
10

A Practical Algorithm for Rendering Interreflections with
All-Frequency BRDFs

KUN XU, YAN-PEI CAO, and LI-QIAN MA
Tsinghua University
ZHAO DONG
Cornell University
RUI WANG
University of Massachusetts
and
SHI-MIN HU
Tsinghua University

Algorithms for rendering interreflection (or indirect illumination) effects of-
ten make assumptions about the frequency range of the materials’ reflectance
properties. For example, methods based on Virtual Point Lights (VPLs) per-
form well for diffuse and semi-glossy materials but not so for highly glossy
or specular materials; the situation is reversed for methods based on ray
tracing. In this article, we present a practical algorithm for rendering in-
terreflection effects with all-frequency BRDFs. Our method builds upon a
spherical Gaussian representation of the BRDF, based on which a novel
mathematical development of the interreflection equation is made. This al-
lows us to efficiently compute one-bounce interreflection from a triangle to a
shading point, by using an analytic formula combined with a piecewise lin-
ear approximation. We show through evaluation that this method is accurate
for a wide range of BRDFs. We further introduce a hierarchical integration
method to handle complex scenes (i.e., many triangles) with bounded errors.
Finally, we have implemented the present algorithm on the GPU, achieving

This work was supported by the National Basic Research Project of China
(2011CB302205), the Natural Science Foundation of China (61120106007
and 61170153), the National High Technology Research and Develop-
ment Program of China (2012AA011503), Tsinghua University Initiative
Scientific Research Program and the National Science Foundation (CCF-
0746577). K. Xu is also supported by the CCF-Intel Young Faculty Re-
searcher Program.
Authors’ addresses: K. Xu (corresponding author), Y.-P. Cao, and L.-Q.
Ma, TNList, Department of Computer Science and Technology, Tsinghua
University, Beijing; email: xukun.1985@gmail.com; Z. Dong, Program of
Computer Graphics, Cornell University, Ithaca, NY; R. Wang, School of
Computer Science, University of Massachusetts, Amherst, MA; S.-M. Hu,
TNList, Department of Computer Science and Technology, Tsinghua Uni-
versity, Beijing.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1
(212) 869-0481, or permissions@acm.org.
c© 2014 ACM 0730-0301/2014/01-ART10 $15.00

DOI: http://dx.doi.org/10.1145/2533687

rendering performance ranging from near interactive to a few seconds per
frame for various scenes with different complexity.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing, and
texture; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Re-
alism—Ray tracing

General Terms: Algorithms

Additional Key Words and Phrases: Rendering, interreflections, global illu-
mination, spherical gaussian, all-frequency BRDFs

ACM Reference Format:

Kun Xu, Yan-Pei Cao, Li-Qian Ma, Zhao Dong, Rui Wang, and Shi-Min Hu.
2014. A practical algorithm for rendering interreflections with all-frequency
BRDFs. ACM Trans. Graph. 33, 1. Article 10 (January 2014) 16 pages.
DOI: http://dx.doi.org/10.1145/2533687

1. INTRODUCTION

Accurate rendering of interreflection (or indirect illumination) ef-
fects has been a long-standing challenge in computer graphics re-
search, particularly when the materials vary across different BRDFs,
from diffuse to semi-glossy and to highly glossy. This wide range of
frequency scales poses a great challenge for rendering algorithms.
Many existing algorithms are efficient for only a certain range of
materials. For example, methods based on Virtual Point Lights
(VPLs) [Keller 1997] perform well for diffuse and semi-glossy
materials, but become increasingly inefficient for highly glossy or
nearly specular materials. This is mainly because these methods
represent the source of indirect illumination using a discrete point
set. Such a representation works well with diffuse materials, due
to its nature of low-frequency and smooth filtering. However, when
dealing with highly glossy materials, the number of discrete points
required in VPL-based methods increases significantly, hence re-
ducing the computation performance and increasing the storage
requirement.

On the other hand, methods based on path tracing [Kajiya
1986] are efficient for rendering highly glossy and specular ma-
terials, but perform poorly when the materials become diffuse or
semi-glossy. This is mainly because these methods stochastically
trace view rays upon reflections or refractions from the materials.
Therefore highly glossy materials lead to lower variance in the

ACM Transactions on Graphics, Vol. 33, No. 1, Article 10, Publication date: January 2014.

10:2 • K. Xu et al.

Fig. 1. Our algorithm achieves high-quality rendering of one-bounce interreflections with all-frequency BRDFs. The top row shows caustics on the plane
where the BRDF of the ring varies from highly specular to diffuse. The bottom row shows various types of interreflection effects, such as indirect highlights
(b), diffuse interreflections (c), glossy interreflections (d), and interreflection effects under different types of lights, such as local lights (e) and environment
lights (f). Our algorithm runs at 0.4∼4 fps for all the above scenes. The models in (b)(e) are courtesy of the Stanford 3D Scanning Repository.

computation and lower rendering noise; conversely, nearly diffuse
materials lead to high variance and consequently increase rendering
noise.

These limitations are essentially due to the lack of an algorithm
that can efficiently handle a wide range of different materials, in-
cluding both the diffuse and the specular ends, which is an open
problem in rendering research. As a result, rendering a scene con-
sisting of mixed materials (i.e., at different frequency scales) often
requires a combination of several algorithms, each dealing with
a separate frequency range. Such a rendering scheme not only
increases algorithm complexity, but also is difficult to ensure all
individual algorithms produce consistent results.

In this paper, we present a practical algorithm for rendering in-
terreflection effects with all-frequency BRDFs. Our method builds
upon a Spherical Gaussian (SG) representation of BRDFs [Wang
et al. 2009a]. By changing the width of Spherical Gaussian,
this representation can faithfully reproduce BRDFs over a wide
range of frequency levels (i.e., glossiness). Our main contribu-
tion is a novel mathematical development of the interreflection
equation. Specifically, by representing both BRDFs and lighting
using SGs, we derive a formula for computing one-bounce in-
terreflection from a triangle to a shading point. Using this for-
mula together with a piecewise linear approximation, the inter-
reflection results can be accurately computed. We show through
evaluation that this method performs well for a wide range of
BRDFs.

To account for complex scenes with many triangles in practi-
cal applications, we present a hierarchical integration method with
bounced errors to improve the efficiency of our algorithm. Finally,
we have implemented the whole algorithm on the GPU, achiev-
ing rendering performance ranging from near interactive to a few
seconds per frame for various scenes with different complexity, as
shown in Figure 1.

2. RELATED WORKS

Rendering interreflection (or indirect illumination) effects is a clas-
sic problem in computer graphics. A complete review is beyond the
scope of this article. We refer the readers to Ritschel et al. [2012]
for a comprehensive survey, and this section only covers the most
relevant works. For clarity, we refer to light bouncing surfaces as
reflectors and final shading surfaces as receivers.

Virtual Point Lights (VPLs). An efficient solution for comput-
ing interreflections is by representing the indirect lighting as a set
of Virtual Point Lights (VPLs). As a classic VPL-based technique,
instant radiosity [Keller 1997] creates VPLs by tracing paths from
the primary lights, and uses the shadow map algorithm to estimate
the total incident illumination from all VPLs to a shading point.
To render high-quality complex lighting effects, VPL-based meth-
ods usually demand millions of VPLs, which significantly increases
computation cost. This is also known as the many-light problem. To
address this issue, Walter et al. [2005, 2006] proposed Lightcuts,
which constructs a hierarchical structure of VPLs to reduce the com-
putation complexity to be sublinear. Row-column sampling [Hašan
et al. 2007] and LightSlice [Ou and Pellacini 2011] further reduce
the computation cost by exploiting the low-rank structure of the light
transport matrix. Traditional VPL-based methods are limited to dif-
fuse or semi-glossy reflectors. To address this limitation, Hašan
et al. [2009] presented virtual spherical lights to support glossy
reflectors. Davidovic et al. [2010] separate light transport into low-
rank (global) and high-rank (local) components, and employ dif-
ferent methods for different components to achieve detailed glossy
interreflections. Recently, Walter et al. [2012] proposed bidirec-
tional Lightcuts to reduce the bias in VPL-based rendering, which
is achieved by introducing virtual sensor points on eye paths. While
accurate, these VPL-based methods perform at offline speed, taking

ACM Transactions on Graphics, Vol. 33, No. 1, Article 10, Publication date: January 2014.

A Practical Algorithm for Rendering Interreflections with All-Frequency BRDFs • 10:3

minutes or hours to run. In addition, highly glossy receivers typi-
cally pose a big challenge as they require a very large number of
VPLs.

Photon Mapping and Radiance Caching. Photon map-
ping [Jensen 2001] first traces particles from the primary lights
to construct photon maps; then in the second pass, it performs ray
tracing and estimates indirect illumination on nonspecular receivers
using photon density estimation. By exploiting the GPU, photon
mapping can achieve interactive performance [Purcell et al. 2003;
Wang et al. 2009b; Fabianowski and Dingliana 2009; McGuire and
Luebke 2009; Hachisuka and Jensen 2010]. However, when deal-
ing with highly glossy receivers, the computation cost still increases
enormously as many more samples are required to perform accurate
photon density estimation. Radiance caching [Krivanek et al. 2005;
Gassenbauer et al. 2009] is an effective technique for accelerat-
ing glossy interreflections in Monte Carlo ray tracing, by sparsely
caching and interpolating radiance on glossy surfaces.

