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Figure 1: Vectorization of an amulet with 21 holes, using a single topology-preserving gradient mesh.

Abstract

Gradient mesh vector graphics representation, used in commer-
cial software, is a regular grid with specified position and color,
and their gradients, at each grid point. Gradient meshes can com-
pactly represent smoothly changing data, and are typically used for
single objects. This paper advances the state of the art for gra-
dient meshes in several significant ways. Firstly, we introduce a
topology-preserving gradient mesh representation which allows an
arbitrary number of holes. This is important, as objects in images
often have holes, either due to occlusion, or their 3D structure. Sec-
ondly, our algorithm uses the concept of image manifolds, adapting
surface parameterization and fitting techniques to generate the gra-
dient mesh in a fully automatic manner. Existing gradient-mesh
algorithms require manual interaction to guide grid construction,
and to cut objects with holes into disk-like regions. Our new al-
gorithm is empirically at least 10 times faster than previous ap-
proaches. Furthermore, image segmentation can be used with our
new algorithm to provide automatic gradient mesh generation for
a whole image. Finally, fitting errors can be simply controlled to
balance quality with storage.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation— ; I.3.4 [Computer Graphics]: Graphics Utilities—

Keywords: image vectorization, gradient mesh, image manifold,
parameterization

1 Introduction

Vector graphics are well-known to offer various advantages over
raster graphics. Many images, ranging from artistic work to cap-
tured photos, have relatively uniform or smoothly changing colors,
and representing them using vector graphics can lead to significant
savings of storage and network bandwidth. Vector graphics pro-
vide an additional advantage when images are to be displayed with
significantly varying resolutions, on devices such as cell phones or
high-definition TVs: they are resolution independent. Artifacts like
blurring can appear if raster graphics are used. Because of these and
other editability advantages, animation transmitted over the Internet
usually uses vector graphics, in forms such as SVG and Shockwave
Flash. Computer-aided automatic generation of vector graphics is
thus highly desirable.

Recently, both academic and commercial vector graphics represen-
tations have been devised. The simplest vector graphics primitives
comprise points, lines, curves, and polygons, with associated prop-
erties such as color. However, generating a vectorized representa-
tion from such simple geometric primitives is a non-trivial task, re-
quiring significant artistic skill. As an alternative, gradient meshes
are provided by commercial software like Adobe Illustrator and
Corel CorelDraw as a way to describe compact vector graphics.
Here, image elements are represented by one or more planar quad
meshes, each forming a regularly connected grid. The position and
color, and gradients of these quantities, are specified at each mesh
grid vertex. The image represented by a gradient mesh is com-
puted by bicubic interpolation of this specified information. Gra-
dient meshes are a compact representation and especially suited to
objects with smoothly varying colors.

To create a gradient mesh manually requires skill and is labor in-
tensive. Sun et al. [2007] recently described a semi-automatic non-
linear optimization process for fitting a gradient mesh to a given
image region. The algorithm requires user assistance both to seg-
ment the image into regions, and to construct the mesh—the user
should choose the grid corners and usually the spacings of the grid
lines for each region. The algorithm treats each image region as
a topological rectangle, and cannot directly deal with regions con-
taining holes, a problem the authors themselves recognize, which
makes automatic computation difficult. Image inpainting can be



used to fill holes, or further segmentation can be used to avoid the
holes, but both require artistic skill and intuition for good results.

Here, we introduce a new topology-preserving gradient mesh rep-
resentation allowing an arbitrary number of holes. We also give a
novel fully automatic algorithm to generate a topology-preserving
gradient mesh. We take as input a raster image which has been mat-
ted or segmented into regions; the output is a set of gradient meshes
representing an image close to the input. Following the concept of
an image manifold [Kimmel et al. 2000], we treat the position and
color gradient at each pixel of an input image region as a vector in
a high-dimensional space: the image region can be thought of as
a surface. We can now adapt well-established geometry process-
ing techniques to gradient mesh generation. We use an adapted
parameterization technique to map an arbitrary image region (with
or without holes) to a rectangular region. By making the gradient
mesh follow the parameterization, we obtain a mesh which is well
suited to representing the original image region. Fig. 1 gives an ex-
ample of representing an image region with 21 holes using a single
topology-preserving gradient mesh.

Unlike Sun’s highly nonlinear optimization method, the core of our
algorithm simply solves sparse linear systems. Non-linear opti-
mization is not only time-consuming, but also sensitive to the user-
chosen grid corners and spacings. The main contributions of this
paper are:
• A new representation for topology-preserving gradient

meshes which can represent an arbitrary image region using a
single mesh, with or without holes.

