWORK

The proposed framework for building a robust stereo match-
ing algorithm is illustrated in Fig. 1. There are three main
components in this framework: the census matching cost,
the disparity computation technique and the view-consistent
refinement. Although more complex methods exist for the
matching cost computation and disparity refinement, we opt
to use these simple techniques in our systems. With the pro-
posed framework, the complexity of stereo matching depends
only on the disparity computation tool. If an efficient local
disparity computation technique is employed, the constructed
system will be computationally cheap and suitable for sys-
tems with limited resources. Otherwise, the algorithm will be
appropriate for more complex hardware.

2.1. Matching cost computation

The matching cost computation procedure is the first step in
any stereo matching system. A large number of cost met-
rics have been proposed in the literature. Hirschmuller et al.

Census matching cost

Discontinuity-preserving
disparity computation

View-consistent disparity refinement

Fig. 1: Proposed integration framework.

carried out a thorough analysis of the performance of a num-
ber of cost metrics and proved that the census cost produces
the best and the most robust results under radiometric differ-
ences including differences in exposure, lighting, vignetting
and noise [7]. More advanced methods for matching cost
computation, like fusion of multiple methods [15] or machine
learning approach [26] have been proposed recently. Never-
theless, the former does not perform well when apply with
cost aggregation and disparity refinement whereas the latter
has a very high computational complexity and hence is not
suitable for systems with limited resources. We selected the
census matching cost for our disparity estimation methodol-
ogy since it brings the best tradeoff between accuracy, robust-
ness and complexity.

The census matching cost is a Hamming distance between
two bit strings representing the pixels, in which the bit strings
are calculated using the Census transform [25]. This trans-
form compares the value of each pixel p with the surrounding
pixels in a window and sets a bit to 1 if the corresponding
neighbor has a smaller intensity value than p, and 0 other-
wise. Hence, this transform relies on the relative ordering of
local intensity values, that is, it has the ability of capturing
local image structure, which makes it also reliable for lack-
of-texture regions.

2.2. Disparity computation

Although the census matching cost is very effective for deal-
ing with the lack-of-texture problem, its performance around
disparity discontinuities is not as good as in case of other
matching costs. Nevertheless this problem has to be taken
into account while executing the disparity computation step,
which is the second component in our systems. Many of such
techniques have been proposed in the past [17]. Accurate dis-
parity discontinuities can be captured using both local tech-
niques with adaptive support weight-based cost aggregation,
e.g. [27, 8, 23] and global techniques, incorporating disparity
discontinuities as a constraint, e.g. [19].

Because the performance of different methods on vary-
ing input data is not clear, we have selected two local and one
global algorithms for further evaluation. The detailed descrip-
tion will follow in Section 3.



2.3. Disparity refinement

The last step in any stereo matching system is the refinement
step, which influences the results significantly as it corrects
disparity values for both occluded and non-occluded regions.
In our framework, we follow the technique proposed by Hosni
et al. [8]. To be specific, the refinement step in our approach
consists of four sub-steps:

• Left-right consistency check: detects the unreliable pix-
els in the disparity map which do not satisfy the view-
consistency condition

• Hole filling: fills the disparity values of the unreliable
pixels

• Weighted median filtering: smooths the hole-filled dis-
parity map and removes streaking artifacts resulted from
the hole filling process

• Un-weighted median filtering: removes the remaining
noise

The key part of the described disparity refinement pro-
cess is weighted median filtering, which replaces the value
of a pixel by a weighted median value of its neighbors. The
weight assigned to a pixel in the neighborhood of another pix-
els can be determined using both their spatial and color dis-
tances. One big draw-back of the refinement in [8] is that it
uses a naive implementation of weighted median filtering, in-
creasing the runtime of the whole algorithms significantly. To
overcome this drawback, we use the fast implementation of
the weighted median filtering algorithm proposed by Zhang
et al. [28], which does not add a noticeable computational
burden to the system.

3. PROTOTYPE METHODS

Three prototype methods have been constructed from our frame-
work presented in the previous section. As mentioned earlier,
all proposed architectures share the same matching cost and
disparity refinement technique, but they differ in the disparity
computation step. This processing stage has the biggest im-
pact on the overall performance of the algorithm and therefore
we selected three methods that belong to different categories
in the literature.