General Light Transport. A number of recent efforts attempt
to handle more general and complex light paths that are difficult
for any unbiased methods. Jakob and Marschner [2012] discovered
that sets of light paths contributing to the image naturally form low-
dimensional manifolds in the path space. They exploited this idea to
develop a Markov chain Monte Carlo algorithm that can well handle
difficult specular reflection paths. Hachisuka et al. [2012] presented
a path space extension to combine Monte Carlo path integration
and photon density estimation in a unified framework, which can
robustly render scenes with both glossy reflection and caustics.
Similarly, Georgiev et al. [2012] integrated photon mapping and
bidirectional path tracing into a robust combined algorithm via
multiple importance sampling, which can handle specular-diffuse-
specular lighting effects. Yet, all these methods run at offline speed.

Precomputed Radiance Transfer (PRT). Precomputed Radi-
ance Transfer (PRT) [Sloan et al. 2002] achieves real-time indirect
lighting of static scenes by precomputing light transport matrices
and compressing them using certain basis functions to exploit the
low-dimensional structure of the matrices. Various basis functions
have been employed in PRT, including spherical harmonics [Sloan
et al. 2002], wavelet [Ng et al. 2003], spherical Gaussian [Tsai and
Shih 2006], piecewise basis [Xu et al. 2008], and discrete spherical
function [Zhang et al. 2013]. PRT has been extended to render inter-
reflections with dynamic BRDFs [Sun et al. 2007; Ben-Artzi et al.
2008; Cheslack-Postava et al. 2008; Ren et al. 2013] of static scenes.
Interreflections in dynamic scenes have also been studied [Iwasaki
et al. 2007; Pan et al. 2007], but is limited to low-frequency effects.

Interactive Global Illumination (GI). Dachsbacher and
Stamminger [2005] introduced Reflective Shadow Maps (RSM)
where pixels in the shadow map are considered as indirect light
sources. This method gathers low-resolution indirect lighting from
the RSM and obtains a high-resolution result using screen-space in-
terpolation. While running in interactive framerates, it is limited to
diffuse reflectors and ignores indirect shadows. Afterwards, Dachs-
bacher and Stamminger [2006] presented a method to include non
diffuse reflectors by splatting the radiance contribution from each
pixel, which only supports diffuse receivers. Ritschel et al. [2008]
presented imperfect shadow maps to approximate indirect visibility
from VPLs. However, it is limited to low-frequency effects. Later,
Ritschel et al. [2009] introduced the micro-rendering technique for
high-quality interactive GI. Final gathering at each shading point is
efficiently computed by rasterizing the point-based hierarchy into a
micro-buffer. The micro-buffer can be warped to account for BRDF

importance sampling. As a result it supports receivers with glossy
BRDFs. Nevertheless, the reflector is restricted to contain either
diffuse or low-frequency BRDFs. Laurijssen et al. [2010] proposed
a method to interactively render indirect highlights, accounting for
glossy-to-glossy paths. However, it is not suitable for diffuse re-
ceivers. Recently, Loos et al. [2011] presented modular radiance
transfer for real-time indirect illumination, but this method only
generates low-frequency effects. Crassin et al. [2011] achieved real-
time one-bounce indirect lighting using voxel cone tracing, which
organizes reflectors into a voxel octree, and approximates both the
BRDF and incoming light radiance using Gaussian lobes. Final
gathering at each pixel is performed by tracing a few cones towards
the octree. This method is less precise compared to our method
since it relies on a voxel-based representation instead of the origi-
nal geometry, and is also inefficient for rendering caustics.

Finally, there are many image-based methods for efficiently ren-
dering caustics [Wyman and Davis 2006; Shah et al. 2007], but
these techniques are designed for perfectly specular reflectors.

Reflections/Refractions. Using Fermat’s theorem, researchers
have employed differential geometry [Mitchell and Hanrahan 1992]
and Taylor expansion [Chen and Arvo 2000] to find reflection points
on implicit curved reflectors. In addition, many methods [Ofek
and Rappoport 1998; Roger and Holzschuch 2006] have been pre-
sented to generate specular reflections from triangle meshes. Walter
et al. [2009] proposed an efficient method for finding refracted
connecting paths from triangle meshes. However, these methods
assume perfect reflection/refraction, and it is unclear how to extend
them to handle nonspecular/glossy materials.

Spherical Gaussians (SGs). Spherical Gaussians (SGs) pro-
vide flexible widths and closed-form solutions for computing func-
tion products and integrals. Thus they have been widely adopted
for representing spherical functions, such as environment light-
ing [Tsai and Shih 2006] and BRDFs [Wang et al. 2009a; Iwasaki
et al. 2012a], and used for various applications including normal
map filtering [Han et al. 2007], real-time rendering of rough re-
fractions [de Rousiers et al. 2012] and translucent materials render-
ing [Yan et al. 2012]. Specifically, Wang et al. [2009a] approximate
the normal distribution of a micro-facet BRDF using sums of SGs.
They demonstrated that such an approximation is accurate for repre-
senting a wide range of parametric and measured BRDFs. By utiliz-
ing this property, real-time all-frequency rendering of static scenes
with dynamic BRDFs is achieved. However, this method only con-
siders direct illumination and ignores interreflections. By using a
Summed-Area Table (SAT), Iwasaki et al. [2012b] introduced In-
tegral Spherical Gaussian (ISG), which can efficiently evaluate the
integral of an SG over an axis-aligned spherical rectangle. Hence,
using ISG, the product integral of the visibility function and an SG
can be evaluated in real time, although for direct illumination only.
Based on a piecewise linear approximation of SG, Wang et al. [2013]
proposed an analytic method to evaluate the product integral of two
SGs over a visible region. Recently, Xu et al. [2013] proposed
anisotropic spherical gaussians, which extend SGs to efficiently
represent anisotropic spherical functions while still retaining the
desirable properties of SGs.

3. BACKGROUND AND ALGORITHM OVERVIEW

3.1 Background

We first review the necessary background of the Spherical Gaussians
(SG) representation and BRDF approximation.

ACM Transactions on Graphics, Vol. 33, No. 1, Article 10, Publication date: January 2014.

10:4 • K. Xu et al.

SG Definition. A Spherical Gaussian (SG) is a function of unit
vector v and is defined as

G (v; p, λ, c) = c · eλ(v·p−1), (1)

where unit vector p, λ, and c represent the center direction, sharp-
ness, and the scalar coefficient of the SG, respectively. We refer to
the width of an SG as the inverse of the sharpness. For simplicity,
we denote G (v) = G (v; p, λ, c) and G (v; p, λ) = G (v; p, λ, 1).
SGs have many known properties. For example, the integral of SG
has analytic solutions, and the product of two SGs is still an SG.
These properties are explained in detail in the Appendix.

BRDF Approximation. A BRDF is commonly represented as
the sum of a diffuse component and a specular component:

ρ (i, o) = kd + ks ρs (i, o) , (2)

where i, o are the incoming and outgoing directions; kd , ks are the
diffuse and specular coefficients. As demonstrated in Wang et al.
[2009a], the specular component can be well approximated by a
sum of SGs:

ksρs (i, o) ≈
n∑

j=1

G
(
i; oj , λj , cj

)
,

where oj (which is calculated as 2(o ·nj)nj −o) , λj , and cj are the
center, sharpness, and coefficient of the j -th SG, respectively, and
nj is the center of the j -th SG in the Normal Distribution Function
(NDF) approximation [Wang et al. 2009a]. Note that the diffuse
component kd can be treated as a special SG with zero sharpness:
kd = G (i; 2 (o · n) n − o, 0, kd). Therefore the BRDF defined in
Eq. (2) can be rewritten as the sum of (n + 1) SGs:

ρ (i, o) ≈
n∑

j=0

G
(
i; oj , λj , cj

)
, (3)

where λ0 = 0, c0 = kd , and o0 = 2 (o · n) n − o. As shown in
Wang et al. [2009a], the specular component of commonly used
parametric BRDFs (e.g., the Blinn-Phong and the Cook-Torrance
models) can be accurately approximated by one single SG. For
anisotropic or measured BRDFs, a small number of SGs (typically
3–7) suffice to achieve accurate approximations.

3.2 Algorithm Overview

Our method aims at accurately and efficiently computing interreflec-
tions with all-frequency BRDFs represented by SGs.

In Section 4, we describe how to efficiently compute one-bounce
interreflections from a single triangle (reflector) to a single shading
point (receiver). We assume the lighting is distant, and can be rep-
resented using an SG (referred to as an SG light). We also represent
the BRDFs of both reflector and receiver using SGs as described in
Eq. (3). We then derive a novel analytic formula, combined with a
piecewise linear approximation, to accurately compute the render-
ing integral of interreflections. This SG-based formula forms the
foundation of our method.

Using the newly derived formula alone to compute interreflection,
however, would only work for simple scenes with a small number
of triangles. For complex scenes containing more than thousands
of triangles, brute-force iteration over all triangles to evaluate the
formula would be too costly. To address this issue, we propose a
hierarchical integration method to handle complex scenes. Specif-
ically, we organize all triangles into a binary tree, where each tree
node represents a subset of triangles. We further derive formulas
to efficiently compute the one-bounce interreflection reflected by a

Fig. 2. Light path of one-bounce interreflection.

node (i.e., a subset of triangles), and to estimate the error bound
of this approximation. Guided by the error bound, for each shad-
ing point, we find a reflector cut of the binary tree to approximate
the sum of interreflections from all triangles. The reflector cut is
obtained through iterative refinement until the largest error on the
cut is small enough or the number of nodes exceeds a predefined
threshold. The hierarchical integration scheme is explained in detail
in Section 5.