• A fully automatic algorithm for producing such meshes,
which is significantly faster than previous vectorization meth-
ods. It is also easier to implement and more robust as only
linear operations are performed in the core algorithm, and no
user input is required. Fitting errors can be interactively ad-
justed to trade-off image quality with storage.

Our algorithm gains its strength from a novel approach to image
vectorization based on image manifolds and geometric parameter-
ization. A demonstration is further given that, if combined with a
segmentation algorithm, our algorithm is suitable for whole image
conversion to gradient mesh representation.

In Sec. 2, we review prior image vectorization work. Our topology-
preserving gradient mesh representation is discussed in Sec. 3. Our
algorithm for generating it is detailed in Sec. 4. Experimental re-
sults are given in Sec. 5, and concluding remarks in Sec. 6.

2 Related Work

2.1 Image vectorization

Prior work has considered vectorizing particular kinds of images.
For example, Dori et al. [1999] proposed a sparse pixel vectoriza-
tion algorithm for line drawings. Vectorization of cartoon anima-
tions has also been considered [Zou and Yan 2001; Zhang et al.
2009]. Such specialized images usually contain feature lines and
relatively uniform color distribution. The corresponding algorithms
usually focus on extraction of feature lines and corners to determine
the geometric primitives for a vector representation.

Other work has considered vectorizing photographic images. Both
commercial (Adobe Live Trace, Corel CorelTrace) and open-source
(AutoTrace) tools provide such functionality. However, they work
best when vectorizing images with relatively uniform colors; for
more complicated images, the resulting vector graphics contain
many small pieces, making them unsuited for further editing and
costly to store or transmit.

Various representations and algorithms have been proposed in the
research community for image vectorization. For smoothly varying
photographic images, regular or irregular meshes are widely used.

Triangular meshes with assigned color distributions form one class
of representation. Swaminarayan et al. [2006] first extract an edge
contour set, then compute a constrained Delaunay triangulation to
obtain a triangle-based vectorization. Demaret et al. [2006] use lin-
ear splines over an adaptive triangulation to represent images. The
optimal linear spline minimizes the mean square color distances to
the image. By using a triangulation, such methods can deal with
general images. However, many irregular triangles typically result,
and so the results are not compact. Lecot et al’s ‘ARDECO’ uses
automatic region detection and conversion with centroidal Voronoi
regions to approximate the image [Lecot and Levy 2006]. Although
the computation is both efficient (if trixels are used) and automatic,
again usually too many output polygons result.

Quad meshes may also be used as primitives, and are usually ap-
plied in a per-object manner. In object-based vectorization [Price
and Barrett 2006], the whole image is first segmented into a few ob-
jects. The color of each object is approximated by a regular mesh of
Bézier patches. Areas with too large a fitting error are then subdi-
vided, leading to a subdivision mesh representation with controlled
fitting error. However, regions with rapidly changing colors lead to
many tiny quads. Sun [2007] devised a semi-automatic algorithm
to generate gradient meshes as the representation. As positions and
pixel colors vary according to the specified gradients, such meshes
contain rather fewer quads and have the advantage of being regu-
lar. However, his method involves non-linear optimization, which
is slow and sensitive to the initial conditions—careful manual setup
of the boundary is needed.

Diffusion curves have also been proposed as a vector graphics rep-
resentation for smoothly-shaded images [Orzan et al. 2008]. Fea-
ture edges are automatically or manually selected, with differing
color on each side. Images are reconstructed by a diffusion process
requiring solution of a Poisson equation. The method is particularly
suited to vector graphics with sharp edges. By using more edges,
they can also represent certain smoothly varying regions, but that is
not really their strength.

Adding feature edges as vector primitives to raster images can pro-
vide an augmented representation [Tumblin and Choudhury 2004];
object-based image editing [Barrett and Cheney 2002] represents
images with texture-mapped irregular triangle meshes. Such meth-
ods do not really produce vector graphics, since the image cannot be
directly reconstructed from feature information. Nevertheless, they
may provide raster images with some of the advantages of vector
graphics such as higher quality resizing, and maybe easier editing.

Our method generalizes traditional gradient meshes, to allow an im-
age region to have arbitrary topology (i.e. zero or more holes). Our
method can efficiently and automatically convert an image region to
such topology-preserving gradient mesh representation, with error
control. Thus, our method provides an effective solution to vector-
izing gradually changing image objects, allowing efficient storage
and transmission, and even whole images if used with a suitable
segmentation algorithm.

