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Abstract—Depth-based view synthesis can produce novel real-
istic images of a scene by view warping and image inpainting.
This paper presents a depth-based view synthesis approach
performing pixel-level image inpainting. The proposed approach
provides great flexibility in pixel manipulation and prevents
random effects in texture propagation. By analyzing the process
generating image holes in view warping, we firstly classify such
areas into simple holes and disocclusion areas. Based on depth
information constraints and different strategies for random prop-
agation, an approximate nearest-neighbor match based pixel-
level inpainting is introduced to complete holes from the two
classes. Experimental results demonstrate that the proposed view
synthesis method can effectively produce smooth textures and
reasonable structure propagation. The proposed depth-based
pixel-level inpainting is well suitable to multi-view video and
other higher dimensional view synthesis settings.

Index Terms—depth image based rendering; view synthesis;
approximate nearest-neighbor match; pixel-level inpainting

I. INTRODUCTION

The rapid development of 3D stereo cameras, depth cameras
and various cameras arrays came as response to the enormous
need of 3D-oriented video applications. In this context, mas-
sive research efforts have been recently invested in the areas of
three dimensional Television (3DTV) and free-view Television
(FTV). In these research fields, synthesis of arbitrary views by
making use of multi-view videos and depth information is of
vital importance.

Depth Image based Rendering (DIBR) has been introduced
as a solution to generate high quality results in virtual view
synthesis. In general, DIBR techniques consist of view repro-
jection, corresponding to virtual view warping from known
viewpoints, and content recovery (or inpainting) starting from
known views, depth maps and limited geometry information
(e.g. camera parameters).

Thanks to image editing techniques in computer vision
and computer graphics, image inpainting has been widely
studied in the past [1], [2]. However, such classical 2D
image inpainting techniques neither take depth information
into account nor consider special application demands as in
Multi-View Plus Depth (MVD) based view synthesis and
stereoscopic scene representations. The lack of geometry con-
sistencies and higher dimensional constraints render conven-
tional 2D inpainting techniques [1], [2] to be far from perfect.

Due to the processing precision error, there are still holes left
in the warped view, as well as there are many incorrectly
inpainted areas. In essence, although some simple filtering
(e.g. median filtering [3], [4]) can fix some small holes,
disocclusion inpainting is still far from mature, in particular
in neighboring areas lying in different depth layers.

Existing methods for depth-based image inpainting can be
roughly divided into two categories: exemplar-based content
duplication and region interpolation (or extrapolation from
the camera view). The first class is mostly motivated by
Criminisi’s excellent work [2] in 2D image completion. To
find an optimal patch-level match, a filling priority is com-
posed of the confidence term and data term constructed by
color match between patches and gradient based filling pri-
ority respectively. Such patch-based modeling and inpainting
can greatly preserve the accuracy of the propagated texture
structures while avoiding some local artifacts. Criminisi’s
work triggered a number of algorithms in depth-based image
inpainting. Daribo et al. [5] improved the match calculation
and priority by depth information. Gautier et al. [6] introduced
a tensor based structure propagation algorithm to promote the
priority of structural textures. Surely, as discussed in [5], [6],
foreground/background information can be further explored
and image inpainting can be improved by some reasonable
constraints in depth-based view synthesis although it is still
difficult to accurately classify and segment the foreground and
background regions.

For the second class of depth-based inpainting, direct inter-
polations with filters (e.g. average or Gaussian filter) are sim-
ple and fast, but they do yield significant geometric distortions
and artifacts in disocclusion areas. In 2D image inpainting,
harmonic interpolation methods have been constructed to ob-
tain smooth results (e.g. by solving a discrete Poisson equation
in [1]). Ndjiki-Nya et al. [7] introduced a similar approach to
fill small holes and keep smooth transitions between patches.
Recently, Barnes et al. [8] introduced an approximate nearest-
neighbor match based method called PatchMatch. Apart from
2D image inpainting, PatchMatch has been applied in stereo
matching [9] and semantic segmentation [10].

