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Abstract

In this paper we present a new algorithm which turns an unstructured triangle mesh
into a quad-dominant mesh with edges well aligned to the principal directions of
the underlying surface. Instead of computing a globally smooth parameterization
or integrating curvature lines along a tangent vector field, we simply apply an iter-
ative relaxation scheme which incrementally aligns the mesh edges to the principal
directions. We further obtain the quad-dominant mesh by dropping the not-aligned
diagonal edges from the triangle mesh. A post-processing stage is introduced to
further improve the results. The major advantage of our algorithm is its concep-
tual simplicity since it is merely based on elementary mesh operations such as edge
collapse, flip, and split. The resulting meshes exhibit a very good alignment to sur-
face features and rather uniform distribution of mesh vertices. This makes them
well-suited, e.g., as Catmull-Clark Subdivision control meshes.
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1 Introduction

After the technology for 3D geometry acquisition has become both powerful
and simple to use in recent years, the generation of faithful digital 3D models of
complex objects is now being used in more and more application fields ranging
from Computer Graphics and Computer Aided Design to Rapid Prototyping
and Computer Aided Manufacturing. However, while earlier algorithms for 3D
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reconstruction have focussed on the generation of highly detailed but unstruc-
tured triangle meshes, a recent shift can be observed towards the generation
of structured meshes where the vertex sample pattern takes the underlying
surface geometry into account.

Since the local geometry of a surface can be characterized by two principal
curvatures and the corresponding two principal directions, quad dominant
meshes are usually preferred over triangle meshes because they can represent
this structure in a more natural way. Moreover there are many classical results
from differential geometry [11] which imply that well-aligned quad meshes
provide a better surface approximation [9] and minimize normal noise [6].

Among the many different algorithms for quad mesh generation, we can iden-
tify several classes of algorithms which are designed such that certain mesh
properties are guaranteed. For example we can distinguish quad-dominant vs.
pure quad meshing schemes and conforming schemes vs. schemes that produce
T-vertices. Besides this, the fundamental quality criteria are mostly identical:

• The mesh structure should be as regular as possible. (no “unstructured quad
meshes”).

• Individual faces should be as rectangular as possible.
• Faces should be aligned to the principal directions in general and to sharp

features in particular.
• The size of the faces should adapt to the local curvature.

Especially the last requirement is, however, in conflict to the other ones since
adaptive mesh resolution is difficult to achieve in conforming quad meshes.
This is due to the fact that regularity and rectangularity imply non-local
consistency conditions (see Fig. 1).

Fig. 1. Global regularity and conformity for quad meshes lead to non-local con-
sistency conditions and may cause strongly distorted quads. T-vertices provide the
flexibility to adjust the quad mesh resolution and to avoid the accumulation of
distortion.
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Fig. 2. Quad meshes are a well-established representation in shape design and
modeling applications. In order to flexibly change the resolution while not compro-
mising the local regularity T-vertices are introduced.

In order to relax these consistency conditions, we propose in this paper a quad-
dominant meshing scheme (not pure quad) which generates T-vertices . These
relaxed conditions allow us to compute quad meshes with high rectangularity
and good adaptivity of the mesh resolution. In fact, T-vertices seem to be the
appropriate means to produce quad meshes with adaptive resolution as can
be seen in many hand-made CAD models (see Fig. 2).

In Computer Graphics, T-vertices seem to have a “bad reputation” because
in a polygonal mesh, obtuse inner angles close to π usually lead to shading
artifacts due to badly estimated normal vectors and interpolation singulari-
ties. While this is true for polygonal meshes, it turns out to be less relevant
if we consider quad meshes as a structured geometry representation that is
being used for sophisticated downstream applications like shape modeling, seg-
mentation into constructive elements, or tool path generation. Higher order
geometry representations such as T-splines [28] and Catmull-Clark subdivision
surfaces can handle T-vertices in a natural manner and no surface singularities
are caused by them.

Another design goal for our algorithm is simplicity. Instead of doing complex
calculations to analyze the geometric and topological structure of the input
shape, our algorithm is based on a small number of mesh operations which
are available in every polygonal mesh library. The major processing stage of
our algorithm is a simple mesh relaxation scheme that moves mesh vertices in
tangent direction in order to promote edge alignment to the principal direc-
tions. The vertex sliding is interleaved with local connectivity updates (edge
collapses, splits, and flips) in order to prevent the mesh connectivity from
degenerating. The overall process is illustrated in Fig. 3 and Fig. 4.