Note that all preceding computations assume no occlusion be-
tween reflectors and receivers. To account for indirect visibility, we
use a variant of imperfect shadow maps [Ritschel et al. 2008] to
compute the average visibility from a node to a shading point. This
is explained in Section 6.1. More implementation details will be
discussed in Section 6.2.

4. ONE-BOUNCE INTERREFLECTION MODEL

We start by deriving the one-bounce interreflection model for a
single triangle reflector under distant lighting, as shown in Figure 2.
Assuming the incident distant lighting l can be represented by an
SG in the form of G (i; il , λl) (Gl (i) for short), given a triangle T
with normal nT (referred to as the reflector) and a shading point
x with normal nx (referred to as the receiver point), we aim to
compute the outgoing radiance from x to the view direction o due
to the reflection of the SG light l from triangle T towards x. Note
that all directions are defined in the global frame.

To simplify the derivation, for now we assume there is no occlu-
sion between the light, the reflector, and the receiver (how to deal
with indirect visibility will be discussed in Section 6.1). We also
ignore texture data on the reflector, assuming that the reflector has
a uniform BRDF. How to incorporate texture will be explained in
Section 5. The one-bounce radiance from x towards o can then be
computed as an integration over a spherical triangle:

Lx(o) =
∫

�T

L(r)ρx (−r, o) max (−r · nx, 0) dr, (4)

where r is the direction from a point y on the reflector triangle T to
x, and the integral is over the spherical triangle �T subtended by T;
ρx and nx are the BRDF and normal direction at the receiver point
x; L(r) is the reflected radiance from y to x, defined as

L(r) =
∫

�

Gl (i) ρT (i, r) max (i · nT , 0) di, (5)

where ρT , nT are the BRDF and normal of triangle T , respectively,
and Gl (i) = G (i; il , λl) is the incident SG light as described before.

4.1 Evaluating the Reflected Radiance L(r)

To evaluate the reflected radiance L(r) defined in Eq. (5), we first
represent the BRDFρT of the triangleT as a sum of SGs (as shown in

ACM Transactions on Graphics, Vol. 33, No. 1, Article 10, Publication date: January 2014.

A Practical Algorithm for Rendering Interreflections with All-Frequency BRDFs • 10:5

Eq. (3)): ρT (i, r) ≈ ∑n

j=0 G(i; rj

T , λ
j

T , c
j

T). For notation simplicity,
in the following, we omit the summation

∑n

j=0 (·) over index j and
rewrite the BRDF approximation as ρT (i, r) ≈ G (i; rT , λT , cT)
(GT (i) for short). This yields

L(r) ≈
∫

�

Gl (i) GT (i) max (i · nT , 0) di.

Then, since the product of Gl (i) and GT (i) is still an SG (see
Appendix B), and also the cosine factor max (i · nT , 0) is very
smooth, we assume that the cosine factor is a constant and pull
it out of the integral [Wang et al. 2009a]; Xu et al. [2011] (see
Appendix D):

L(r) ≈ max (iT (r) · nT , 0)
∫

�

Gl (i) · GT (i) di, (6)

where iT (r) = (λl il + λT rT) / ‖λl il + λT rT ‖ is the center direction
of the product SG. The product integral of two SGs can further be
well approximated by a single SG (see Appendix C):∫

�

Gl (i) · GT (i) di ≈ cR (r) exp (λR (rT · il − 1)) , (7)

where cR (r) = 2πcT / ‖λl il + λT rT ‖, λR = λT λl/ (λT + λl). Be-
sides, the dot product rT · il satisfies:

rT · il = (2 (r · nT) nT − r) · il = r · (2 (il · nT) nT − il) = r · iR,

where iR = 2 (il · nT) nT − il . Hence the integral of the product SG
can be rewritten as∫

�

Gl (i) · GT (i) di ≈ cR (r) exp (λR (r · iR − 1))

= cR (r) G (r; iR, λR) .

By substituting the previous equation to Eq. (6), the reflected radi-
ance L(r) can finally be evaluated as

L(r) ≈ F (r)G (r; iR, λR) , (8)

where F (r) = cR(r) max (iT (r) · nT , 0) is a function much smoother
than the SG. Thus the reflected radiance L(r) can be efficiently
approximated as a linear sum of the product of a smooth function
and an SG (Eq. (8)). Note that the main approximation here is the
product integral approximation in Eq. (7), that is, approximating the
product integral of two SGs again using an SG. This approximation
will produce large error only when the sharpness of both SGs is
small. Such cases can be avoided by restricting the sharpness of the
SG light. Detailed derivation and analysis of the product integral
approximation can be found in Appendix C.

4.2 Evaluating the Interreflection Radiance Lx(o)

To finally determine the one-bounce outgoing radiance Lx(o) de-
fined in Eq. (4), similar to before, we represent the BRDF ρx

at the receiver point x as a sum of SGs (as shown in Eq. (3)):
ρx(−r, o) ≈ ∑n

j=0 G
(
r; −oj

x, λ
j
x, c

j
x

)
. For denotation simplicity,

we again omit the summation
∑n

j=0 (·) over index j in what follows
and substitute the reflected radiance L(r) (Eq. (8)) into Eq. (4):

Lx(o) ≈
∫

�T

H (r)G (r; iR, λR) G (r; −ox, λx, cx) dr,

where H (r) = F (r) · max (−r · nx, 0) is again a smooth function.
Since the product of two SGs is still an SG, the preceding equation
can be rewritten as

Lx(o) ≈
∫

�T

H (r)G (r; rh, λh, ch) dr,

Fig. 3. Integrating an SG over a spherical triangle �T .

where G (r; rh, λh, ch) is the product of the two SGs (the formulas
for rh,λh and ch can be found in Appendix B). Since function H is
intrinsically smooth, we can pull it out of the integral and rewrite
the aforesaid equation as

Lx(o) ≈ H (r′
h)

∫
�T

G (r; rh, λh, ch) dr. (9)

The representative direction r′
h, which is used for querying the

constant value of function H , is set to be a linear interpolation of
the SG’s center direction rh and the direction from the origin to
the center of the spherical triangle �T . The interpolation weight is
determined by the area size of �T and SG width, which determines
the spanned area of SG. Such an interpolation method is attributed to
the fact that the optimal choice of the representative direction varies
in different scenarios. For example, if the area size of �T is much
larger than the area spanned by SG (e.g., SG just spans a small area
inside the spherical triangle), the best choice of the representative
direction is the SG center; and conversely, if the spanned area of SG
is much larger, the best choice is the triangle direction. The formula
of r′

h is described in Appendix G.
The remaining question in Eq. (9) is how to evaluate the integral

of an SG over a spherical triangle subtended by the planar triangle
T . Under normal circumstances, this integral does not have a closed-
form solution. Fortunately, as shown in Section 4.3, this integral can
be reduced to a 1D integral, which can then be accurately evaluated
using a piecewise linear approximation.

4.3 Integrating an SG over a Spherical Triangle

Given an SG G (v; p, λ), we want to derive how to integrate it over
a spherical triangle �T , in other words, compute

∫
�T

G (v; p, λ) dv.
As shown in Figure 3(a), the local frame is defined by setting the
SG center direction p as the zenith direction. Denote the origin of
the unit sphere as O and the zenith point as P , and the vertices of
the spherical triangle �T as A, B, and C, respectively. It is obvious
that the spherical triangle �T satisfies

�T = ��ABC = ��PBC − ��PAB − ��PCA.

The plus/minus sign may vary depending on the relative positions
of the zenith point P and spherical triangle ��ABC (e.g., when
P is inside ��ABC, ��ABC = ��PBC + ��PAB + ��PCA). Without
loss of generality, we first consider how to evaluate the integral
over spherical triangle �PBC:

∫
��PBC

G (v; p, λ) dv. Relying on the
coordinate system defined in Figure 3, we can rewrite the integral
using the spherical coordinates to simplify the derivation.

As shown in Figure 3(b), we denote the azimuthal angles of
point B and C as φb and φc, respectively, the intersection point of
an arbitrary direction v with the unit sphere as V , the polar and

azimuthal angle of v as (θ, φ). Since both arcs
�

PB and
�

PC are

ACM Transactions on Graphics, Vol. 33, No. 1, Article 10, Publication date: January 2014.

10:6 • K. Xu et al.

longitude arcs, we can rewrite the integral in spherical coordinates
by integrating the azimuthal angle from φc to φb∫

��PBC

G (v) dv =
∫ φb

φc

(∫ θm(φ)

0
G (v; p, λ) sin θ dθ

)
dφ

=
∫ φb

φc

(∫ θm(φ)

0
eλ(cos θ−1) sin θ dθ

)
dφ,

where θm(φ) is the maximal allowed polar angle when the azimuthal
angle is φ. As shown in Figure 3(b), it is the polar angle of the

intersection point M of arc
�

BC and the longitude arc
�

PV . It is easy
to find out that the inner integral of polar angle θ has an analytic
solution, so that the previous equation can be rewritten as∫

��PBC

G (v) dv =
∫ φb

φc

(
− 1

λ
eλ(cos θ−1)|θm(φ)

0

)
dφ

= 1

λ

∫ φb

φc

(
1 − eλ(cos θm(φ)−1)

)
dφ.