In this paper, we introduce a depth-based view synthesis
approach that performs pixel-level image inpainting. Our
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Fig. 1. The proposed pixel-level view synthesis framework.

approach falls in the category of exemplar based inpainting
techniques, which means that all filled textures are plausi-
bly extended with known image information. Our pixel-level
propagation makes use of depth information and other 3D
information constraints to perform inpainting. Furthermore,
in contrast to existing depth-based inpainting techniques in
the literature operating at single scales [5], [6], our approach
performs multi-scale inpainting. By taking advantage of the
randomized algorithm from [8], depth-based inpainting can ef-
ficiently implement approximate nearest-neighbor matches and
propagation at pixel-level. To benefit more from such match at
different scales, the proposed approach automatically classifies
image holes as small simple holes or as disocclusion regions.
We perform our pixel-level inpainting directly completing
simple holes at a single scale followed by a depth-based
multi-scale disocclusion inpainting. The proposed approach
combines some special depth-based constraints, such as coarse
foreground/background calculation for selecting candidates in
multi-scale inpainting. In contrast to other algorithms, our
approach does not need to constraint special filling orders (e.g.
horizontal direction [6], [7]) and can adaptively complete holes
in each direction. The inpainting results demonstrate that the
proposed approach can avoid local visual artifacts by escaping
from suboptimal local minimal in the match, and produces
reasonable structure reconstructions by taking benefits from
our depth-based multi-scale propagation. Furthermore, the
flexibility of pixel-level manipulation built in our approach
provides great potential in multi-view video settings [11],
[7], [12] and some other higher dimensional spatial-temporal
inpainting.

The remainder of the paper is organized as follows. Sec-
tion II describes the proposed inpainting algorithm. In Sec-
tion III, experimental results and discussions are presented.
Finally, concluding remarks are drawn in Section IV.

II. PROPOSED INPAINTING ALGORITHM

A. Problem formulation and system architecture

According to known image color and depth information
from a viewpoint, a new viewpoint scene can be regenerated by
depth-based view synthesis. Usually, such viewpoint changing
corresponds to a camera translation with different angles in
horizontal direction. Suppose the known image color and depth
maps are (I0, D0) in viewpoint V0, from which we have to
compute the new image and depth values (I1, D1) in the new
viewpoint V1; there exists a mapping relation between V0 and
V1, given by:

F : (V0, I0, D0) 7→ (V1, I1, D1) (1)

where F denotes the mapping under view transformation in
the 3D scene. Given the camera parameters, we can obtain the
precise 3D warping expressed by F [13]. Such a mapping is a
one-to-one function, but if there is some loss of information in
the original scene or due to inaccurate processing, the mapping
operation is affected. Unfortunately, even if employing highly
accurate pixel-level texture and depth information (I0, D0), we
cannot still compute a perfectly accurate view (I1, D1). The
reason is that the scene projection in V0 does not contain all 3D
information in the real world. In other words, the information
in (I0, D0) is necessary for the computation of (I1, D1) but
not sufficient. A second observation one can make is that,
the content in the planar scene is discrete, whereas the actual
projection from objects in the real world to such a planar
scene is continuous and may often fall at sub-pixel locations.
The inherent information loss produced by such precision
error will affect the mapping operation, leading to small
holes in the computed view (I1, D1). Secondly, trivial depth
gaps, occurring between objects from similar depth planes or
mistakes caused be erroneous depth map computation will
again affect such a mapping operation. Hence, when directly
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processing the mapping for each pixel, there will be some
missing pixels in both I1 and D1. Third, there are also large
disocclusion areas produced by objects from different depth
planes that are overlapping in V0 and which are visible in
V1. Following this analysis, in the proposed framework we
classify the holes in the warped views as simple holes caused
by precision errors and disocclusion holes (see Fig. 1). Due to
local spatial continuity of the image and temporal consistency
of motion objects or camera, the pixels falling in simple hole
category are usually a few. Conversely, such continuity makes
disocclusion areas larger in size.

In contrast to patch-level duplication in some exemplar or
diffusion based completion [1], the proposed solution intro-
duces a pixel oriented filling for image holes which does
not need to consider the distortions incurred by overlapping
patches. Similar to [5], [2], [6], pixel-level inpainting for
depth-based synthesis needs also to take the candidate match
and texture propagation into account.