This paper is an extended version of [18]. In particular, more discussions and
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(a) (b) (c) (d) (e) (f)

Fig. 3. Intermediate results produced by the individual steps of our algorithm.
(a) The input triangle mesh with smoothed principal direction field. (b) The tri-
angle mesh produced by curvature adaptive isotropic remeshing. (c) and (d) The
triangle mesh during iterative optimization when α reduced to 50% and 0% of the
initial value; well aligned, aggregated edges are highlighted. (e) The triangle mesh
after the incremental optimization, with well aligned edges highlighted. (f) Output
quad-dominant mesh after post processing.

experimental results with respect to different resolutions and feature sensi-
tivity are presented. Section 2 briefly reviews related work. The overall algo-
rithm is given in Section 3 and the key component of incremental alignment
in Section 4. Experimental results are given in Section 5, with conclusions and
discussions in Section 6.

2 Related Work

Remeshing has been an active research topic for years and a thorough survey
is well beyond the scope of this paper. The reader is rather referred to [3] for
an excellent and comprehensive overview. Remeshing methods can be clas-
sified based on the output mesh structure into triangle remeshing and quad
remeshing.

2.1 Triangle Remeshing

Early work focuses on semi-regular triangle remeshing which produces mostly
regular vertices (of valence 6) except for a few isolated extraordinary vertices
in the output mesh. A coarse triangle mesh is constructed from the dual of
a quasi Voronoi diagram [14] or from mesh simplification [20] and uniform
subdivision is applied.

Isotropic remeshing [2,29,30,7] produces approximately equilateral triangles
of the same size without caring about topological regularity. [2] uses a global
conformal parameterization which restricts the allowed topology of the input
meshes. [29] generalizes this by using local parameterizations. The methods
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in [30,7] achieve high quality isotropic remeshing by a series of local mesh
modifications, which is similar in spirit to our approach in this paper.

Isotropic remeshing can be adapted to vary the sizes of triangles according to
the local curvature. [2] uses a density map to control the mesh resolution. Lai et
al. [19] propose to use a curvature sensitive distance metric to anisotropically
remesh models so that triangles are elongated along sharp and semi-sharp
features. Alignment of edges with such features was specifically studied in [6].
Other approaches (e.g. [4]) try to recover artifacts of features introduced by
scanning or remeshing by a post filtering operation, which may be used after
feature unaware remeshing methods to improve the quality of output meshes.

2.2 Quad Remeshing

Alliez et al. [1] propose a method to integrate principal curvature lines in
the parameter domain of the input mesh and generate a quad-dominant out-
put mesh by intersecting these lines. Marinov and Kobbelt [23] extend this
work by directly integrating curves on the input model. Streamline integra-
tion methods add integration curves in a greedy fashion, thus they cannot
guarantee a globally uniform distribution. Principal directions usually suffer
from singularities, even after smoothing. Dong et al. [13] hence suggest to use
the gradient of a smooth harmonic scalar field instead of principal directions.
More regular results are obtained at the cost of necessary user intervention
and the loss of feature alignment.

Global parameterization has also proven to be a powerful tool for quad remesh-
ing. Geometry images [15] remesh arbitrary input meshes into all-quad meshes,
by cutting the input mesh into a topological disk (a fundamental domain), pa-
rameterizing and regularly sampling it over a square domain. Multi-chart ge-
ometry images [27] extend this idea and reduce the mapping distortion signif-
icantly. The input model is segmented into pieces and they are parameterized
one by one. A zippering operation is performed to keep the remeshed model
water-tight. Periodic global parametrization is proposed in [25] to parameter-
ize the input model so that principal directions are aligned with coordinate
axes in the parameter domain. Non-linear optimization is required to achieve
this. Remeshing can then be performed by regular sampling in the parameter
domain. Kälberer et al. [17] improve this by converting a given frame field into
a single vector field on a branched covering of the 2-manifold and producing
quadrilaterial meshes with fewer singularities.

When using local parametrizations for quad meshing, the input mesh has to
be decomposed into patches and compatibility conditions have to be satisfied
along patch boundaries. Dong et al. [12] propose a quad remeshing method
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Fig. 4. Mesh processing pipeline for incremental quad-dominant meshing.

which connects extrema of Laplacian eigenfunctions via gradient flow to form
a quadrangular base mesh. High quality remeshing with few extraordinary
vertices is achieved this way, although features are usually not well captured.
In [32] the patch layout is prescribed manually and more general compatibility
conditions are considered allowing for a swap of the principal directions. The
work by Boier-Martin et al. [5] produces quad-dominant meshes by first con-
structing a coarse domain using clustering techniques. A two-stage remeshing
algorithm is proposed in [24] that first segments the input mesh into patches
using a variant of the variational shape approximation algorithm [9] and then
applies a combinatorial optimization procedure to build the output mesh from
a set of smooth curves. This method is specifically targeting at the generation
of coarse output meshes. A contouring based approach was proposed in [8]
that can run at interactive rates, however sacrificing regularity and feature
alignment in the output mesh.