3.1. Prototype 1: Cross-based algorithm

The first technique, which is the cross-based technique pro-
posed in [27], is a local technique with main focus on the
cost aggregation step. The method derives for each pixel an
adaptive-shaped support window for cost aggregation based
on the color information in its neighborhood. That is, only
neighboring pixels with similar color are included in the sup-
port region. Thus, the matching cost for a pixel will not be

aggregated across object borders which are assumed to occur
at color edges, which ensures that the disparity discontinuities
are well preserved. Moreover, one strong point of this tech-
nique is that it can be implemented very efficiently using an
integral image technique [27].

3.2. Prototype 2: Adaptive support weight algorithm

The second architecture makes use of the local technique clas-
sified in the literature as an adaptive support weight algo-
rithm. Specifically we employed a well-known cost volume
filtering algorithm proposed in [8], which is highly ranked
among the local methods on the Middlebury benchmark [18].
The basic idea of this approach is to execute guided image fil-
tering [6] on the matching cost volume formed by the match-
ing costs of each pixel for all possible disparities in the range.
Because the color image is used as the guidance and the filter
itself has edge-preserving characteristics, this procedure guar-
antees that the matching cost is not aggregated across color
edges. Hence, it ensures that the disparity discontinuities are
preserved, as done also in Prototype 1.

3.3. Prototype 3: Belief propagation algorithm

Finally, the third selected method is a global algorithm, for-
mulating the disparity labeling problem using a pair-wise Markov
random field (MRF) model. Although such systems appeared
in stereo matching literature a long time ago, belief propagation-
based methods are still achieving state-of-the-art results [24,
22, 13]. A drawback of the belief propagation algorithm and
global disparity computation is the high computational com-
plexity. Nevertheless, the belief propagation algorithm is well-
suited for parallel implementation, hence, a GPU implemen-
tation can significantly reduce the computational time [5].

Denote by d a disparity labeling function; the energy func-
tion to be minimized is the sum of a data term Edata and a
smoothness term Esmooth:

E(d) = Edata(d) + Esmooth(d) (1)

Edata(d) =
∑
p

C (xp, yp, dp) (2)

Esmooth(d) =
∑
p

∑
q∈Np

ρ (dp − dq) (3)

in which C(xp, yp, dp) is the census cost of assigning pixel p
the disparity value dp.

The truncated linear model is adopted as the smoothness
term. The smoothness cost, incorporated into the model as a
prior knowledge, is computed by using mean-shift segmenta-
tion [2] on the color image. In particular, the smoothness cost
of assigning disparity values dp and dq to pixels p, q respec-
tively is calculated as follows:

ρ (dp − dq) = wpq × λ × min (|dp − dq|,K) (4)



with

wpq =

{
1, if q ∈ Sp

α, otherwise
(5)

where K is the truncation value; λ is a constant which con-
trols the influence of the smoothness constraint on the dispar-
ity estimation; Sp is the segment that contains pixel p and α
is a constant in the range [0− 1].

This formula ensures that the smoothness cost is less sig-
nificant if pixels p and q belong to different image segments,
allowing the algorithm to assign different disparity values to
both pixels. Otherwise, the smoothness cost has a stronger
impact on the labeling process, which results in setting the
same disparity value to the pixels. Similarly to the previous
architectures, this design helps to preserve the disparity dis-
continuities.

We used 8-connected neighborhood system in our MRF
implementation, in which each pixel is connected to eight sur-
rounding pixels. The energy function shown in Eq. (1) is op-
timized using the accelerated belief propagation algorithm of
[10].

4. EXPERIMENTS

Thorough experiments were carried out to evaluate the pro-
totype disparity estimation methods presented in the previous
section. For simple identification, we denote the first pro-
totype method built with cross-based cost aggregation tech-
nique as ’CS’; the second method built with guided image
filtering for cost aggregation as ’GF’ and the third prototype
methods as ’BP’. The performances of these architectures are
compared to their reference implementations, i.e. the tech-
niques proposed by Zhang et al. [27] and Hosni et al. [8],
and to the depth estimation reference software (DERS) from
MPEG [9].