2.2 Parameterization

Our pipeline relies on parameterization to set up a one-to-one map-
ping from a manifold surface to a canonical planar domain. For
a full review of parameterization techniques, the reader is referred
to [Floater and Hormann 2005]. Our method makes use of two
particular kinds of parameterization: (quasi-)conformal parameter-
ization, which locally preserves angles, and stretch minimization



parameterization, which locally preserves area ratios. For general
shapes which may have holes, we modify the original conformal
slit maps [Yin et al. 2008] procedure to map the outer boundary of
a region to a rectangle, and inner (hole) boundaries to slits. For
regions without holes, quasi-conformal mean-value parameteriza-
tion [Floater 2003] is used instead for better performance. Stretch
minimization parameterization [Sander et al. 2001; Yoshizawa et al.
2004] can improve the distribution of parameters given an initial
valid parameterization. We use such a parametrization with a care-
fully chosen metric which takes into account color distribution.

3 Topology-Preserving Gradient Mesh Rep-
resentation

We next briefly review the traditional gradient mesh representation
and then give our generalization allowing holes. Following [Sun
et al. 2007], we treat each quad of a gradient mesh as a Ferguson
patch [Ferguson 1964] which stores the position and color, and their
derivatives (with respect to mesh parameters u, v), at each vertex.
The gradient mesh can be evaluated using U =

(
1 u u2 u3

)
,

V =
(
1 v v2 v3

)
, 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, and:
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Superscripts 0, 1, 2, 3 correspond to the four patch vertices (see
Fig. 2(left)). m represents a component to be evaluated, either a
spatial coordinate x or y, or color component r, g, or b. Second-
order derivatives (m∗

uv) are usually ignored and assumed to be zero.
Given the values and derivatives at the patch corners, positions and
colors can be readily evaluated inside the patch using bicubic inter-
polation. A traditional gradient mesh is a regular grid of Ferguson
patches. As vertices are shared by adjacent patches, patch curve
boundaries have G1 continuity and colors have C1 continuity.
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Figure 2: Ferguson patch and topology-preserving gradient mesh.

To allow holes (see Fig. 2(right)), we use the following construc-
tion, carefully designed to allow automatic gradient mesh gener-
ation by algorithm. To model a hole, we slice apart several con-
secutive horizontal edges within the grid. Vertices vS within the
cut sequence are split into two new vertices v̄S and v̂S and treated
separately, except for the left and right end vertices of the cut, vL

and vR respectively. Mesh vertices must meet the continuity re-
quirements discussed above. vL has a further constraint. The two
Ferguson patches adjacent to the hole and sharing vL have differ-
ent u derivatives, ∂m̄L/∂u and ∂m̂L/∂u. To ensure smoothness,
these must satisfy ∂m̄L/∂u = −∂m̂L/∂u. vR must meet similar
constraints. Multiple cuts can be introduced for image regions with
multiple holes. Such topology-preserving gradient meshes allow
an image region of arbitrary topology to be represented by a single
mesh.

While this representation generalizes traditional gradient meshes,
it is still compatible with current commercial software: a mesh in
our representation with b holes can be converted into b + 1 tra-
ditional meshes without holes by cutting along the horizontal grid
lines passing through slits. However, our representation is prefer-
able, as it is more compact, and allows easier cut-and-paste opera-
tions, for example.

4 Algorithm
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Figure 3: Algorithm pipeline.

We now give our algorithm for automatically generating topology-
preserving gradient meshes, summarized in Fig. 3. The input is
an image, and the goal is to output a set of gradient meshes which
approximate it. If the whole image contains a single object as fore-
ground, the object is first matted (e.g. using [Levin et al. 2008]) and
then approximated directly by a gradient mesh. Otherwise, a seg-
mentation algorithm is used to decompose the image into different
pieces (objects). Each object in the image is treated as a 2-manifold
surface patch embedded in some high-dimensional space, or im-
age manifold [Kimmel et al. 2000], allowing us to utilize geomet-
ric tools. Each surface patch may contain one or more boundary
loops. We map the outer loop to a rectangular planar domain in
the boundary setup stage. We then map the patch interior into the
domain, while reducing the inner loops to parallel slits. This pa-
rameterization serves as the basis for further stretch minimization
reparameterization, with a metric carefully chosen to ensure regions
with rapidly changing color gradient are naturally allowed a larger
area. This allows a gradient mesh to be constructed using a regu-
lar grid in the parameter domain, while the final grid has spacing
adapted to the rate of change of color variation in the image. If fit-
ting errors need to be controlled, an iterative process may be used.
Our method has certain similarities with [Lai et al. 2006], where
feature sensitive parameterization is used for surface fitting.