Unlike most other approaches, Liu et al. [22] considers the problem of produc-
ing quad dominant meshes with each quad being planar. This is accomplished
by a post optimization of the vertex positions of a quad-dominant mesh, keep-
ing the connectivity unchanged. This post optimization could be applied to
our quad meshes if this property is desired. Tchon and Cameredo [31] propose
to use iterative, specialized local operators to produce quad-dominant meshes,
which bears some similarity with our method, however, their method applies
only to 2D meshes.

In [21] an algorithm for the generation of high quality T-spline control meshes
is presented which is based on the periodic global parametrization but allows
for more flexible user intervention. Our output meshes can also be used as
T-spline control meshes.

3 Overview of the Algorithm

Given an unstructured triangle mesh M as input, we first have to compute
a tangent direction field to which we want to align the quad faces. Usually
we will use the principal directions of the underlying surface estimated at the
vertices of M, but other choices would be possible as well. Next we perform
an isotropic remeshing M→M′ which is feature sensitive in the sense that
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the local vertex density is adapted to the maximum curvature [19]. This pre-
process is necessary to provide a sufficient number of degrees of freedom for
the incremental alignment procedure.

The basic idea of the incremental alignment is to let the vertices of M′ slide
over the input mesh M such that edges of M′ become aligned to the principal
directions of M. The sliding is controlled by various forces which promote
alignment as well as uniform distribution. Since at each surface point there are
four principal directions (minimum and maximum curvature in two opposite
directions each), the alignment force can only take up to four adjacent edges
into account. The other edges do not imply any forces and will end up as
diagonals. Eventually these diagonals are removed from the mesh M′ such
that a quad-dominant output mesh is generated. In order to avoid degenerate
triangles, we adjust the mesh connectivity during vertex sliding. By using
such techniques, mesh edges tend to align principal directions (or other given
orthogonal fields) well, which is a very important property for quad meshes
to be useful.

3.1 Principal Direction Estimation

Our algorithms aligns mesh edges to an arbitrary pair of tangent direction
fields. The geometrically most relevant directions on a surface are the principal
directions which indicate at each point on a surface the (mutually orthogonal)
tangent directions of minimum and maximum curvature [11].

We use the methods proposed in [10] and [35] to estimate the principal direc-
tions at the vertices of the input mesh M. Since this estimate is sensitive to
noise and since it cannot guarantee a smooth direction field in nearly umbilic
regions of the surface, we have to apply a smoothing operator. The number
of singularities in the resulting direction fields can be reduced considerably by
treating the local direction information as a 4-symmetric vector field [26]. We
apply the method proposed in [16] to smooth the principal frames by using a
simple non-linear optimization scheme which tends to converge very robustly
and fast.

The principal direction estimation and smoothing provides an orthogonal co-
ordinate frame Fi = (Xi, Yi, Zi) for each vertex in the input mesh M where Xi

is the minimum curvature direction, Yi is the maximum curvature direction,
and Zi is the normal vector. We interpolate this direction information linearly
across triangles by using barycentric coordinates.

For the normals, linear interpolation is straightforward. For the tangent direc-
tions, however, we first have to find the proper permutations of the directions
for interpolation (due to 4-symmetry). Let Fi, Fj, and Fk be the local frames
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at the three vertices of a triangle. For each triplet (Di, Dj, Dk) we check the
consistency defined by

consistency(Di, Dj, Dk) := DT
i Dj + DT

j Dk + DT
k Di

where the direction Di is taken from the set {Xi,−Xi, Yi,−Yi} and the direc-
tions Dj and Dk are chosen analogously (yielding a total of 43 = 64 combina-

tions). From the triplet (D̂i, D̂j, D̂k) with maximum consistency we compute
the first interpolated tangent vector X by barycentric combination. The sec-
ond tangent vector is then defined as Y = Z ×X where Z is the interpolated
normal vector.

Notice that only the barycentric interpolation has to be computed during
the incremental mesh optimization. Estimating the principal directions at the
vertices of M and finding the most consistent triplet per triangle is done in a
pre-process.