4.1. Experimental setup

Three different well-known datasets were employed in our
experiments. We divided each dataset into non-overlapping
training and testing sets. The training set was used to tune the
methods’ parameters while the testing one was used to evalu-
ate the efficiency of each system.

The most popular input, namely the Middlebury data, con-
tains images taken in laboratory settings. Stereo image pairs
in this set come with ground-truth disparity maps, obtained
using structured light techniques [18, 16]. In total, we se-
lected 31 stereo image pairs, of which 12 were used for train-
ing and 19 for testing.

In order to guarantee the satisfactory performance in dif-
ferent lighting conditions, we evaluated our methods using
another two datasets, i.e. the KITTI dataset [4] and the MPEG-
FTV dataset. The first one contains 194 training stereo image

pairs and 195 testing pairs. Unlike the Middlebury dataset,
only gray-scale input images are used for tests, which makes
this dataset more challenging. Moreover, the images are cap-
tured outdoors under different weather conditions.

Finally, we selected Balloons and Newspaper multi-view
video sequences [21] from the MPEG-FTV collection. Al-
though both sequences were recorded indoors, they are very
challenging due to multiple light sources and complicated tex-
tures (or lack of textures). We took only two views from each
sequence and temporally sampled the two sequences each 20
frames. This resulted in 30 stereo pairs in total, 15 per video.

Disparity estimation methods can be evaluated in direct or
indirect way. If ground-truth disparity maps are available, the
percentage of bad matching pixels (BPP) [17] or the error rate
is used for evaluation of the algorithm. A pixel is considered a
’bad pixel’ if its disparity differs from ground-truth disparity
value by more than a threshold (1.0 and 3.0 for Middlebury
and KITTI respectively). The percentage of bad pixels may
be evaluated either for all pixels in the images or for only non-
occluded pixels, resulting in two different evaluation figures,
denoted by BPP all and BPP nonocc respectively.

In case ground-truth disparity maps are not available, in-
direct assessment of the quality has to be performed. We eval-
uated the disparity maps by first synthesizing new views using
the generated disparity maps and then calculating the objec-
tive image quality comparing the synthesized images with the
captured images. This evaluation was conducted due to the
fact that depth-image-based rendering (DIBR) is one of the
most important applications of depth maps. In such case, the
quality of disparity image itself is not as important as the qual-
ity of the synthesized picture. The renderer available as a part
of HEVC Multiview reference software 1 was used for DIBR.

In our experiments, we first trained and evaluated all three
methods independently on the Middlebury and KITTI datasets.
To be specific, we tested the algorithms to select the best max-
imum aggregation radius L for the CS method, filter window
radius r for the GF method and constant balancing data and
smoothness costs λ in case of the BP method. All other pa-
rameters for disparity computation are fixed according to the
reference papers. Parameters for the matching cost computa-
tion and refinement are also fixed for all prototype methods.
Only the best performing method among the three was se-
lected to run on the MPEG-FTV dataset.

The best parameters obtained during the training step are
presented in Table 1.

Table 1: Parameters learned during the training step.

L r λ
Middlebury dataset 9 9 1.0

KITTI dataset 7 9 1.0

1https://hevc.hhi.fraunhofer.de/svn/svn 3DVCSoftware/



4.2. Experimental results

Middlebury dataset

The final results for both the non-occluded pixels and the
whole images are shown in Fig.2. As can be seen from this
figure, our CS method has much higher accuracy than its ref-
erence method [27] when applied to the Middlebury dataset.
In particular, the proposed implementation has 15.07 % lower
error rate for all pixels.
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Fig. 2: Average error rates on the Middlebury testing set.

It is clear from the detailed comparison between the two
designs showed in Fig. 3 that our method outperforms its
reference for all input images selected from the Middlebury
test set. The accuracy of the two methods is similar only in
cases in which the input images are highly textured, such as
Cloth1, Cloth3, Cloth4. Otherwise, our CS method produces
much better results. For example, for Flowerpots, CS has the
error rate of 20.43% while that of Zhang et al. [27] is 50.36%
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Fig. 3: Detailed error rates of CS and its reference method
[27] on the Middlebury testing set.