4.1 Boundary setup

We now explain each step for a single image region; we will later
consider decomposing an input image into regions. Every input im-
age region has an outer loop, and may also contain one or more in-
ner loops. The boundary setup stage only deals with the outer loop.
The aim is to determine which four pixels on the outer loop should
be mapped to the four corners of a rectangular domain. While cor-
ner pixels may best be chosen by a user, we give a method which
determines them automatically, with satisfactory results.

To determine the corner pixels, we first perform a principal compo-
nent analysis of the region bounded by the outer loop, and rotate the
image region to align its x and y axes with the principal directions,
the shortest being x. An axis-aligned bounding box is constructed
around the image region, and the four pixels ci (i = 1 . . . 4) closest
to the four corners of the bounding box are selected (see Fig. 4(a)).
To determine a suitable pixel to be the ith corner pixel, we con-
sider boundary pixels within a distance d pixels from ci, and select
one having a denoised angle close to π/2. Setting d to 1/20 of the
region’s perimeter works well in practice. As the boundary of an
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Figure 4: Corner detection (a) bounding box and closest points to
corners, (b) integral invariant computation, (c) detected corners.

image region may be rather noisy, we use an integral invariant to
estimate the angle at each boundary pixel [Manay et al. 2004]. At
each such pixel, we place a disk of size r, and count the number n
of pixels within the disk segment bounded by the outer loop (see
Fig. 4(b)). For a perfect rectangular corner, n ≈ πr2/4. Using λ to
balance the final corner pixel c̄i’s closeness to ci and the desire for
a rectangular corner, we set

c̄i = arg min
ĉi

∣∣∣∣n(ĉi)−
1

4
πr2

∣∣∣∣ + λ||ĉi − ci||, (1)

In practice, we set λ = 0.1 and r = 5. The final corners tend to
snap to some local corner-like points, as illustrated in Fig. 4(c).

It might improve the result if we considered corner locations and
parameterization in an interlinked, iterative process; however, this
would significantly increase the computational cost. This scheme
works well in most cases, as our later examples show. A plausi-
ble alternative approach would be to locate all corner-like points,
and then select four of them taking into account their spacing and
corner angles. However, this may fail if the boundary is either too
smooth or too rough, or give undesirable results in approximately
symmetric cases. The image processing literature contains many
corner detectors, and could be used to guide further investigation of
this issue.

The four corners separate the outer loop into four segments. Let the
segment between c̄i and c̄i+1 be si (addition is assumed to be taken
mod 4), and the number of pixels in this segment be |si|. The
width and height of the rectangle in the parameter domain are set
to (px, py) where px = max{|s1|, |s3|} and py = max{|s2|, |s4|}
where corners are numbered anticlockwise from the lower left (this
choice of x and y is arbitrary, and could be swapped).

4.2 Triangle mesh generation

We now use a problem-specific image manifold which treats the im-
age region as a surface. We first convert the input image region to a

Figure 5: An image region and detail of part of its triangulation.

triangular mesh. This could be done simply by treating each pixel
as a triangle vertex, joining four-connected neighbor, and dividing
the resulting quads into two triangles. However, if the input image
has relatively high resolution, such a mesh will be too large. In-
stead, inspired by the trixel concept in ARDECO [Lecot and Levy
2006], we compute a mesh according to local color consistency.
For trixels, emphasis is placed on triangle shape quality, but this
is less important in our setting as the triangles are just used as a
basis for further processing. Instead, we first compute a saliency
map using a simple compass filter with Sobel weights as in [Ma-
tusik et al. 2005], and then distribute a certain number of samples
inside the region using error diffusion [Jarvis et al. 1976]. Saliency
is used to weight sample placement, giving salient regions denser
sampling. The total number of samples is set to be a fixed fraction
(e.g. 10%) of the number of pixels. We then make a constrained De-
launay Triangulation (CDT) of the samples to obtain the triangular
mesh M (see Fig. 5). The color at each vertex and its derivatives
can be estimated from the underlying image. While the Sobel fil-
ter used to improve pixel sampling during mesh construction may
not always capture low contrast features, for smooth regions, pixels
are sampled more-or-less uniformly, which is sufficient for our pur-
pose. The later parameterization step considers the rates of change
of colors, and the sampling rate in this stage does not significantly
affect the results.

During subsequent processing, the concept of a metric is funda-
mental to the method. In this discrete setting, the metric is simply
an assignment of a length to each triangle edge. We use different
metrics for different purposes, as explained later.