3.2 Initial Mesh Generation

The starting configuration is crucial for incremental optimization. Hence we
make sure that the initial mesh M′ locally has sufficiently many degrees of
freedom, i.e. that the vertex density ofM′ is higher in curved regions and lower
in flat areas. We use the method proposed in [19] which produces isotropic
meshes with the vertex density adapted to the local curvature. This is achieved
by computing a uniform vertex density with respect to the augmented metric

dist(Vi, Ni, Vj, Nj) =
√
‖Vi − Vj‖2 + ω2 ‖Ni −Nj‖2, (1)

where Vi and Ni are position and unit normal vectors of vertex vi; corre-
spondingly Vj and Nj are those of vertex vj. This metric takes both Euclidian
distance ‖Vi − Vj‖2 as well as unit normal rotation ‖Ni −Nj‖2 into account.
The non-negative coefficient ω is used to control the sensitivity of the density
adaption. The algorithm first distributes unconnected vertices on the surface
by using particle repulsion [34] and then recovers the mesh connectivity by
constrained Delaunay triangulation in a local parameterization [19].

3.3 Incremental Optimization

Sliding the vertices of M′ over M such that the (some) edges of M′ become
aligned to the tangent direction fields of M is the most important step of our
quad-dominant remeshing scheme. Since at every surface point we can identify
four principal directions and the average valence of a vertex in a triangle mesh

8



is six, it is obvious that not all edges can be aligned. In fact, some edges will
turn out to become diagonally oriented with respect to the principal direction
fields. The various forces that act on the vertices in this stage and the overall
incremental optimization procedure is described in detail in section 4.

Technically, the vertex sliding is implemented by computing a local parame-
trization for the 1-ring of each vertex in M′ and then performing the position
update in the parameter domain. After the update, the 3D position is recov-
ered by simply evaluating this parametrization. Even if this already guarantees
a good preservation of the geometry, it can still happen that the vertices of
M′ drift away from the input mesh M. Hence we project the vertices of M′

back to the nearest point of M after every iteration. The vertex relocation is
concluded by re-evaluating the (interpolated) principal direction field in order
to update the local coordinate frame associated with a vertex.

When the vertices of M′ are freely sliding across the input mesh M, the mesh
structure can degenerate. Hence, in order to preserve a good mesh quality, we
have to apply a local remeshing procedure. Since the step width of the vertex
motion is rather small in our incremental procedure, simple local connectivity
updates turn out to be sufficient. We use a variant of the connectivity update
procedure described in [7]:

After re-location and back-projection of the vertices, we

• collapse edges that have become shorter than some threshold Θmin.
• split edges that have become longer than some threshold Θmax.
• flip edges if the maximum inner angle of one of the adjacent triangles is

above some threshold Φmax.

The choice of the three thresholds Θmin, Θmax, and Φmax does not require
too much tuning. Θmin and Θmax control the mesh resolution and the aspect
ratio of the resulting quad faces. Φmax has always been set to π − ε in our
experiments.

3.4 Quad Mesh Generation and Post Processing

After a few iterations of the incremental optimization, we obtain a triangle
meshM′ which exhibits a good local edge alignment to the principal directions
ofM. Removing the badly aligned edges (the diagonals) from the mesh already
leaves a quad-dominant mesh with mostly rectangular faces.
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3.4.1 Post processing for improving polygon quality

Some simple post-processing can further improve the quality of the output
mesh by removing badly shaped faces through merging and splitting.

In the merging phase, adjacent faces are merged by removing their common
edge from the mesh. An edge is removed if the quality of the resulting face
is superior to the quality of the two faces before the merge. Here, the qual-
ity of a face is measured by its rectangularity, i.e. by the number of quasi-
perpendicular corners (should be four) and by the number of non-convex cor-
ners (should be zero). A quasi-perpendicular corner is one with an inner angle
close to π

2
, a non-convex corner is one with an inner angle well above π. The

inner angle of a corner is measured in the tangent plane defined by the local
normal vector.

Notice that we do not penalize T-vertices, i.e. vertices with an inner angle
of approximately π. Please refer to our discussion of the role of T-vertices in
quad meshing in the introduction.

The merging phase is followed by a splitting phase where we remove the re-
maining non-convex corners by splitting the corresponding non-convex faces
into convex ones. Here a simple heuristic finds the most rectangular decom-
position of a non-convex face.