Through some further derivations using geometric properties, we
found that the cosine of the maximal allowed polar angle cos θm(φ)
can be written as (proof can be found in Appendix H):

cos θm(φ) = sin(φ + φ0)/
√

m2 + sin2(φ + φ0), (10)

where the two parameters φ0 and m can be calculated through
the spherical coordinates of the two vertices B and C. Putting
everything together, the integral of G (v) can be rewritten as

∫
��PBC

G (v) dv = φb − φc

λ
− 1

λ

∫ φb

φc

e
λ

(
sin(φ+φ0)√

m2+sin2(φ+φ0)
−1

)
dφ

= φb − φc

λ
− 1

λ

∫ φ2

φ1

fm,λ(φ) dφ, (11)

where φ1 = φc + φ0, φ2 = φb + φ0, and the 1D function fm,λ(φ) is
defined as

fm,λ(φ) = exp

[
λ

(
sin φ√

m2 + sin2 φ
− 1

)]
. (12)

Thus the original double integral has been simplified to a 1D
integral through analytical derivations. Since

∫
fm,λ(φ) dφ does not

have an analytic solution, we need to evaluate it numerically. A
straightforward solution is to precompute a 3D table of preintegrated
values, with respect to the three parameters (m, λ, φ). However,
the value of

∫
fm,λ(φ) dφ in fact changes rapidly when parameter

m is very small, and thus using a precomputed table with finite
resolution can lead to severe artifacts. To address this issue, shortly
we introduce a nonuniform piecewise linear approximation, which
works very well for accurate evaluation of

∫
fm,λ(φ) dφ.

Figure 4 shows the plots of the 1D function fm,λ(φ) under differ-
ent parameter settings. Observing the overall shape of the function, it
is noticeable that the function curve changes smoothly with respect
to some parameters while sharply with respect to other parameters.
Hence, we can approximate fm,λ(φ) by a nonuniform piecewise lin-
ear function. First, we empirically find 4 knots (as highlighted in
red in Figure 4) to partition the function in the range φ ∈ [0, π] into
5 initial segments. The details of how to find the knots are given
in Appendix I. Next, we split the integral range [φ1, φ2] into a few
intervals using the selected knots as splitting points. For example,
if no knot lies in the range [φ1, φ2], no splitting is needed; if one
knot at φk lies in the range [φ1, φ2], we split it into two intervals
[φ1, φk] and [φk, φ2]. Finally, we approximate the function in each

Fig. 4. Plot of the 1D function fm,λ(φ) and its nonuniform knots (i.e.,
sample points) at different parameter settings.

interval using a uniformly sampled piecewise linear function with
K partitions. We set K = 3 in the implementation. Due to the
way the knots are selected, the function within each interval is very
smooth. Hence, such an approximation works very well, and the
related evaluation is presented in Section 7.1.

Summary. In this section, we have derived a formula for computing
one-bounce interreflection from a triangle to a shading point due
to a distant SG light (Eq. (4)). Further, we demonstrated that this
formula can be efficiently evaluated using a nonuniform piecewise
linear approximation of a 1D function (Eq. (12)).

5. HIERARCHICAL STRUCTURE

Utilizing the previously derived formula, for simple scenes with
small number of triangles, we can directly sum up the interreflection
contributions from all triangles to a shading point. However, the
cost is linear to the number of triangles, thus this approach would
perform poorly for complex scenes with many triangles.

Inspired by previous hierarchical integration methods, such as hi-
erarchical radiosity [Hanrahan et al. 1991], Lightcuts [Walter et al.
2005] and the micro-rendering technique [Ritschel et al. 2009],
we propose a hierarchical scheme to efficiently sum up the con-
tributions from all triangles in the scene. Specifically, as shown in
Figure 5(a), we organize the scene triangles into a binary tree. The
leaf nodes are individual triangles, and the interior nodes are subsets
of triangles, each owning the triangles that belong to its two child
nodes. The binary tree is built in a top-down fashion during the
scene initialization step. Starting from the root node, which owns
all the triangles, each node is recursively split into two child nodes
until reaching the leaf node.

To define the splitting criterion, we first define a 6D feature
(I, mn) for each triangle, where I is the triangle center (the scene’s
bounding box is normalized into the range [−1, 1]) and n is the
triangle normal. m is a scalar weight that controls the relative im-
portance of I and n, and we usually set m = 5. Next, to split a node,
we compute the principal direction (using PCA) of the 6D features
of all triangles belonging to that node, and perform a median split
along the principal direction. This ensures that the splitting is done
along the direction of maximum variance. The result of the median
split produces two child nodes with equal number of triangles. For
nontextured scenes, each node stores the average center and normal
of its triangles, as well as the bounding box, the bounding normal
cone, and the total triangle area, as shown in Figure 5(a). To deal
with textured scenes, each node additionally stores the average and
the largest/smallest texture color values of its triangles, which are
obtained by enumerating over the pixels covered by the projected
triangles in the texture space. All these stored terms are used later
to approximate the reflected radiance from the node to a receiver

ACM Transactions on Graphics, Vol. 33, No. 1, Article 10, Publication date: January 2014.

A Practical Algorithm for Rendering Interreflections with All-Frequency BRDFs • 10:7

Fig. 5. Hierarchical structure and error bound estimation. (a) a binary tree
of triangles showing the bounding box and normal cone stored at each node;
(b) an example of reflector cut; (c) direction cone; (d) computing central
cone from the normal cone.

point (Section 5.1), and to evaluate the associated upper bound of
its error (Section 5.2).

During the rendering stage, we employ a similar strategy as in the
Lightcuts [Walter et al. 2005] to efficiently evaluate the one-bounce
interreflections, the pseudocode of which is given in Algorithm 1.
For each receiver point, we start from an initial cut that contains
only the root node of the binary tree, and then iteratively refine it.
At each iteration, we pick the node with the highest error bound and

ALGORITHM 1: Pseudocode of interreflection computation
using reflector cut

for each shading pixel x do
compute radiance LR from root node R (Sec. 5.1) ;
compute error bound ER for root node R (Sec. 5.2) ;
initialize the reflector cut C containing only root node R;
initialize the total unshadowed radiance Lu = LR ;
while cut size < 1000 do

pick the node N with the largest error bound EN ;
if EN < 1% × Lu then break remove node N from
cut C, and update Lu = Lu − LN ;
for each child node M of node N do

if M is leaf node then
compute LM from triangle M (Sec. 4) ;

else
compute LM from node M (by Sec. 5.1) ;

end
insert node M to cut C, and update
Lu = Lu + LM ;
compute error bound EM for node M (Sec. 5.2) ;

end
end
Initialize the shadowed interreflected radiance Ls = 0;
for each node N in the cut C do

query the indirect visibility of node N ;
modulate radiance from N by visibility and add to
Ls ;

end
end

replace it by its two child nodes. The iteration stops either when
the largest error bound falls below a threshold (in our case, 1% of
the total estimated reflected radiance), or a predefined maximum
number of nodes in the generated cut is reached (1000 in our case).
When the iteration terminates, we refer to the resulting cut as the
reflector cut (Figure 5(b)), and the number of nodes in the reflector
cut as cut size. Note that if any leaf node is reached during the
iteration, we can directly use the interreflection model for a single
triangle reflector to accurately evaluate its one-bounce contribution.
However, this strategy only works well for nontextured scenes since
our derivations in Section 4 assume that the reflector triangle has
a uniform BRDF across it without texture variations. Hence, for
any leaf node with a textured triangle, we still compute its error
bound using its stored texture information. If the error bound is
larger than a predefined threshold, we subdivide this triangle into
4 subtriangles using

√
3−subdivision [Kobbelt 2000], and use the

4 subtriangles to further evaluate one-bounce contributions. Such
a dynamic subdivision strategy can be applied iteratively until the
estimated error bounds of the subdivided triangles are sufficiently
small. For a subdivided triangle, the terms such as its averaged center
and bounding box are calculated on-the-fly, the largest/smallest
texture values are inherited from its parent, and the averaged texture
value is simply set as the texture value at the subdivided triangle
center.

Next, we will explain in detail how to evaluate the estimated one-
bounce radiance reflected by a node (Section 5.1) and the associated
error bound (Section 5.2).

5.1 Estimating the Interreflected Radiance

Given a node N and a receiver point x, we estimate the radiance
from x towards the view direction o, due to the reflection of an
SG light G (i; pl , λl) from node N . To begin, we denote the center
position of node N as IN , its average triangle normal as nN , its
triangle area as 	N , and its average texture color value as tN . We
can reuse Eq. (9) derived for a single triangle, only changing the
integration area from a spherical triangle �T to a spherical region
�N spanned by all the triangles belonging to node N .