4.3 Topology-related mapping

We now consider how to construct a one-to-one mapping between
the triangle mesh representation of the input image region and the
2D rectangular domain. The input image region may or may not
contain holes. Slit map parameterization is an effective approach
for a genus-zero open surface with multiple holes. The original slit
map method takes the outer loop and one inner loop as a pair, with
isolines between them. However, as shown in Fig. 6, we require
isolines that go from s1 to s3 and from s2 to s4. In our approach,
using the detected corners, we first construct a topological cylinder
whose inner loops are hole loops of the input image region, and in
which s1 and s3 are the end loops of the cylinder (see Fig. 6). This
construction naturally leads to a rectangular parameterization do-
main which is appropriate for the gradient mesh. We first uniformly
resample boundary s2 or s4 as necessary, so that both now contain
py vertices. Since at this stage, we are only interested in topology,
we choose a metric which assigns unit length to all triangle edges.
This certainly satisfies the triangle inequality and is thus a valid
metric. This simple metric is sufficient to build a topology-based
mapping. Vertices on s2 are merged with corresponding vertices on
s4, to form a topological cylinder M ′ containing holes. The mod-
ified shape M ′ contains (2 + b) boundary loops: b inner loops bi,
and both s1 and s3. We compute a parallel slit map on this geom-
etry to build a one-to-one mapping with the following steps. We
construct a holomorphic one-form ω = η +

√
−1(∗η) such that the

imaginary part of its integral satisfies

Im

(∫
bi

ω

)
=

∫
bi

(∗η) = 0, Im

(∫
s1

ω

)
=

∫
s1

(∗η) = −2π,

where η is a harmonic one-form, ∗ is the Hodge star operator (which
amounts to rotating the one-form by π/2) and Im takes the imagi-
nary part of a complex number. This implies that

Im

(∫
s3

ω

)
=

∫
s3

(∗η) = 2π.
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Figure 6: Topology-related mapping for an image region with a hole: (a) input image region with hole, (b) corresponding topological
cylinder with hole, (c) quasi-rectangle in the parameter domain, with slit, (d) corrected rectangle with slit in the parameter domain. The
triangulations in (c) and (d) have been reduced to make them clearer.

We can determine ω by taking a linear combination of the corre-
sponding harmonic bases. The latter can be determined by solving
2(b+1) Laplacian equations with appropriate boundary conditions,
which entails the solution of sparse linear systems. Finding the ap-
propriate linear combination of the harmonic bases which satisfies
the above equations just requires the solution of a small linear sys-
tem (see [Yin et al. 2008] for further details). This gives a one-form
ω defined on M ′, i.e. a value on each edge of M ′. We may treat ω
as being defined on the original mesh M instead of M ′ since edges
between M and M ′ are in one-to-one correspondence. Given the
parameter of any vertex v0, the parameter p(v) for any other vertex
v can be computed by computing

∫
γ(v)

ω where γ(v) is any path
connecting v0 and v.

The constructed parameter domain is a quasi-rectangle (see
Fig. 6(c)), whose left and right boundaries differ only by a trans-
lation. It can easily be corrected to form a rectangle (see Fig. 6(d)),
and this process is certainly one-to-one. We finally uniformly scale
the rectangle so that its aspect ratio is restored to px/py . Note that,
after this mapping, each hole is mapped to a slit parallel to the x
coordinate in the parameter domain, as desired for gradient mesh
generation.

4.4 Feature-related mapping

After the above mapping, the mesh M corresponding to an image
region has been mapped to a rectangular domain. However, the pa-
rameter for an individual vertex of M does not take into account
local color information. Our aim is to use the gradient mesh to
approximate the input image. It is desirable that after parameteri-
zation, a region which is difficult to represent by a single Ferguson
patch should take up more area (so that the patch itself is smaller).

A Ferguson patch is ideal for representing a region with slowly
varying color gradient. We thus perform reparameterization using a
metric that takes into account how rapidly color gradient changes.
Assume that c(x, y) = (r(x, y), g(x, y), b(x, y)) are the red, green
and blue components of the pixel at (x, y). We assign an 8-
dimensional vector f(x, y) = (x, y, wdc/dx, wdc/dy) as the fea-
ture coordinate of each vertex, where w is a specified weight. Posi-
tion is included in this definition as well as color gradient, because
uniformly distributed grids are preferred in places where color gra-
dients are similar. w is used to balance between lower fitting error
(larger w) and smoother grid lines (smaller w). Experiments show
that w can be varied over a wide range and yet still produce good
results. We have used w = 300 (assuming color values in the range
of 0–1) for most examples in the paper. For an adjacent vertex pair
corresponding to two nearby pixels (x1, y1) and (x2, y2), distance
is defined as ||f(x1, y1)− f(x2, y2)||2. Stretch minimization repa-

rameterization [Sander et al. 2001; Yoshizawa et al. 2004] is now
carried out using this feature-preserving metric. The fast algorithm
given in [Yoshizawa et al. 2004] produces sufficiently accurate re-
sults for our purpose by solving several sparse linear systems. It
takes as input a correct one-to-one mapping, which we have already
obtained, and updates the parameters of the inner vertices to reduce
stretch with respect to the above metric.