Similarly, our GF architecture produces more accurate re-
sults than its reference method [8]. On average, the proposed
GF method has BPP nonocc and BPP all lower by 3.11% and
2.52% respectively. The detailed accuracy comparison be-
tween the two methods on each input stereo pair is shown in

Fig. 4. Our method gains if the input images contain large
texture-less regions, as in Lampshade2, Monopoly and Plas-
tic examples. If this is not the case, both implementations
perform on par.
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Fig. 4: Detailed error rates of GF and its reference method [8]
on the Middlebury testing set.

It can be seen that both proposed local architectures out-
perform the reference designs when applied to inputs contain-
ing lower amounts of textures. This is mainly caused by using
Census for matching cost calculation, which performs better
than the truncated absolute difference or its fusion with the
gradient (as in [27] and [8]) in such regions. Among the three
methods, the BP method has the highest accuracy, with error
rates of only 8.33 % and 13.54 % for non-occluded and for
all pixels respectively. Sample results of all three methods ap-
plied to two input pairs are shown in Fig.7a. The first image
pair is highly textured while the other has large texture-less
regions. On these example, it can be seen that the prototype
methods perform much better than the reference methods in
the texture-less regions.

KITTI dataset

The error rates computed for the KITTI dataset are shown in
Fig. 5. It is clear that all proposed methods outperform the
baseline implementations when applied to this data. Among
the three proposed systems, BP performs once again the best.
The proposed CS scheme performs the worst, but it is im-
portant to note that the gain of our modified algorithm is the
largest when compared against its reference design.

The same pattern can be observed in Fig. 6, in which
the average disparity error is presented. This result is very
meaningful, as it shows not only the number of wrongly mea-
sured disparity values, but also their magnitudes. The CS
method significantly improves its reference method, while the
BP method is still the best among the prototype methods with
an average error rate of 1.3 pixels for non-occluded regions
and 1.6 pixels for all regions. Finally, we note that the pro-
posed GF method is ranked among the best local methods on
the KITTI benchmark.



34.84

19.99

9.46
7.87 6.1

36.11

21.08

10.86 9.15
7.36

0

5

10

15

20

25

30

35

40

Zhang et al. Hosni et al. CS GF BP

%

BPP_nonocc BPP_all

Fig. 5: Average error rates on the KITTI testing set.

12.4

5.0

2.3 1.7 1.3

12.9

5.4

2.7
2.0 1.6

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

Zhang et al. Hosni et al. CS GF BP

pi
xe

l

Avg_nonocc Avg_all

Fig. 6: Average disparity errors on the KITTI testing set.

Saygili et al. also constructed an architecture using their
adaptive cost fusion strategy with the same disparity compu-
tation as the GF method [15]. They reported average error
rates of 11.2% and 13.1% for non-occluded and all regions
on the KITTI dataset with that architecture, which are much
higher than those obtained with the proposed GF method.

The disparity maps generated by our architectures are more
accurate and smoother than those generated by their reference
methods, as can be observed in Fig.7b, in which the results of
all methods on the sample input from this dataset are shown.

MPEG FTV dataset

The test results on Middlebury and KITTI datasets showed
that BP performs the best among the three proposed meth-
ods. As a result, we selected the BP system to conduct the
experiments on the MPEG FTV input. The objective quality
of synthesized images measured as peak signal to noise ratio
(PSNR) of images synthesized using the depth maps gener-
ated by our BP implementation and MPEG’s DERS software
are summarized in Table 2.

Table 2: PSNR values of BP method and the DERS software.

BP method DERS
Balloons 38.15 (dB) 39.10 (dB)

Newspaper 35.60 (dB) 35.48 (dB)

It can be seen that the proposed BP method performs poorer
than DERS on Balloons and slightly better in case of the
Newspaper sequence. However, it should be noted that DERS
uses as input three views at the same time whereas our BP
method uses only two. DERS also has a mode in which man-
ually created data is added as an input to help the algorithms.