3.4.2 Post processing for T-vertices

Due to the local minimum nature of our method, it may produce some un-
necessary T-vertices in certain cases. Although as discussed before, T-vertices
are not an impediment for various geometry processing applications, reducing
the number of T-vertices, or placing them at more reasonable places is still of
benefit. For this purpose, a simple post processing stage may be introduced.
For T-vertices located within regular regions, the consecutive edge sequences
ending at the T-vertex can be extended by appropriately splitting a sequence
of quads. An extended edge sequence terminates when another T-vertex is
met or when the edge sequence is sufficiently close to nearby edges. The ex-
tension of edge sequences is always restricted to regular quad regions so that
regularity is guaranteed after splitting. After this phase, edge sequences that
are too short or too close to neighboring sequences will be removed.

Besides proper alignment, another goal of the iterative vertex relocation de-
tailed in Section 4 is to promote a globally uniform size of the quad faces.
However, after the elimination of unnecessary T-vertices, the line density, i.e.
the distribution of (parallel) edge sequences can become non-uniform because
new edges have been inserted and quad faces have been split. We re-establish
uniformity by iterating a simple smoothing operator. Here we can exploit the
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fact that the mesh structure is highly regular at this stage of the algorithm.

The smoothing operator performs a simple relaxation with back-projection to
the original surface. For the relaxation we distinguish between regular vertices
(valence four with all adjacent faces being quads), T-vertices (between two
small and one larger quad), and irregular vertices (all the rest).

The positions of the irregular vertices are not changed by the smoothing op-
erator. T-vertices are shifted towards the mid-point of the edge on which they
lie and regular vertices are shifted towards the average of their four adjacent
vertices. Fig. 8 in the experimental results section shows an example mesh
before and after the final relaxation step.

4 Incremental Alignment

After we have explained the overall algorithm, we now focus on the most
crucial stage of the process which is the incremental motion of vertices in
order to promote principal direction alignment. For every vertex v of M′

we evaluate the interpolated principal direction field and associate a local
coordinate frame F with it. We do the same for the midpoint of every edge.

4.1 Local Parameterization

To simplify the vertex motion, we map the 1-ring neighborhood of a vertex
v to a 2D domain. In order to minimize distortion, we use the exponential
map [33] [20] which preserves the length of the edges adjacent to v and scales
the adjacent inner angles such that they sum to 2π (planar configuration).
The vertex v is mapped to the origin and the configuration is rotated such
that the principal directions X and Y at v coincide with the x and y axis of
the 2D domain.

For the re-location of the center vertex, we have to identify the most appropri-
ate set of (up to four) adjacent edges which qualify as candidates to be aligned
to the minimum or maximum principal direction (x and y axis respectively).
We do this by selecting those edges which have the least angle to the (positive
or negative) x or y axis. Selected edges are rejected if their angle with respect
to the corresponding axis is more than π

3
. This leads to situations where less

than four edges may remain as alignment candidates. Only these candidates
will affect the re-location of the center vertex, the others are not taken into
account.
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4.2 Curl Compensation

Since the edges of M′ have a finite length, the orientation of the direction
field may change along an edge (curl). For symmetry reasons we want to align
a candidate edge e to the direction field evaluated at its midpoint. However,
since in general the corresponding local frame Fe = (Xe, Ye, Ze) is different
from the local frame Fv = (Xv, Yv, Zv) at the center vertex v we have to
compensate the curl by rotating e in the parameter domain. To simplify the
following explanation we assume that the tangent direction vectors Xe and
Ye have already been chosen such that maximum consistency with the vectors
Xv and Yv is established.

Let Ee be the 3-dimensional (geometric) embedding of the (topological) edge
e then (xe, ye) = (ET

e Xe, E
T
e Ye) are the coordinates of e in the tangent plane

with respect to the local coordinate frame Fe.

The curl compensation consists in a rotation of the frame Fe into the frame
Fv. In the parameter domain where Fv coincides with the x- and y-axis, we are
only interested in the tangential component of this rotation which corresponds
to replacing the edge e obtained by the exponential map parametrization (in
the last section) with the edge spanned by (xe, ye) and the origin (= location
of v in the parameter domain).

Notice that even if we will use the curl compensated edges in the parameter
domain to compute the update vector for the center vertex (in the next sec-
tion), we still stick to the candidate selection based on the orientation before
the compensation. The reason for this is to maintain the compatibility of the
minimum and maximum principal directions at the center vertex.

4.3 Vertex Re-Location

Let (x1, y1), . . . (x4, y4) be the curl compensated endpoints of the four adja-
cent edges being candidates for alignment to the minimum (X), maximum
(Y ), negative minimum (−X), and negative maximum (−Y ) principal direc-
tions respectively (see Fig 5). We will define three different forces that attract
the center vertex v towards an optimized position in the parameter domain.
For brevity we will only explain how to compute the x-coordinates. The y-
coordinates are obtained analogously.