4.5 Gradient mesh generation

As this parameterization favors more rapidly varying regions of the
input patch, we may construct the gradient mesh using a regular
grid in the parameter domain: we have made the parameteriza-
tion uniform in the sense of difficulty of representing the input by
patches. To make the mesh we simply choose sets of u and v pa-
rameters. To ensure that the end points of slits and sharp corners on
the boundary are accurately captured, we choose u and v values to
include u and v parameters for all the slit end points, as well as the
corresponding parameter values of the sharp corners on the bound-
ary. We then further subdivide the u and v parameters as needed, in
as uniform a manner as possible, to give a coarse grid.

We may further improve the result at low cost, using the observation
that changing a control point in a gradient mesh only locally affects
the output. We sort the vertices in descending order of average
local fitting error, and successively adjust control points with rela-
tively large fitting error by locally altering their positions within a
small neighborhood. This local operation costs little, as the param-
eterization already provides a reasonable distribution. The greedy
approach here always reduces the fitting error and is thus robust
in practice. The geometric positions and derivatives of the control
points of the gradient mesh can easily be obtained from the pa-
rameterization. The color at each control point can be calculated by
interpolating colors at appropriate positions in the input image. The
color derivatives can be estimated using monotonic cubic interpo-
lation [Wolberg and Alfy 1999] and do not need to be stored. We
avoid using a spatially adaptive grid here for two reasons: (i) even
with holes, our method is compatible with the gradient mesh rep-
resentation supported by major commercial software, (see Sec. 3),
and (ii) simplicity; we wish to focus on the core ideas to make the
algorithm and description easier to follow. This alternative could
be explored in future.

The fitting error for this initial grid is evaluated. We then split that
interval of either u or v which leads to greatest reduction in fitting
error to give a finer grid. This process is repeated until the fitting
error is below a user-specified threshold. Alternatively, a hierarchi-
cal sequence of grids of different fitting error may be computed,
allowing the user to choose a trade-off between image quality and
compact representation: a preview image, the fitting error and the



file size can be interactively presented in a user-friendly interface.

4.6 Matting and segmentation

If the input to our algorithm contains only one foreground object
of interest, we may extract the object using some efficient matting
method [Levin et al. 2008]. Matting processes also give a reason-
able estimation of foreground color when the object is merged with
the background. This is useful to ensure accurate sample colors are
estimated for boundary control points.

If the input to our algorithm is a whole image, rather than a sin-
gle object, it should be first segmented. Since each gradient mesh
can handle color variations quite well, it is preferable to segment
the input image into large, semantic pieces. Experimentally, we
have found using large thresholds with a graph-based image seg-
mentation method [Felzenszwalb and Huttenlocher 2004] produces
an adequate coarse segmentation, which we then refine with Grab-
Cut [Rother et al. 2004] to provide smoother boundary curves. Re-
gion growing is performed to fill in gaps between different seg-
ments, based on color similarity. Feeding each segment into the
previously described algorithm leads to a gradient mesh represen-
tation of the input image. Since the boundary of each image re-
gion can only be approximately reconstructed, the reconstructed
image may contain some gaps (usually of no more than one-pixel
width). We may enlarge each region a little to avoid such gaps, or
use partition-of-unity methods [Ohtake et al. 2003] to interpolate
between samples from neighboring reconstructed regions.

5 Experimental Results

Figure 7: An object without holes: original object, automatically
generated single gradient mesh, and reconstructed object.

Fig. 7 shows an example of generating a traditional gradient mesh
using our method. The flower can be represented by a single gradi-
ent mesh, which is hard to model because of its complex geometry.
Sun et al. rely on manually segmenting a similar example into 5 re-
gions (their method appears to require regions of relatively simple
shape). They require inpainting as well as user provided initializa-
tion. We obtain a good result fully automatically, using a single
mesh.