An example of an image synthesized using disparity maps
generated by our BP method is illustrated in Fig.7c. In this
example, the erroneous areas in synthesized image are high-
lighted. Overall the synthesized image is visually acceptable
when compared to the original image.

4.3. Discussion

It can be clearly seen from the experimental results that the
proposed CS and GF local stereo matching architectures out-
perform their reference algorithms. Although we do not have
a direct baseline to evaluate our BP method, conducted anal-
ysis proved that even a simple implementation of the global
algorithm can achieve the best results among the three meth-
ods. Moreover, disparity maps calculated using the proposed
BP scheme are comparable to those generated using the state-
of-the-art DERS system on MPEG FTV data.

As experienced during the training procedure, the parame-
ters of all the three prototype methods do not significantly dif-
fer between various inputs. For example, the GF method pro-
duced the best results on both Middlebury and KITTI datasets
using the same guided filter radius. The same observation can
be made for the BP method. This shows that the prototype
methods built from our framework are robust under changing
operating conditions.

We also conclude that, although more advanced and com-
plex architectures have been proposed in the literature, we can
build reliable systems by maximizing the powers of the well-
known simple techniques thanks to the proper design of the
whole system.

It is important to note that drawing conclusions about the
good performance of the local methods based only on results
on the Middlebury dataset may not be valid. Our experiments
proved the superior performance of global algorithms when
compared to local matching techniques. This coincides with
the conclusion drawn by the authors of the KITTI dataset
[4], who stated that the standard Middlebury dataset may no
longer be a good and fair dataset for stereo matching bench-
marking.

5. CONCLUSIONS

This paper presents a simple yet effective framework for build-
ing stereo matching algorithms employing the census match-
ing cost, discontinuity-preserving disparity computation and
view-consistent disparity refinement. With this framework,
we aimed to create computationally efficient yet robust and
accurate stereo matching systems. Three prototype methods



were built, employing three well-known discontinuity-preserving
disparity computation methods of both local and global cate-
gories.

All proposed architectures were thoroughly evaluated us-
ing three different datasets captured under different condi-
tions. The experimental results showed that the proposed
approaches bring significant gains relative to their reference
techniques. Moreover, our implementations proved to achieve
better results for any input. In particular, the proposed meth-
ods outperformed their reference designs, improving the re-
sults for up to 25% of pixels. This demonstrates the effective-
ness of the proposed framework for designing practical stereo
matching systems.

6. REFERENCES

[1] D. Chen, M. Ardabilian, and L. Chen. A novel trilateral
filter based adaptive support weight method for stereo
matching. In PROC. BMVC, 2013.

[2] D. Comaniciu and P. Meer. Mean shift: a robust ap-
proach toward feature space analysis. IEEE Trans. Pat-
tern Anal. Mach. Intell., 24(5):603–619, May 2002.

[3] P.F. Felzenszwalb and D.P. Huttenlocher. Efficient belief
propagation for early vision. In PROC. CVPR, pages
261–268, 2004.

[4] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite.
In PROC. CVPR, pages 3354–3361, 2012.

[5] S. Grauer-Gray, C. Kambhamettu, and K. Palaniappan.
GPU implementation of belief propagation using cuda
for cloud tracking and reconstruction. In PROC. PRRS,
pages 1–4, 2008.

[6] K. He, J. Sun, and X. Tang. Guided image filtering. In
PROC. ECCV, pages 1–14, 2010.

[7] H. Hirschmuller and D. Scharstein. Evaluation of stereo
matching costs on images with radiometric differences.
IEEE Trans. Pattern Anal. Mach. Intell., 31(9):1582–
1599, 2009.

[8] A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and
M. Gelautz. Fast cost-volume filtering for visual cor-
respondence and beyond. IEEE Trans. Pattern Anal.
Mach. Intell., 35(2):504–511, 2013.

[9] O. Stankiewicz K. Wegner. DERS software manual.
MPEG2014/M34302, July 2014.

[10] T. F. Marshall and F. T. William. Comparison of graph
cuts with belief propagation for stereo, using identical
mrf parameters. In PROC. ICCV, pages 900–906, 2003.