Lx(o) ≈ tN · H (r′
h)

∫
�N

G (r; rh, λh, ch) dr. (13)

However, since the shape of the spherical region �N is unknown
(it is a spherical region subtended by a set of triangles), we can-
not directly apply the piecewise linear approximation described in
Section 4. To address this issue, we rewrite the integral of an SG
over spherical region �N as the SG multiplied by a binary mask
integrated over the whole sphere:∫

�N

G (r; rh, λh, ch) dr =
∫

�

G (r; rh, λh, ch) V�N
(r) dr,

where � denotes the whole sphere, V�N
(r) is a binary function that

indicates if a direction r is inside �N . We further approximate the
binary mask V�N

using an SG: V�N
(r) ≈ G (r; rN, λN, cN) (GN (r)

for short). The center direction rN is set to be the unit direction from
node center IN to the receiver point x; the sharpness and coefficient
are determined by preserving the function energy and variance (see
Appendix E): λN = 4π/‖�N‖, cN = 2. Here ‖�N‖ is the solid
angle computed as

‖�N‖ ≈ (N · max (rN · nN, 0)) /d2
N, (14)

where dN is the distance from the receiver point x to node center
IN . Hence, the one-bounce interreflected radiance Lx(o) in Eq. (13)

ACM Transactions on Graphics, Vol. 33, No. 1, Article 10, Publication date: January 2014.

10:8 • K. Xu et al.

can be approximated as

Lx(o) ≈ t̄N · H (r′
h)

∫
�

G (r; rh, λh, ch) GN (r) dr. (15)

Note that, in the preceding equation, the product integral of two
SGs has an analytic solution (see Appendix C) and hence Lx(o) can
be easily computed.

Summary. By approximating the binary function V�N
using an

SG, we can efficiently approximate the one-bounce interreflected
radiance Lx(o) by an analytic solution (Eq. (15)). However, we note
that this approximation will produce large errors in the case of in-
tegrating SGs with small widths over nodes with large solid angles.
Thus we need to estimate the error bound of this approximation
to ensure its accuracy. If the estimated error of the current node is
larger than a predefined threshold, we replace it by its two child
nodes to reduce the overall approximation error.

5.2 Estimating the Error Bound

Given the bounding box and the normal cone of a node, we
aim to evaluate the upper bound of the error in computing
Lx(o) using Eq. (15). Denoting the largest and smallest val-
ues of the SG function G (r; rh, λh) in region �N as gmax and
gmin, the largest and smallest possible solid angle of ‖�N‖ as
‖�‖max and ‖�‖min, and the largest and smallest texture color values
of node N as tmax and tmin, obviously the error can be conservatively
bounded by H (r′

h) · (tmax · gmax · ‖�‖max − tmin · gmin · ‖�‖min).
Note that the bounds on texture color values [tmin, tmax] have al-
ready been stored in each node. In the following, we will explain
how to more accurately estimate the bounds on the solid angles and
the SG function values, respectively.

Bounds on the solid angle. Based on Eq. (14), we can compute
the bounds on the solid angle ‖�N‖ by estimating the bound of the
distance dN from the receiver point x to the node, and the bound
of the dot product rN · nN . Given the bounding box of the node, as
shown in Figure 5(c), it is trivial to compute the lower and upper
bounds of dN , which are denoted as dmin and dmax, respectively.
The spherical region �N spanned by the node as observed from the
receiver point can be bounded by a cone, which is referred to as
direction cone. Note that direction rN is also bounded within the
direction cone. Since the normal direction nN is already bounded
by the normal cone of the node, we can easily compute the lower
and upper bounds of the angle between rN and nN using these two
cones. We denote the lower and upper bounds of the angle as θmin

d and
θmax
d , respectively. Hence, the lower and upper bounds of the solid

angle ‖�N‖ can be computed as: ‖�‖min = 	N · cos θmax
d /d2

max,‖�‖max = 	N · cos θmin
d /d2

min. More details on how these bounds
are derived can be found in Appendix J.

Bounds on the SG function values. Estimating the bounds
on the SG function G (r; rh, λh) requires computing the bound of
the dot product (r · rh). The direction r is naturally bounded by the
direction cone, since it is restricted in the integral area �N . To find
a bounding cone for the SG central direction rh, recall the formula
for defining rh (Eq. (9)): rh is calculated from another direction iR ,
while iR is computed using the normal nN (iR = 2 (il · nN) nN − il ,
see derivations before Eq. (8)). Hence, as shown in Figure 5(d),
we can first determine a bounding cone for direction iR based on
the normal cone, and then find a bounding cone for direction rh,
which is referred to as central cone. Finally, the lower and upper
bounds of the angle between direction r and the SG central direction
rh can be computed from the direction cone and the central cone,

which are denoted as θmin
r and θmax

r , respectively. Putting everything
together, the lower and upper bounds of the SG values are: gmin =
exp(λh(cos θmax

r − 1)) , and gmax = exp(λh(cos θmin
r − 1)).

6. IMPLEMENTATION

6.1 Visibility

So far the interreflection computation described in Section 4 and
Section 5 does not account for occlusion. In this section, we
describe how to handle visibility properly in our method. We
use the term direct visibility to denote the visibility from an SG
light to the reflector, and indirect visibility to denote the visibility
from the reflector to the receiver. To evaluate the direct visibility,
we compute 16 sample points uniformly distributed on the reflector
triangle and the shadow value for each point is computed by query-
ing the Variance Shadow Maps (VSM) [Donnelly and Lauritzen
2006] of the SG light. The average shadow value of all the sample
points is then stored as the direct visibility for each reflector triangle.
As for the indirect visibility, we adopt a variant of the Imperfect
Shadow Maps (ISM) [Ritschel et al. 2008]. Specifically, during
the scene initialization stage, we select 200 random sample points
on each model to represent the Virtual Light (VL) positions and
capture ISMs for them at runtime. For each node in the binary tree
of the model, its three closest VLs are computed and stored. Then
for each node we need to find how its value will be linearly interpo-
lated from the three closest VLs. To do so, we project the center of
the node onto the triangle plane spanned by the three closest VLs,
and compute the weights by the barycentric coordinates of the pro-
jected position. During the rendering stage, an ISM with resolution
128 × 128 is generated for each VL. Then, after the reflector cut is
determined, the indirect visibility for each node in the cut is inter-
polated from the ISMs of its three closest VLs using the associated
weights. This indirect visibility approximation will be evaluated in
Section 7.1.

6.2 Implementation Details

Algorithmic Pipeline. The implementation of our algorithm
consists of an initialization stage which loads the scene and builds
the binary tree structure, and a runtime rendering stage which im-
plements the one-bounce interreflection algorithm.

In the scene loading stage, we first build a binary tree for each
model (i.e., a triangle mesh) following the algorithm described in
Section 5. If the number of triangles in a model is less than 200, we
skip the tree building step for that model since it is more efficient
to just iterate over all triangles of the model to calculate indirect
illumination. This initialization stage only takes a few seconds and
does not need to be performed again unless a model deforms.

During the runtime rendering stage, we first evaluate the direct
illumination in a separate pass. To compute interreflections, we
need to determine a reflector cut (Section 5) for each shading pixel.
We follow Cheslack-Postava et al. [2008] to compute a per-vertex
reflector cut, which is then interpolated at each shading pixel using
the cut merging algorithm, which makes use of the per-vertex cut
stored at the nearby vertices around a pixel. Finally, we compute
interreflection for each shading pixel using the merged reflector cut
in a pixel shader.

Lights. Our method naturally supports all-frequency incident
lighting, because spherical Gaussian has varying widths which can
represent both high- and low-frequency lights. Following Wang
et al. [2009a], different types of lights, including distant environ-
ment lights, distant area lights, and local spherical lights, can be

ACM Transactions on Graphics, Vol. 33, No. 1, Article 10, Publication date: January 2014.

A Practical Algorithm for Rendering Interreflections with All-Frequency BRDFs • 10:9

easily integrated into our algorithm. An environment light can be
fitted into a small number of SG lights using the method presented
in Tsai and Shih [2006]. As shown in Wang et al. [2009a], for a dis-
tant area light with direction pl , solid angle ‖�l‖, and intensity c, the
approximated SG light is given by: L(i) ≈ G (i; pl , 4π/‖�l‖, 2c).
For a local spherical light located at position l with radius r and
intensity c, the approximated SG light towards surface position y is
given by: L(i) ≈ G

(
i; (l − y) /‖l − y‖, 4‖l − y‖2/r2, 2c

)
.

Cut Selection. To improve performance, we implement the per-
vertex cut selection algorithm using CUDA. The cut selection algo-
rithm requires a priority queue structure to store tree nodes, since it
needs to pick the node with the largest error and to replace it with its
two children. However, an accurate priority queue implementation
using CUDA is not yet efficient, thus we employ an approximate
priority queue. Specifically, in our implementation, we manage 5
ordinary queues with different priorities. The queue with the i-th
priority stores nodes whose errors are larger than 25−i%. For ex-
ample, the first queue stores nodes with errors larger than 16%, the
second queue stores nodes with error larger than 8%, and so on.
At each step, we pick the front node in the queue with the highest
priority (e.g., pick node from the first queue if it is nonempty, oth-
erwise pick a node from the second queue, and so on) and split it
into two child nodes. The two child nodes are then pushed into the
queues with the corresponding priorities according to their errors.
Note that, for simple scenes without a tree structure, the per-vertex
cut selection is not necessary.