Figs. 1 and 8 show examples containing holes. The amulet in Fig. 1
contains 21 holes! It would be extremely difficult for a user to man-
ually decompose and initialize such a shape, as would be required in
Sun’s approach. As it does not contain many feature edges, it may
not be very suitable for representation using diffusion curves [Orzan
et al. 2008]. We can fully automatically vectorize this object in
about 2.5 minutes. The time taken for topology-based mapping is
proportional to the number of holes, so this example takes signifi-
cantly longer than other examples.

As a mostly linear approach, our method is significantly faster than
Sun’s non-linear optimization algorithm. Comparative experiments
show that our method is empirically at least 10 times faster. Our

Figure 8: Topology-preserving automatically generated gradient
meshes for objects containing one or more holes.

experiments were carried out on an Intel Core2Duo 2.0GHz laptop
with 2GB memory. Detailed performance is presented in Table 1.
The timings for key steps including triangulation, parameterization
and gradient mesh generation, as well as average fitting errors, are
presented.

Table 1: Experimental results: T : triangulation time, P :
parametrization time, M : mesh generation time, E: average color
error per pixel.

Image (Figure) T P M E
Flower (Fig. 7) 8.1s 1.3s 5.8s 2.78
Pepper (Fig. 8) 8.2s 2.6s 6.2s 1.25
Jade (Fig. 8) 8.5s 2.8s 6.3s 2.39
Plumerias (Fig. 9 (c)) 9.6s 8.2s 7.9s 2.83
Amulet (Fig. 1) 10.8s 125.0s 18.6s 2.76

Since Sun’s method exactly optimizes the fitting error of pixels in
the L2 norm given sufficiently good initialization, our method may
need more control points to achieve the same fitting error (as in
the Pepper example, Fig. 8, which Sun however must manually cut
into pieces). Much more significant, however, is that our method
is much faster, and fully automatic. We can produce a good rep-
resentation for any image regions with slowly varying detail (like
the Pepper), whether or not containing holes. In cases where max-
imum data reduction is paramount, our method could be used to
provide excellent automatic initialization for Sun’s approach: bet-
ter initialization generally leads to better convergence (both in time
and probability of finding a global optimum). Used as a front-end
to Sun’s method, our algorithm would add very little extra com-
putational effort, and also provide both topology preservation and
automation. We also note that it is widely accepted (by e.g. the im-
age compression community) that the L2 norm does not adequately
capture human perception of differences between images. Using
perceptual measures of similarity [Wang et al. 2004] could improve
results.

Fig. 9 presents an example of vectorizing the foreground flowers
from a photograph. The two flowers overlap with a rather smooth
transition, and reliably segmenting them into separate flowers is
difficult. Our method generates an acceptable vectorization for the
whole foreground (with a hole), using a relatively coarse grid. How-
ever, on close inspection of Fig. 9(c) it has some visible artifacts.
Our method allows the user to interactively adjusting the fitting er-
ror using further subdivision (taking another 4s). By using a denser
grid (going from 30× 35 to 30× 55), the fitting error is reduced to
2.15 per pixel and the reconstruction is much improved as shown
in Fig. 9(d).



(a) (b) (c) (d)

Figure 9: Vectorization of plumerias with varying error control: (a) original, (b) automatically generated single coarse gradient mesh, (c)
reconstruction from coarse mesh, (d) reconstruction from refined gradient mesh.

Figure 10: Gradient meshes for a whole image: original image, automatically generated segmentation image—note how one region has a
hole, automatically generated gradient meshes, final reconstructed image.

Figure 11: A durian: original object, generated gradient mesh, and
reconstructed object. Larger fitting error results for such objects
with many fine details.

The complicated boundaries and / or holes in such examples make
it challenging to even manually initialize such cases when using
Sun’s method. Our method, however, is fully automatic, and does
not require any user assistance. Note that the grids of generated
gradient meshes may be distorted, as illustrated by examples in the
paper. This is mostly because those examples are relatively dif-
ficult to model (automatically) with a single gradient mesh: they
have complicated boundaries and feature distribution. For a gradi-
ent mesh to be effective, it should follow the boundaries and / or
features, making the grid less uniform.

Fig. 10 gives an example of automatically converting an entire im-
age to topology-preserving gradient mesh representation. In some
regions segmentation is not perfect but acceptable reconstruction is
still obtained. The whole image is automatically segmented into 8
pieces, some containing holes. The local density is reasonably bal-
anced between different segments, using error-based subdivision.
The overall time for this example was about 2 minutes, and the
average color error is 2.13 units per pixel. The gradient mesh rep-
resentation takes up 9.4KB of storage after zip compression while
a JPEG image of comparable quality requires 20KB. This indicates

that our method is a plausible compression method for at least some
kinds of images.