With our pixel-level inpainting algorithm, we firstly com-
plete the simple holes directly, then the resulting filled image
and its corresponding depth map are taken as reference for
disocclusion inpainting. In disocclusion processing, our pixel-
level inpainting is performed in a multi-scale pyramid with
which the strong textures can be effectively propagated. The
detailed description of the proposed multi-scale inpainting as
well as some special constraints taken in our solution are
presented next.

B. Pixel-level inpainting algorithm

To complete the image holes, the inpainting processing
needs to solve the problem of texture similarity evaluation
and structure propagation. Here we note that our method
borrows concepts from similarity synthesis [14] and random
correspondence based PatchMatch editing [8]. Within image I ,
the missing hole and its boundary are denoted as Ω and ∂Ω re-
spectively. For exemplar-based completion, the missing holes
should be filled according to the known region Φ = I − Ω.
Similar to some other inpainting methods [5], [6], [2], the
candidate selection is still based on patch match. For each
pixel m ∈ ∂Ω, for a patch Ψm centered at m, the optimal
candidate is:

Ψn′ = arg min
n∈Φ

S(Ψm,Ψn), (2)

the similarity metric being the Sum of Squared Differences
(SSD) in CIE ∗ Lab color space:

S(Ψm,Ψn) =
1
Nm
||Ψm −Ψn||2, (3)

where Nm is the number of known pixels inside the patch Ψm.
While different from using confidence priority [2], we employ
an approximate nearest-neighbor match [8] to propagate the
texture. As an initialization step, each pixel in Ω is firstly
filled by a randomly chosen candidate from Φ. To preserve
local consistency of the texture in spatial domain, updating
is processed by candidate propagation as well as a random
search. For the propagation, if the spatial coordinate of m in

(a) simple holes (green regions). (b) Simple holes filled effect.

Fig. 2. Single-scale inpainting result for simple holes.

Ω is (x, y), and its currently optimal candidate is (u, v) in Φ,
potential optimal candidates of m’s adjacent pixels (x+ 1, y)
and (x, y + 1), still in Ω, should be (u+ 1, v) and (u, v + 1)
respectively. After that, a random search is used to escape from
the suboptimal local candidate selection in such propagation.
Thus, extra neighboring pixels of (u, v) will be considered as
candidates for m and they are defined as

Tm =
⋃

((i,j),(i′ ,j′ ))

(u+ ωiRj , v + ωi′Rj′ ) (4)

where R = [−1, 0, 1] denotes the search direction and
ω = [64, 32, 16, 8, 4, 2, 1, 0] represents the search radius which
is set to be exponentially decreasing. Note that only valid
candidates Tm belonging to Φ are considered, which means
that all the propagated pixels are sampled only from the known
image areas.

When inpainting an image hole, the search and updating are
firstly finished for all the pixels of boundary ∂Ω. After finding
a best candidate pixel, the pixel and depth information of m
are replaced by the best candidate, then its adjacent pixels
belonging to the updated ∂Ω will be set into the filling order
list.

For depth-based image inpainting, there are more constraints
that can be further explored to generate better results than
traditional 2D image completion. With this respect, our pixel-
level inpainting performs a classification of holes and pro-
cesses each class differently, according to depth constraints
and different procedures, as detailed next.

1) Simple holes inpainting: As aforementioned, simple
holes can be seen as the result of processing precision error
or trivial depth gaps. To process them, we first remove small
artifacts, produced by imperfect warping of the image, with a
median filter. This step can also be regarded as a preprocessing
step [3] in depth-based image inpainting. Still, simple holes
cannot be completely filled. To separate them from disoc-
clusions, we employ a mathematical morphology operation
performing combined erosion and dilation. After that, we
use the pixel-level image inpainting algorithm described in
section II-B to directly fill them. The inpainting result of
simple holes can be seen in Fig. 2. Actually, since such holes
are much smaller than disocclusion regions, diffusion based
methods (e.g. solving Laplacian equations [1]) can also fix
them by performing optimal smooth interpolation requiring a
solution of sparse linear equations.
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(a) Single-scale disocclusion. (b) Multi-scale disocclusion.