The first force (“collinearity force”) is trying to make the points (x2, y2), v,
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Fig. 5. Illustration of vertex re-location. The center vertex is pulled towards a
weighted average of three target positions x′, x′′, and x′′′.

and (x4, y4) collinear:

x′ =
|y4|

|y2|+ |y4| x2 +
|y2|

|y2|+ |y4| x4

The corresponding force for the y-coordinates is making (x1, y1), v, and (x3, y3)
collinear.

The second force (“snapping force”) is promoting edge alignment by enforcing
vertical edges. This is achieved by snapping to the closer x-coordinate of the
corresponding neighbors:

x′′ =
{ x2 (|x2| ≤ |x4|)

x4 (|x2| > |x4|).

For the y-coordinates horizonal edges are enforced.

The third force (“relaxation force”) is promoting uniform vertex distribution
along the principal directions:

x′′′ =
x1 + x3

2

Eventually, the updated x-coordinate for the center vertex is defined as a
weighted average:

(1− λ) x + λ (α x′ + (1− α− β) x′′ + β x′′′)

During the incremental optimization we change the weight coefficients α and
β according to the following schedule. We begin with α being relatively large
(e.g. α = 0.3) and β = 0. With each iteration, we let α decrease towards zero
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(with a constant decrease of amount after each iteration). Once α vanishes,
we start to increase β with each iteration up to some moderate value (e.g.
β = 0.2).

The rationale behind this schedule is that initially the mesh should be straight-
ened by making vertices locally collinear. Then the actual alignment to the
principal directions should be promoted. After some iterations, the alignment
is established and we fade in a regularization force to make the vertex dis-
tribution more uniform. Although the weights for collinearity force and re-
laxation force are relatively small, they are important to improve the results.
The collinearity force is introduced to improve the alignment in the initial
iterations. Without the relaxation force, aligned edge sequences will not tend
to distribute uniformly. These forces take effect together with the snapping
force that promotes the alignment with the principal directions. The suggested
values are obtained from experiments, and we have found that the same set
of values is suitable for all the examples presented in the paper.

This schedule together with a damping factor of λ = 1
2

usually guarantees
stable convergence of the scheme to a good local minimum. Experiments also
show that the same set of parameters (and parameter variation after iteration)
is suitable for a wide range of models.

For vertices with less than four alignment candidates, we apply just the snap-
ping force for a direction where only one candidate is present. For the other
coordinate, collinearity and snapping is applied but no relaxation. If no can-
didate is present for one direction then there is no update of the respective
coordinate at all.

4.4 Aggregation

Updating the position of each vertex in M′ individually may lead to a very
slow convergence and has a high risk of getting stuck in a sub-optimal local
minimum. Hence we have to stabilize the convergence by making sure that we
are not destroying a good local configuration in future relaxation steps.

We achieve this by aggregation, i.e. by combining adjacent well-aligned edges
into a single rigid component which can only be updated simultaneously. Ag-
gregation speeds up convergence significantly since position and orientation
information is propagated much faster through the mesh.

Initially each edge of M′ represents an individual rigid component. After each
iteration, we classify edges as well-aligned, if their orientation deviates from
one of the two principal directional by less than some small threshold. If two
adjacent edges are both well-aligned with respect to the same principal direc-
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tion they are treated as one rigid component in the next iteration. Contiguous
sequences of well-aligned edges can be aggregated into chains in the same way.
In practical implementation, we do not exert extra limitations to the length
of an aggregated chain. Edges are re-classified and chains are re-aggregated in
each iteration to avoid bad local minima.

The update procedure for vertices v that belong to an aggregated chain has
to be modified. For simplicity we, again, assume that all the local coordinate
frames have been permuted correctly to establish maximum consistency be-
tween adjacent vertices and edges. Without loss of generality we can further
assume that the aggregated edges are well-aligned to the maximum principal
direction (X). Y -alignment is handled analogously.

virtual edge

V e1 ek

x1 xk
ek+1

(xk+1,yk+1)

e2

x2

Fig. 6. Well-aligned edges are aggregated and treated as rigid components. In
the vertex re-location, this is taken into account by constructing virtual edges (as
delineated in dash line).