Final Shading. The final one-bounce interreflection is evalu-
ated in a pixel shader. At each pixel, the required data of its reflector
cut, including position, normal, BRDF, and direct visibility of each
cut node, as well as the SG lights, are stored in textures and passed
into the pixel shader. Hence, the total contributions from all nodes
in the cut to the pixel can be computed by iterating through every
cut node. The nonlinear piecewise linear approximation (Section 4)
for reflector triangles is used for leaf nodes, while the node approx-
imation (Eq. (15)) is used for interior nodes. The contribution of
each node is modulated by both direct and indirect visibility. The
direct visibility is obtained as a pass-in parameter of each node,
and the indirect visibility is computed by interpolating the queried
shadow values using the ISMs.

7. EVALUATIONS AND RESULTS

In this section, we provide a comprehensive evaluation of both the
accuracy and the performance of our method. Furthermore, we com-
pare our method with the state-of-the-art interreflection rendering
techniques to demonstrate its effectiveness and versatility.

7.1 Accuracy of Our Method

For validation, we first examine the accuracy of our one-bounce
interreflection model (Section 4) in handling all-frequency isotropic
BRDFs as well as anisotropic BRDFs. Next, we evaluate how the
choices of the error bound threshold employed in the reflector cut
(Section 5) impact the rendering accuracy. Finally, we examine the
error of the visibility approximation (Section 6.1).

Accuracy of our interreflection model. In Figure 6, we show
the results of our one-bounce interreflection model using piece-
wise linear approximation (Section 4.3) with varying glossiness of
reflector BRDFs. We further compare our results with those gener-
ated by a VPL-based method [Keller 1997], and with path-traced
reference. The test scene consists of a single equilateral triangle
placed perpendicular to the receiver plane, and a directional light at

Fig. 6. Comparisons of one-bounce interreflection with varying glossy
shininess of BRDFs. In the top row, the reflector triangle is diffuse; from
row 2 to row 5, the reflector triangle has a Blinn-Phong BRDF with glossy
shininess of n = 10, 100, 1000, 10000 respectively. Columns (a), (b), and
(c) show results generated by our model with different number of piecewise
linear partitions K = 1, K = 3, and K = 9; column (d) shows the results
using VPL-based method with 256 VPLs; column (e) gives the ground-truth
reference.

a 45 degree angle to the ground plane. The ground (receiver) plane
has a Lambertain BRDF and we only show the interreflection (i.e.,
no direct illumination) from the triangle to the plane in this figure.
From the top row to the bottom row, the BRDF of the reflector
triangle varies from purely diffuse to highly specular. Note that our
result with partition number K = 3 (column (b)) already matches
the reference image (column (e)) very well for all tested BRDFs.
In contrast, the VPL-based method (column (d)) with 256 VPLs
only works well for low-frequency BRDFs, while producing severe
artifacts when the shininess parameter n ≥ 10. This is mainly due to
the limited number of VPLs, which has to be enormously increased
for highly glossy BRDFs.

In Figure 7, we further compare our results to path-traced ref-
erence with varying glossiness of both the reflector and receiver
BRDFs. The scene contains a box placed on a plane with two SG
lights. From left to right, the BRDF of the box changes from diffuse
to highly glossy; while from top to bottom, the BRDF of the plane
varies from diffuse to highly glossy. The comparison of our result
(left) with the reference (right) clearly shows that the interreflection
results (with all-frequency BRDFs) produced by our method are
visually indistinguishable from the references.

We further verify the ability of our method in handling anisotropic
BRDFs. As shown in Figure 8, the scene contains a diffuse plane and
a disk with an Ashikhmin-Shirley anisotropic BRDF (anisotropic
ratio of 4:1). Following Wang et al. [2009a], we approximate
the anisotropic BRDF using 7 SGs. Figure 8(a) and (c) show

ACM Transactions on Graphics, Vol. 33, No. 1, Article 10, Publication date: January 2014.

10:10 • K. Xu et al.

Fig. 7. Comparisons of one-bounce interreflection with varying glossiness
of both the reflector and receiver BRDFs.

Fig. 8. Results with anisotropic BRDFs.

Fig. 9. Evaluation of the error bound threshold. The threshold and average
cut size are given in the caption of each subfigure.

the rendering results with two different local frames of the disk,
respectively; and the reference results are given accordingly in
(b) and (d), respectively. Note that our results only have subtle dif-
ferences from the references, which demonstrates that our method
can deal with complex anisotropic BRDFs, as long as the BRDFs
can be accurately approximated by a mixture of SGs.

Error bound threshold. We further evaluate our choice of the
error bound threshold. Since smaller thresholds result in better-
quality but slower framerates, a trade-off should be made. Figure 9
shows the results using different thresholds, including 1%, 5%, and
10%. Using a larger threshold such as 5% gives better performance
(refer to Figure 9(b), which has an average cut size of 82 and average
fps of 2.3), but it also produces visible artifacts around the contact
area between the box and the plane. Reducing the threshold to 1%
eliminates these artifacts, but leads to larger average cut size of 132
and average fps of 1.2. In our experiments, we find that 1% is an
optimal choice, and all the experimental results are generated by
setting the error bound threshold to be 1%.

Fig. 10. Evaluation of visibility using different numbers of virtual lights.
(a) is result without considering indirect visibility; (b), (c) are results with
100 and 200 virtual lights, respectively; (d) is the path-traced reference.
Note that with 200 VLs our result matches the reference very well.

Fig. 11. Comparison to Integral Spherical Gaussian (ISG).

Visibility approximation. Figure 10 evaluates the indirect vis-
ibility approximation described in Section 6.1. Note that our result
with 200 VLs (Figure 10(c)) matches the reference in (d) very well.

7.2 Comparisons to Other Methods

In this section, we compare our method to the state-of-the-art in-
terreflection rendering methods, which include the Integral Spheri-
cal Gaussian (ISG) [Iwasaki et al. 2012b], photon mapping [Jensen
2001], micro-rendering [Ritschel et al. 2009], and also a GPU-based
ray-tracer implemented with NVIDIA’s Optix [Parker et al. 2010].

Comparison to ISG. We compare our piecewise linear approx-
imation (Section 4.3) with ISG in integrating an SG over a spherical
triangle. Note that ISG is not designed specifically for integrating
SGs over spherical triangles. Thus we use ISG to compute the in-
tegration as follows: First, we discretize the hemisphere into small
patches as done in Iwasaki et al. [2012b]; Then, we determine
the patches that overlap with the given spherical triangle; Finally,
the integral over the spherical triangle is approximated as the sum
of the integral over all overlapping patches, where the integral of
each patch is calculated by ISG. In Figure 11, we show the results
of our method, ISG (with 1600 dicretized patches), and reference
with both high-frequency and low-frequency reflector BRDFs. ISG
produces artifacts for high-frequency BRDFs due to discretization
error. While it produces smooth results for low-frequency BRDFs,
the difference to the ground truth is quite obvious. This is because
the error of the sigmod function approximation used in ISG is large
for SGs with low sharpness. In comparison, our method is accurate
in both cases.

Comparison to photon mapping. In Figure 12, we compare
our method with GPU-based photon mapping. The scene con-
sists of a directional light, a reflective ring, which has a Blinn-
Phong BRDF with glossiness n = 100, and a Lambertian plane.
Figure 12(a) and (b) show our result and photon mapping result
using 1M photons, respectively. Both results are generated in a

ACM Transactions on Graphics, Vol. 33, No. 1, Article 10, Publication date: January 2014.

A Practical Algorithm for Rendering Interreflections with All-Frequency BRDFs • 10:11

Fig. 12. Comparison with photon mapping on caustics effects.

Fig. 13. Comparison to the micro-rendering method [Ritschel et al. 2009].

comparable time period (about 1 second). However, the result
using photon mapping exhibits noticeable noise in the caus-
tics region. The reason is that while photon mapping is highly
efficient for rendering caustics from perfectly specular reflec-
tors, it becomes inefficient when dealing with glossy materi-
als, such as the BRDF of the ring in this example. This is
mainly due to the slow convergence of the stochastic sampling
when photons are reflected from a glossy surface. As a result,
glossy reflectors require a much larger number of photons to
achieve high-quality results. The reference image is shown in
Figure 12(c), which is generated by increasing the number of pho-
tons to 10M to remove noise; but doing so also significantly re-
duces rendering performance. In contrast, our method, as shown in
Figure 12(a), handles the glossy reflector at near-interactive fram-
erates with much less noise.

Comparison to micro-rendering and GPU ray tracing. In
Figure 13, we compare our method to micro-rendering [Ritschel
et al. 2009] with approximately equal rendering time (both at about
0.5 fps). The size of micro-buffer is set to be 24 × 24. The scene
consists of a curved glossy plate placed on the top of a Lambertian
plane. In micro-rendering, the BRDF importance sampling is per-
formed in the final gathering step, and hence it can handle glossy
receivers well. However, the micro-rendering method selects reflec-
tor nodes from a point hierarchy of scene sample points, in which
only the subtended solid angle from each node is considered. Since
the BRDF of the reflector node is ignored during cut selection, it
may ignore some important nodes with glossy BRDFs, which are
responsible for strong interreflections. In contrast, our cut selection
scheme takes into account not only the subtended solid angle but
also the BRDFs of both the receiver and reflector. Moreover, our
method estimates the contribution of each node using integration
instead of using a single point sample, leading to more robustness.
As shown in Figure 13, when the shininess of the reflector is low
at n = 10, both our method and micro-rendering generate smooth
interreflections. However, when the shininess of the reflector in-
creases to n = 300, micro-rendering produces “banding” artifacts.
In contrast, our method still renders high-quality interreflections
without noticeable artifacts.