Fig. 3. Comparison between single-scale and multi-scale inpainting for
diocclusion areas.

2) Multi-scale disocclusion inpainting: Once simple holes
are completed, the generated image and depth map are used
as references for multi-scale disocclusion inpainting. If the
completed simple holes are Ωs, the remaining disocclusion
regions are given as Ωd = Ω−Ωs. Then a pyramid image set
is constructed:

P =
⋃
k

(I − Ωd) ↓k (5)

where k = [0, 1, ..., S − 1] and ↓ means downsampling. The
pyramid is composed of S images obtained by successively
downsampling I − Ωd. Note that in these images simple
holes have been completed. Firstly we complete the top image
PS−1 in the pyramid making use of the proposed pixel-level
inpainting algorithm. The completed image in the coarsest
scale is denoted as P

′

S−1. Then we get the upsampled image
PS−2 = (P

′

S−1) ↑ and obtain inpainted P
′

S−2 given PS−2.
The process continues recursively until reaching the finest
scale, the completion image P

′

0 being the output result of the
proposed system.

Due to the overlapping effect between foreground and
background in disocclusion regions, pixels in such regions
should share the same (or similar) depth information as the
background layer. In another words, disocclusion pixels should
have a higher probability to match the candidates with larger
depth values. To accommodate this reasoning, we refine the
search space as:

Ω
′

k =
⋃

m∈Pk

(Dk(m) < ξ) (6)

where Dk = D ↓k. The parameter ξ is a threshold to
discriminate between the foreground and background regions
and we choose it according to the histogram of the depth
map D0. In our system, we find that the background generally
holding between 0.65 and 0.75, which is the range where the
ξ parameter is set. Note that the depth is normalized between
0 and 255, and a higher value in D means a closer pixel to
camera.

In Fig. 3, we can see the comparison between single-scale
and multi-scale disocclusion inpainting. Due to the pixel-
level random search and evaluation metric, using only a

single scale produces random artifacts in which suboptimal
candidates are selected. The reason to introduce such multi-
scale inpainting is thus to preserve the correspondence of
texture at different processing scales. When using a fixed patch
size in a single level, the best matching gets often trapped into
local suboptimal positions yielding visual artifacts even if local
textures look real (see an example in Fig. 3(a)). In contrast,
as one notices from Fig. 3(b), multi-scale disocclusion filling
can seamlessly extend textures around ∂Ω in different spatial
distances. It is also obvious that with multi-scale disocclusion
recovery, structured textures can be reasonably propagated.

III. EXPERIMENTS AND DISCUSSIONS

In order to evaluate the effectiveness of the proposed
approach, we carried out experiments on multi-view Video-
plus-Depth sequences ”Ballet” and ”Breakdancers” with cam-
era parameters and estimated depth as given by Zitnick et
al. [15]. Experiments are performed to analyze both objects
disocclusion inpainting on same/different depth layers as well
as synthesis of different viewpoints (view transformation from
camera 5 to both cameras 4 and 2).

Besides of some aforementioned intermediate results, the
final output synthesized by the proposed approach and some
other view synthesis methods can be seen in Fig. 4 and Fig. 5.
Each first sub-figure in these figures is the ground truth from
the real camera while the others are generated by several
synthesis methods. It should be noted that in the first two
methods [2], [8], only 2D color information is used while
the other techniques take additional depth information into
account. In both test sequences we observe that although
the two former methods [2], [8] can effectively complete
simple holes, which also demonstrates their effectiveness in 2D
image inpainting, recovered textures in disocclusion regions
are unacceptably poor as they do not take depth information
into account. As shown in Fig. 4, thanks to approximate
nearest-neighbor matching at multiple-scales performed by
our method, the bar and some strong textures are effectively
propagated to disoccluded regions. Furthermore, in contrast to
Fig. 4(d) and Fig. 4(e), our inpainting method can preserve the
clear edge and avoid artifacts around dancing lady’s hand. A
similar effect can also be seen around the skirt. These results
illustrate the flexibility of our inpainting technique at pixel-
level which does prevent the overlapping effect generated by
region-level duplication.