[11] X. Mei, X. Sun, W. Dong, H. Wang, and X. Zhang.
Segment-tree based cost aggregation for stereo match-
ing. In PROC. CVPR, pages 313–320, 2013.

[12] X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and
X. Zhang. On building an accurate stereo matching sys-
tem on graphics hardware. In ICCV Workshops, pages
467–474, 2011.

[13] M.G. Mozerov and J. van de Weijer. Accurate stereo
matching by two-step energy minimization. IEEE Trans.
Image Process., 24(3):1153–1163, 2015.

[14] M-G. Park and K-J. Yoon. Leveraging stereo match-
ing with learning-based confidence measures. In PROC.
CVPR, 2015.

[15] G. Saygili, L. van der Maaten, and E.A. Hendriks.
Adaptive stereo similarity fusion using confidence mea-
sures. Comput. Vis. Image. Und., 135:95 – 108, 2015.

[16] D. Scharstein, H. Hirschmller, Y. Kitajima, G. Krath-
wohl, N. Nei, X. Wang, and P. Westling. High-resolution
stereo datasets with subpixel-accurate ground truth. In
PROC. GCPR, pages 31–42. 2014.

[17] D. Scharstein and R. Szeliski. A taxonomy and eval-
uation of dense two-frame stereo correspondence algo-
rithms. Int. J. Comput. Vision, 47:7–42, 2002.

[18] D. Scharstein and R. Szeliski. High-accuracy stereo
depth maps using structured light. In PROC. CVPR,
pages 195–202, 2003.

[19] J. Sun, N-N. Zheng, and H-Y. Shum. Stereo match-
ing using belief propagation. IEEE Trans. Pattern Anal.
Mach. Intell., 25:787–800, 2003.

[20] O. Veksler Y. Boykov and R. Zabih. Fast approximate
energy minimization via graph cuts. IEEE Trans. Pat-
tern Anal. Mach. Intell., 23(11):1222–1239, 2001.

[21] C. Lee Y-S. Ho, E-K. Lee. Multiview video test se-
quence and camera parameters. MPEG2008/M15419
document, 2008.

[22] K. Yamaguchi, D. McAllester, and R. Urtasun. Efficient
joint segmentation, occlusion labeling, stereo and flow
estimation. In PROC. ECCV, pages 756–771. 2014.

[23] Q. Yang. Stereo matching using tree filtering. IEEE
Trans. Pattern Anal. Mach. Intell., 37(4):834–846,
2015.

[24] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nis-
ter. Stereo matching with color-weighted correlation,
hierarchical belief propagation, and occlusion handling.
IEEE Trans. Pattern Anal. Mach. Intell., 31(3):492–504,
2009.

[25] R. Zabih and J. Woodfill. Non-parametric local trans-
forms for computing visual correspondence. In PROC.
ECCV, pages 151–158, 1994.

[26] J. Zbontar and Y. LeCun. Computing the stereo match-
ing cost with a convolutional neural network. In PROC.
CVPR, 2015.

[27] K. Zhang, J. Lu, and G. Lafruit. Cross-based local stereo
matching using orthogonal integral images. IEEE Trans.
Circuits Syst. Video Technol., 19(7):1073–1079, 2009.

[28] Q. Zhang, L. Xu, and J. Jia. 100+ times faster weighted
median filter (wmf). In PROC. CVPR, pages 2830–
2837, June 2014.



Color image Zhange et al. [27] Hosni et al. [8] CS GF BP

(a) Middlebury dataset.

Color image Zhang et al. [27]

Hosni et al. [8] CS

GF BP

(b) KITTI dataset (Disparity maps are shown as color-coded images).

Synthensized view from BP’s result Original view

(c) MPEG FTV dataset.

Fig. 7: Sample results of the prototype methods and reference methods on the three datasets.


	 Introduction
	 Robust stereo matching framework
	 Matching cost computation
	 Disparity computation
	 Disparity refinement

	 Prototype methods
	 Prototype 1: Cross-based algorithm
	 Prototype 2: Adaptive support weight algorithm
	 Prototype 3: Belief propagation algorithm

	 Experiments
	 Experimental setup
	 Experimental results
	 Discussion

	 Conclusions
	 References