We still start by computing a parameterization of the 1-ring neighborhood
of v, however, instead of applying the curl compensation to an already well-
aligned edge e1, we follow the aggregated chain e2, . . . ek to its end vertex where
we find a not yet well-aligned edge ek+1 which is a candidate for alignment.
Since all the intermediate aggregated edges are already well-aligned (to the X
direction), their local coordinates in the respective tangent planes are (xi, yi) =
(xi, 0). Propagating the curl compensation along the aggregated chain leads
to the virtual edge: (

k+1∑

i=1

xi, yk+1

)

Fig. 7. Quad-dominant remeshing of various graphical models. From left to right:
‘elephant’, ‘fertility’ and ‘tweety’.
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This definition makes sure that the collinearity and the snapping forces for
the y-coordinates are compatible for all vertices that belong to the same ag-
gregation chain in X direction.

The relaxation force for the y-coordinate has to be treated differently since it
uses adjacent edges in Y direction which are different for each vertex in a X
chain. In order to make sure that the well-alignment of the whole chain is not
affected, we compute the y-coordinate relaxation force for each vertex in a X
chain individually and then compute an average update which we apply to all
vertices. By this we allow the X chain to move parallel in Y direction in order
to make the overall vertex distribution more uniform.

Intermediate results of iterative update with aggregation are presented in
Fig. 3 (c-e). The detected aggregations are highlighted. We may consider the
iterative local updates process as two stages. In the first stage (from (b) to
(d)), the purpose of iteration is to make the candidate edges well align with
principal fields, and this is achieved by a combination of collinear force and
snapping force. In the second stage (from (d) to (e)), due to the introduction
of relaxation force, edge sequences tend to become more uniformly distributed.

5 Experimental Results

We tested our algorithm with various geometric models of different complexity.
The results were generally quite good with mesh edges mostly well-aligned to
the principal directions and quads distributed evenly.

Fig. 7 shows various graphical models remeshed with our method. Smoothed
principal directions are used in these examples to guide the orientation of the
edges. Since we do not rely on a global parameterization, the method can deal
with high-genus models in the same way, as illustrated by the genus 4 model
of ‘fertility’.

Fig. 8 is the remeshed rockerarm model, a typical mechanical part. Thanks to
the non-linear 4-symmetric vector field smoothing, even critical configurations
like the non-convex flat region can be remeshed quite reasonably with mostly
quads. The left and right figures show the model before and after relaxation,
respectively; uniformity is re-established after relaxation.

In Fig. 9 we used a user specified direction field instead of the principal di-
rections to improve the mesh quality in noisy regions. Remeshing with the
principal directions tends to produce irregular meshes on the palm due to the
existence of creases. The tangent vector field shown on the left is computed
by interpolating 5 key vectors, one on each finger, using radial basis functions.
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Fig. 8. Quad-dominant remeshing of the rockerarm model. Left: before relaxation;
right: after relaxation.

Fig. 9. Hand model remeshed with the specified vector field.

Although it is generally difficult to precisely control the resolution of the
output mesh, the number of vertices in the initial phase of feature sensitive
isotropic remeshing does have certain influence. Fig. 10 shows the remeshing
results obtained with initial isotropic remeshing of 10, 000 and 20, 000 vertices,
respectively. The obtained remeshing results contain 1786 and 2842 faces,
corresponding to coarser and finer initial remeshing. Besides using different
resolutions of initial triangle meshes, the number of faces in the output mesh
is also affected by the post-processing stage. Merging and splitting of polygons
will slightly decrease or increase the number of faces. Extending edge sequences
terminating at T-vertices will increase the number of faces due to the splitting
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of regular faces; thus enabling this post-processing will lead to an output mesh
with more faces.

Fig. 10. Remeshing of ‘frog’ model with two different resolutions.

Note that there still exist some polygons (other than quads) on the produced
meshes, thus the output results are considered as quad dominant remeshing
(not pure quads). This is partially due to the singularities of principal field
(even after 4-symmetry smoothing) and partially due to the local minima na-
ture of the iterative update scheme. Such polygons may be further improved
by some heuristic rules that try to split or merge them appropriately to pro-
duce better results. It can be noticed that remeshing results usually have edges
follow principal directions and features.

Fig. 11. Remeshing of ‘bahkauv’ model without and with feature sensitivity,
ω = 0.10.

Feature sensitive metric [19] may be used not only as a way to control initial
triangulation, but may also be applied to the whole computation pipeline. The
metric is described by Equation 1, and is used whenever the distance between
two adjacent vertices is computed. By using this technique, not only mesh
edges are aligned with principal directions or features, the density of faces
are also adapted to the local features: feature regions tend to contain more
faces than flat regions. Fig. 11 gives an example of producing quad dominant
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remeshing of ‘bahkauv’ model without and with feature sensitivity (ω is set
to 0.1). Since certain steps of the algorithm use more global connectivity con-
sistency around the model (e.g. aggregation based local remeshing and post
processing), the result obtained with feature sensitivity may not differ much
from that without feature sensitivity. However, it can still be noticed that
with feature sensitivity, feature regions (e.g. the legs and the head) contain
increased number of faces, while other regions have the same or even less faces
as the result without feature sensitivity. This property is useful for better
representing feature regions with a limited number of faces.