Table I. Performance of the Results Shown in this Article

scene #faces
avg.

cut size
fps shade.

time
cut sel.
time

fps
720p

magic cube 140 N/A 4.0 0.25s N/A 1.4
table 104 N/A 1.0 1.0s N/A 0.35
ring 21k 151 0.7 1.0s 0.4s 0.28
dragon 26k 258 0.4 1.8s 0.5s 0.16
airplane 20k 142 1.2 0.58s 0.19s 0.5
bunny & tweety 36k 316 0.3 2.5s 0.7s 0.12
kitchen 92k 489 0.12 6.9s 1.3s 0.04
sponza 143k 566 0.09 9.0s 2.0s 0.03

From left to right, we give the name of the scene, the number of faces, average cut
size, overall fps, final shading time, cut selection time, and the fps for rendering
with a 720p resolution (i.e., 1280 × 720).

Figure 14 gives equal-time comparisons of the results generated
by our method, micro-rendering (with micro-buffer size 72 × 72),
and GPU-based ray tracing (OptiX). Notice that these two scenes
contain interreflection effects covering all-frequency ranges, includ-
ing low-frequency interreflection (e.g., lucy to ground), glossy re-
flection (e.g., ring to box, pillar to ground), indirect highlights (e.g.,
fountain to its bottom), and caustics (e.g., ring to ground). As shown
in the close-up views in Figure 14, micro-rendering does not scale
well for highly glossy reflectors and its results exhibit banding arti-
facts, while GPU-based ray tracing still requires more time to reduce
the visible noises in the results. In comparison, our method achieves
the best quality and the generated interreflections are comparable
to the references.

7.3 Results

Our results are reported on a PC with an Intel Xeon 2.27G CPU,
8GB memory, and an NVIDIA Geforce GTX 690 graphics card.
The algorithm is implemented using OpenGL 4.0 and CUDA 4.1.
The image resolution for all rendered results is 640 × 480. We
set the partition number K = 3 and the error bound threshold to be
1% for all examples. The performance data is reported in Table I.

Simple Scenes. We first verify our method using simple scenes
containing a couple hundred of triangles. Figure 15(a) shows results
of a magic cube scene with varying BRDFs on the cube and on
the plane. In Figure 15(b), we show the results of a star scene
and a kitchen scene under different environment lights represented
by 10 SGs. Note that these examples demonstrate the capability
of our algorithm in producing all-frequency interreflection effects,
including diffuse to diffuse, diffuse to specular, and specular to
diffuse (i.e., caustics) effects.

More Scenes. Figure 1(a) shows the results of a ring with a
Blinn-Phong BRDF changing from highly specular to purely dif-
fuse. From left to right, the glossy shininess of the Blinn-Phong
BRDF is set to n = 10000, 1000, 300, 100 respectively, and the
last one is using a Lambertian BRDF. Note that our method pro-
duces convincing caustics on the plane for all examples. Further,
our method achieves smooth and coherent transitions (i.e., without
flickering) while changing BRDF parameters (see the supplemental
video). Thus it is a single algorithm that can reproduce interreflec-
tions with all-frequency BRDFs.

Figure 1(c), (d), and (e) and Figure 15(b), (c), and (d) demonstrate
our method under different types of lights, including a local light
(Figure 1(e)), SG lights with small width (Figure 1(c)), and
large width (Figure 15(c) and (d), as well as environment lights
(Figure 15(b)).

ACM Transactions on Graphics, Vol. 33, No. 1, Article 10, Publication date: January 2014.

10:12 • K. Xu et al.

Fig. 14. Equal-time image comparison of our method, micro-rendering and GPU-based ray tracing. The last column shows reference images. For the lucy
scene (top) containing 139K triangles, our method, micro-rendering and GPU-based tay tracing take 13.6s, 14.6s, and 14.0s, respectively; for the cloister scene
(bottom) containing 118K triangles, our method, micro-rendering and GPU-based tay tracing take 12.2s, 13.0s, and 14.3s, respectively. The Lucy model is
courtesy of the Stanford 3D Scanning Repository.

Fig. 15. Additional rendering results. (a) A magic cube model with various BRDF settings (left: plane and cube are both diffuse; middle: cube is diffuse,
plane is specular; right: plane is diffuse, cube is specular). (b) A star model and a table scene under environment light. The environment lights are approximated
using 10 SGs. (c) A dragon scene. (d) A “Bunny and Tweety” scene. The models in (c), (d) are courtesy of the Stanford 3D Scanning Repository.

Figure 16 shows results of more complex textured scenes. Our
method performs well for these scenes that exhibit complex vis-
ibility and textures. Please refer to the accompanying video for
additional results.

Performance. The performance data, including framerates, av-
erage cut size (i.e., the average number of nodes in the reflector
cut), time for final shading, and time for cut selection, is shown in
Table I. We do not list the time for direct lighting and ISMs gener-
ations since for all scenes it takes less than 0.1 second. Clearly, the
bottleneck lies in the per-pixel final shading stage, especially for
complex scenes. Considering the sponza scene in Figure 16(b), the
final shading stage takes 81% of the time on average, while other

steps, including the cut selection, ISMs generation, and direct light-
ing, together only occupy 19% of the overall cost. This is because
the average cut size increases with the number of faces. In the final
shading step, which is implemented in a fragment shader, for each
pixel we need to loop all the nodes in its cut to compute the final
shading. Fortunately, this shading computation is easy to scale with
parallel processing power, and can thus be greatly accelerated on
modern GPUs.

8. DISCUSSIONS AND CONCLUSION

The scope of our method. The goal of our method is to
provide a unified algorithm for rendering interreflections with

ACM Transactions on Graphics, Vol. 33, No. 1, Article 10, Publication date: January 2014.

A Practical Algorithm for Rendering Interreflections with All-Frequency BRDFs • 10:13

Fig. 16. Rendering results of complex textured scenes. The sponza scene is courtesy of Frank Meinl, Crytek.

all-frequency BRDFs. Admittedly, our method is less efficient than
micro-rendering [Ritschel et al. 2009] or global photon mapping if
the scene contains only diffuse or low-frequency BRDFs. On the
other hand, our method is also slower than ray tracing in rendering
scenes with only highly glossy or specular receivers. However, our
method is more efficient than these methods in rendering scenes
that simultaneously contain a wide frequency range of BRDFs, as
demonstrated in Figure 14. Our method is capable of producing
various types of interreflections including diffuse reflection (diffuse
to diffuse), caustics (glossy to diffuse), glossy reflection (diffuse to
glossy), and indirect highlights (glossy to glossy), in the same uni-
fied framework. This goal is shared with some recent works [Jakob
and Marschner 2012; Hachisuka et al. 2012; Georgiev et al. 2012],
which aimed to render more general light transport effects. Never-
theless, our focus is on providing fast rendering speed and inter-
active feedback by considering one-bounce interreflections with a
wide frequency range of BRDFs.

Limitations. One major limitation of our method is that it
currently only supports one-bounce interreflections. However, our
interreflection model can in fact be extended to handle multiple
bounces. Taking two-bounce interreflections as an example, the in-
cident light bounces from a first triangle (referred to as reflector I),
then bounces at a second triangle (referred to as reflector II), and
finally arrives at a receiver point. Denote the direction from re-
flector I to reflector II as r1, and the direction from reflector II
to receiver point as r2. By making use of the SG approximation
formula (Eq. (15)) of the tree node to compute the one-bounce in-
terreflection from reflector I to reflector II, the reflected radiance
L(r2) from reflector II to receiver can be represented as an SG
of r2. Hence, the outgoing radiance from the receiver point can
again be approximated using our one-bounce model. The compu-
tational cost of computing the second bounce is O(N 2) (where N
is the number of reflector triangles), because we need to consider
all possible combinations of reflector I and reflector II. However,
the computational cost can be greatly reduced to be sublinear by
employing a multidimensional reflector cut, similar to Walter et al.
[2006]. A complete study of this method to handle multiple-bounce
interreflections remains as our future work.

Another limitation is that our method only handles low-frequency
indirect shadows. As demonstrated in Ritschel et al. [2008], ISMs

can handle low-frequency indirect shadows well but has difficulty
dealing with high-frequency shadows due to the low-resolution
ISMs and the low sampling rate of virtual lights. Hence, our method
inherits the same limitations and only generates low-frequency indi-
rect shadow. Nevertheless, unoccluded all-frequency interreflection
itself is a research challenge, and our method provides a viable
solution to efficiently simulate such effects.

Finally, it is worthwhile to address the scalability of the present
method in rendering very complex scenes, for example, more com-
plex geometries, highly anisotropic BRDFs, and high-frequency
environment light. Without using a hierarchical structure, the com-
putation cost would grow linearly with respect to the number of
triangles, the number of SGs needed to represent BRDFs, and the
number of SGs needed to approximate lighting. Fortunately, our
hierarchical integration method can be easily extended to handle
BRDFs or lighting represented by multiple SGs, and hence the
computation cost only grows sublinearly.