We also observe that the proposed algorithm can adaptively
extend textures even if we did not take any gradient or
directional information into account. For long distant view
transformation and synthesis in Fig. 5, the proposed method
can reasonably match the plausible background pixels and
complete disoccluded areas even if such regions are inter-
spersed by some foreground objects. There are also several
negative effects in our result. For example, artifacts composed
of discontinuous textures are still generated due to several local
suboptimal match in our pixel-level inpainting approach. Also,
some textures of curtains and bars behind the dancer cannot be
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(a) Reference image (camera 4). (b) Criminisi’s [2] result from camera 5. (c) Barnes’s [8] result from camera 5.

(d) Daribo’s [5] result from camera 5. (e) Gautier’s [6] result from camera 5. (f) Our result from camera 5.

Fig. 4. Comparison of different methods for view synthesis from camera 5 to camera 4 on the Ballet sequence.

(a) Reference image (camera 2). (b) Criminisi’s [2] result from camera 5. (c) Barnes’s [8] result from camera 5.

(d) Daribo’s [5] result from camera 5. (e) Gautier’s [6] result from camera 5. (f) Our result from camera 5.

Fig. 5. Comparison of various methods for view synthesis from camera 5 to camera 2 on the Breakdancers sequence.

perfectly propagated because of the lack of structure priority
in structural texture reconstruction.

The total computation time of the proposed depth-based

view synthesis depends on the image resolution and the size of
disoccluded regions, which is normally positively correlated
with the transformed camera angle/distance. In general, the
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computation times for our current implementation are between
5 and 20 seconds for a 1024 ∗ 768 resolution image for a
high-end portable computer with 2.3GHz Quad-Core Intel-
i7 CPU and 8GB memory. Although performing random
propagation processing in approximate nearest-neighbor field,
the candidate matching and inpainting at pixel-level still bear
heavy computational costs.

A. Discussions

Benefiting from the approximate nearest-neighbor match
algorithm and multi-scale propagation under depth constraints,
the proposed texture inpainting does generate visually pleasant
results, outperforming competing algorithms from the litera-
ture. In addition of local smooth texture generation, multi-scale
inpainting enables structure propagation in disocclusion pro-
cessing. One of the special advantages of our approach is the
manipulation flexibility at pixel-level instead of patch-level.
With patch-level duplication or manipulation it is difficult to
keep the balance between perfect content propagation and
side-effects resulting from overlapping between edited patches.
By reasonable extensions, this flexibility will enable our
approach to further improve the depth-based video inpainting
results by further refining the employed models and constraints
in the spatial-temporal dimensions.

It should be pointed out that our inpainting technique did
not consider any gradient information to steer the inpainting
process. This results in some cases in unpleasant effects when
propagating strong structures. To alleviate these problems,
a potential improvement of our technique is to introduce
structure priority [6]. Also, more robust parameters selection
in the proposed approach are another potential improvements.
For example, to obtain the reference background pixels as
reference regions for disocclusion, currently we empirically
choose a threshold based on the depth histogram of the
global image after completing simple holes. Precise analysis
of global foreground/background distribution and study of the
local topology relation between occlusion holes [16] and their
neighboring known regions would be a promising direction
to be explored. Finally, the computational performance of
the proposed system can also be improved by hardware-
level speedups, e.g. by following a GPU implementation, as
the proposed pixel-level inpainting technique is suitable for
deployment on parallel architectures.

IV. CONCLUSION

In this paper, we have proposed a new pixel-level image
inpainting approach for depth-based view synthesis. Our
method first classifies image holes as small simple holes
and disocclusion areas. We then introduce a depth-based
pixel-level image inpainting algorithm based on approximate
nearest-neighbor match and complete such holes using two
different strategies. The completed image after simple holes
completion is used in disocclusion inpainting as reference.
Disocclusion inpainting is achieved under depth map con-
straints and multi-scale random propagation. Experimental
results demonstrate that the proposed view synthesis method

can effectively preserve consistent textures and reasonably
perform structure propagation.

Because of the great flexibility offered by pixel-level model-
ing and processing, the proposed algorithm can be effectively
applied in other higher dimensional view synthesis applica-
tions. We leave these promising, yet challenging extensions as
part of future research.
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