Our remeshing results can be used as control meshes of T-splines or Catmull-
Clark subdivision surfaces. Fig. 12 shows such an example.

Catmull-Clark subdivision can be generalized to meshes with T-vertices in a
straightforward manner. The original Catmull-Clark scheme computes a new
vertex for every edge and every face of the input mesh. Then each n-sided
face is split into n quads by connecting the edge-vertices to the face vertices.
If an edge of the input mesh has a T-vertex then it can be used instead of
computing a new vertex for this edge.

In order for this modified Catmull-Clark subdivision to work, we have to make
sure that there is no edge in the mesh that has more than one T-vertex. We
achieve this by applying some more face splits to our quad meshes. Usually
only very few edges have multiple T-vertices.

All our experiments are carried out on a commodity PC with Intel Core2Duo
1.86 GHz processor and 1 GB RAM. Most models are initially remeshed to
10, 000 vertices. The principal direction computation takes 1-2s, the non-linear
vector field smoothing (not optimized) 15-20s, the incremental optimization
15-20s, mesh reconstruction less than a second and finally post processing 2-
3s. The hand model is initially remeshed to 20, 000 vertices and the timings
for each step are 3.21s, 122.31s, 31.73s, 0.72s and 3.37s respectively.

Statistics of the number of faces, the number of quads, the average deviation
of inner angles of quads from π/2 (in degrees) and the planarity measure (in
degrees, explained below) are given in Table 1. From the statistics, it is clear
that our method produces meshes with mostly quads. Since the mesh edges
are optimized to align with principal directions (or other orthogonal fields),
the shape of quads is close to a rectangle, which is shown by the small averaged
deviation angle of corners from π

2
. Moreover, planarity measure is computed

as the difference of averaged sum of inner angles from 2π over all the quads
appear in the model. Experimental results given in the table show that this
measure is very close to 0 for all the models (less than 1.0 degree for most
examples). Most faces are actually close to planar quadrilaterals, thus the
output of our method is suitable as input for generating PQ meshes (quad
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Table 1
Statistics of remeshing results.

model no. of faces no. of quads avg. angle dev. (deg) planarity (deg)

elephant 10450 10349 (99.03%) 2.98 0.266

fertility 9486 9390 (98.99%) 3.83 0.262

tweety 7069 6765 (98.53%) 3.84 0.414

rockerarm 6132 6093 (99.36%) 2.56 0.288

hand 14763 14675 (99.40%) 2.24 0.455

kitten 3916 3829 (97.78%) 4.99 0.441

frog (coarse) 1692 1603 (94.74%) 5.87 1.181

frog (dense) 2842 2641 (92.93%) 7.39 0.913

bahkauv(ω = 0) 2710 2596 (95.79%) 5.57 0.501

bahkauv(ω = 0.1) 3224 3073 (95.32%) 5.12 0.475

Fig. 12. The kitten model. Left: quad-dominant remeshing; middle and right: the
remeshed model undergone one and two times of Catmull-Clark subdivision.

meshes with planar faces) using some variant of [22].

6 Conclusions and Future Work

In this paper, a quad-dominant remeshing method based on incremental op-
timization has been proposed. The approach is conceptually simple, and pro-
duces quad-dominant meshes that show a very good alignment to geometric
features and a rather uniform distribution of mesh vertices. T-vertices are al-
lowed in the output meshes, since they provide more flexibility in order to
improve the alignment and the shape of the faces.
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Some limitations still exist. One is that it is generally difficult to precisely
control the resolution of the output mesh. The number of vertices in the ini-
tial phase of feature sensitive isotropic remeshing does have certain influence.
But an accurate specification of the target number of vertices cannot be ful-
filled. Another limitation is that there might remain some auxiliary irregular
polygons due to singularities in the tangent vector field. The update scheme
is local and may also produce irregular polygons in certain cases. This could
be relieved by additional post filtering driven by some suitable heuristics.

We plan to extend our approach to multiresolution quad remeshing in the
future. Coarse quad-dominant remeshing will be performed first, and finer
meshes can then be computed by Catmull-Clark refinement followed by fur-
ther incremental optimization (see Fig. 12). We expect that multiresolution
approaches may result in improved convergence speed and robustness, too.
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