We have shown that our method can deal with image regions of
arbitrary topology automatically and efficiently. One limitation for
our gradient mesh generation (and probably others) is it may not be
suitable to represent image regions with fine and rapidly changing
details. For such cases, the fitting error will be relatively large, as
illustrated in the durian example in Fig. 11.

6 Conclusions

We have introduced a new topology-preserving gradient mesh rep-
resentation, which can handle objects with complex geometry and
holes, and a novel automatic and efficient algorithm for generating
such meshes from an input image. The results are general, compact,
and compatible with commercial software.

Treating an input image region as a particular type of image mani-
fold allows geometric parameterization techniques to be applied to
this image processing problem. Our method is more efficient than
prior, less general gradient mesh techniques, mainly depending on
the solution of a few sparse linear systems, instead of a non-linear
system. No user guided initialization is required.

Because our algorithm has the advantages of being automatic and
allowing holes, it can be used in conjunction with segmentation to
automatically vectorize an entire image. Global control over fit-
ting error is provided, allowing interactively choice between fitting
quality and storage requirements.

Utilizing geometric parameterization in image processing is in it-
self an interesting novel tool, and we anticipate further potential
applications to a wide range of image processing applications.



Acknowledgements

The authors would like to thank anonymous reviewers for their
valuable comments. We would like to thank Kun-Peng Wang,
Tao Chen, Ming-Ming Chen and Meng Ding for their kind help.
This work was supported by the National Basic Research Project
of China (Project Number 2006CB303106), the Natural Science
Foundation of China (Project Number 60673004, U0735001), the
Specialized Research Fund for the Doctoral Program of Higher
Education (Project Number 20060003057) and an EPSRC Travel
Grant.

References

BARRETT, W., AND CHENEY, A. S. 2002. Object-based image
editing. ACM Transactions on Graphics 21, 3, 777–784.

DEMARET, L., DYN, N., AND ISKE, A. 2006. Image compression
by linear splines over adaptive triangulations. Signal Processing
86, 7, 1604–1616.

DORI, D., AND LIU, W. 1999. Sparse pixel vectorization: an
algorithm and its performance evaluation. IEEE Transactions on
Pattern Analysis and Machine Intelligence 21, 3, 202–215.

FELZENSZWALB, P. F., AND HUTTENLOCHER, D. P. 2004. Effi-
cient graph-based image segmentation. International Journal of
Computer Vision 59, 2, 167–181.

FERGUSON, J. 1964. Multivariable curve interpolation. Journal of
the ACM 11, 2, 221–228.

FLOATER, M. S., AND HORMANN, K. 2005. Surface parameteri-
zation: a tutorial and survey. In Advances in Multiresolution for
Geometric Modeling, IV: 157–186.

FLOATER, M. 2003. Mean value coordinates. Computer Aided
Geometric Design 20, 1, 19–27.

JARVIS, J. F., JUDICE, C. N., AND NINKE, W. H. 1976. A sur-
vey of techniques for the display of continuous tone pictures on
bilevel displays. Computer Graphics and Image Processing 5, 1,
13–40.

KIMMEL, R., MALLADI, R., AND SOCHEN, N. 2000. Image
as embedded maps and minimal surfaces: movies, color, texture
and volumetric medical images. International Journal of Com-
puter Vision 39, 2, 111–129.

LAI, Y.-K., HU, S.-M., AND POTTMANN, H. 2006. Surface
fitting based on a feature sensitive parameterization. Computer-
Aided Design 38, 4, 800–807.

LECOT, G., AND LEVY, B. 2006. ARDECO: Automatic region
detection and conversion. In Proc. Eurographics Symposium on
Rendering, 349–360.

LEVIN, A., LISCHINSKI, D., AND WEISS, Y. 2008. A closed-
form solution to natural image matting. IEEE Transactions on
Pattern Analysis and Machine Intelligence 30, 2, 228–242.

MANAY, S., HONG, B.-W., AND YEZZI, A. J. 2004. Integral
invariant signatures. In Proc. European Conference on Computer
Vision, 87–99.

MATUSIK, W., ZWICKER, M., AND DURAND, F. 2005. Texture
design using a simplicial complex of morphable textures. ACM
Transactions on Graphics 24, 3, 787–794.

OHTAKE, Y., BELYAEV, A., ALEXA, M., TURK, G., AND SEI-
DEL, H.-P. 2003. Multi-level partition-of-unity implicits. ACM
Transactions on Graphics 22, 3, 463–470.

ORZAN, A., BOUSSEAU, A., WINNEMÖLLER, H., BARLA, P.,
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