Conclusion. To summarize, we present a practical algorithm for
rendering one-bounce interreflections with all-frequency BRDFs.
Our method builds upon a Spherical Gaussian representation of
BRDFs and lighting. The core of our method is an efficient algo-
rithm for computing one-bounce interreflection from a triangle to a
shading point using an analytic formula combined with a nonuni-
form piecewise linear approximation. To handle scenes containing
lots of triangles, we propose a hierarchical integration method with
error bounds that take into account the BRDFs at both the reflector
and receiver. The experimental results demonstrate that our method
well supports a wide frequency range of BRDFs, from purely diffuse
to highly specular, and render, important effects caused by differ-
ent types of lighting paths, including diffuse to diffuse, diffuse to
glossy, glossy to diffuse (i.e., caustics), and glossy to glossy (i.e.,
indirect highlights), in a single unified framework.

In the future, we would like to extend our method to handle
multibounce interreflections. This may be accomplished by recur-
sively applying our one-bounce algorithm and employing a multi-
dimensional reflector cut. We are also interested in extending our
method to handle bidirectional texture functions. Another direc-
tion is to improve the speed of our algorithm, such as employing
ManyLODs [Hollander et al. 2011] to further exploit the spatial and
temporal coherence in rendering.

ACM Transactions on Graphics, Vol. 33, No. 1, Article 10, Publication date: January 2014.

10:14 • K. Xu et al.

APPENDIXES

A. INTEGRAL OF A SPHERICAL GAUSSIAN (SG)

It is straightforward to prove that the integral of an SG G (v; p, λ)
over the entire sphere is∫

�

G (v; p, λ) dv = 2π

λ

(
1 − e−2λ

)
.

B. PRODUCT OF TWO SGS

Given two SGs G (v; p1, λ1) and G (v; p2, λ2), it is straightforward
to prove that the product of them is still an SG, given byG (v; p1, λ1)·
G (v; p2, λ2) = G (v; p3, λ3, c3), where

λ3 = ‖λ1p1 + λ2p2‖, p3 = λ1p1 + λ2p2

λ3
, c3 = eλ3−(λ1+λ2).

C. PRODUCT INTEGRAL OF TWO SGS

Given two SGs G (v; p1, λ1) and G (v; p2, λ2), it is straightforward
to prove that the product integral of them is∫

�

G1 (v) · G2 (v) dv =
∫

�

G3 (v) dv

=2πeλ3−(λ1+λ2)

λ3

(
1 − e−2λ3

)
,

where λ3 = ‖λ1p1 + λ2p2‖ =
√

λ2
1 + λ2

2 + 2λ1λ2(p1 · p2), which
can be approximated by a first-order Taylor expansion of p1 · p2

λ3 ≈ (λ1 + λ2) − λ1λ2

λ1 + λ2
(1 − p1 · p2) .

Hence, the preceding product integral can be approximated as∫
�

G3 (v) dv ≈ 2π

λ3

(
1 − e−2λ3

)
exp

(
λ1λ2

λ1 + λ2
(p1 · p2 − 1)

)

≈ 2π

λ3
exp

(
λ1λ2

λ1 + λ2
(p1 · p2 − 1)

)
.

The term e−2λ3 is usually very small (since λ3 is relatively large
compared to λ1 and λ2), and hence it can be safely omitted in
the previous equation. The preceding result can also be written as
2π

λ3
G(p1; p2,

λ1λ2
λ1+λ2

), showing that if treating p1 (or p2) as an indepen-
dent variable, the product integral result can still be approximated
as an SG of p1 (or p2). The accuracy of this approximation depends
on how large the sharpness values (λ1 and λ2) are. It is valid in
most cases, and will produce large error only when the sharpness
values of both SGs are small (e.g., a diffuse BRDF with a wide blue
sky). Such cases can be avoided by restricting the sharpness of the
SG light. We have done a quantitative analysis to measure the error
of this approximation. The maximal absolute error is 0.017 and
6.6× 10−4 when λ2 = 10 and 50, respectively (no matter how large
λ1 is). Note that this approximation is also derived in a concurrent
work by Iwasaki et al. [2012a].

D. PRODUCT INTEGRAL OF AN SG AND A
SMOOTH FUNCTION

Given an SG G (v; p, λ) and another spherical function S(v), if S(v)
is very smooth, we can approximate the product integral by pulling
S(v) out of the integral, and approximating S(v) using the value at

the SG center S(p) [Wang et al. 2009a]∫
�

G (v) S(v) dv ≈ S(p)
∫

�

G (v) dv = 2πS(p)

λ

(
1 − e−2λ

)
.

This approximation works well in our experiments. If higher accu-
racy is desired, we can instead use a piecewise linear approximation
of the smooth function [Xu et al. 2011].

E. APPROXIMATING A SPHERICAL REGION
AS AN SG

Given a spherical region �N , and a binary function V�N
(v) whose

value is 1 when v ∈ N and 0 elsewhere, we can approximate the
binary function as an SG: V�N

(r) ≈ G (v; pN, λN, cN), where the
center direction pN is directly set to be the center of the spherical
region �N , and the sharpness λN and coefficient cN are obtained by
preserving function energy and variance. Note that when approxi-
mating the spherical region �N as a spherical disk, the energy (solid
angle) and variance of the binary function V�N

(v) should be ‖�N‖
and ‖�N‖2/(2π), respectively. For SGs, it is also known that∫

GN (v) dv ≈ 2πcN/λN,

∫
GN (v) · (v − pN)2 dv ≈ 4πcN/λ2

N .

Solving the aforesaid two equations, we get λN ≈ 4π/‖�N‖,
cN ≈ 2.

F. SOLID ANGLE AND CENTRAL DIRECTION OF
A SPHERICAL TRIANGLE

As proved in Van Oosterom and Strackee [1983], the solid angle
‖�T ‖ of a spherical triangle �T can be calculated as ‖�T ‖ =
2 · arctan(N,M), where

N = p1 · (p2 × p3), M = 1 + p1 · p2 + p2 · p3 + p3 · p1,

where pi (1 ≤ i ≤ 3) are three unit directions from the sphere center
to the three vertices of the spherical triangle; (p2 × p3) denotes the
cross-product of two vectors. The center of the spherical triangle
pT is approximated as the average of these three directions: pT ≈
(p1 + p2 + p3)/‖p1 + p2 + p3‖.

Hence, using the conclusion of Appendix E, the binary mask
occupied by the spherical triangle can also be approximated as
V�T

(v) ≈ G (v; pT , λT , cT), where λT = 4π/‖�T ‖, cT = 2.

G. REPRESENTATIVE DIRECTION OF AN SG
OVER A SPHERICAL TRIANGLE

Given an SG G (v; p1, λ1), and a spherical triangle �T , we usu-
ally need to determine a representative direction p′

1, which may
be used as a point sample for querying constant values of other
smooth functions. By approximating the spherical triangle as an SG
G (v; pT , λT , cT) (using the conclusions of Appendix E and F), the
representative direction p′

1 is set to be the center of the product SG
of G (v; p1, λ1) and G (v; pT , λT , cT), which is

p′
1 = (λ1p1 + λT pT) /‖λ1p1 + λT pT ‖.

H. PROOF OF HOW θM IS DEFINED

As shown in Figure 17, we place a plane perpendicular to polar
direction p, with unit distance to sphere origin O. Denote the
intersection point of polar direction p to the plane as P ′, and
the projections of spherical points B, C, and M to the plane
as B ′, C ′ and M ′, respectively. Denote the azimuthal angle of

ACM Transactions on Graphics, Vol. 33, No. 1, Article 10, Publication date: January 2014.

A Practical Algorithm for Rendering Interreflections with All-Frequency BRDFs • 10:15

Fig. 17. Illustration for calculating θm.

point M ′ as φ. Draw a line P ′N perpendicular to line B ′C ′. De-
note the angle between line B ′C ′ and the horizontal direction s
as φ0, and the length of line segment P ′N as m. It is easy to
see that |P ′M ′| = |P ′N |/ sin(∠P ′M ′B ′) = m/ sin(φ + φ0). So
tan θm = |P ′M ′|/|P ′O| = |P ′M ′| = m/ sin(φ + φ0), and hence
cos θm = 1/

√
tan2 θm + 1 = sin(φ + φ0)/

√
m2 + sin2(φ + φ0).

Note that both m and φ0 are geometric properties that only depend
on the positions of B and C, making them easy to compute.

I. FINDING KNOTS FOR THE 1D FUNCTION
FM,λ(φ)

By observing the overall shape of the function, we notice that it
can be divided into 5 segments, including a smoothly ascending,
a sharply ascending, a relatively flat, a sharply descending, and a
smoothly descending segment. Hence, independent of the integra-
tion range [φ1, φ2], we always find 4 knots in the range φ ∈ [0, π]
to partition the function into 5 initial segments. Specifically, we
pick two knots with value η · fmax (note that since the function is
symmetric, there are two knots with the same value), and the other
two with value (1 − η) · fmax . Here fmax = f (φ = π/2) is the
maximum value of the function, and η is an empirically determined
threshold, and we typically set η = 0.05.

J. LOWER AND UPPER BOUNDS FOR SOLID
ANGLES

For an infinitesimal area A, denote its size as 	(A), its distance to the
receiver point as d(A), and the angle between its normal direction
and the direction from the receiver point to A as θd (A), the solid
angle subtended by A to a receiver point is 	(A) cos θd (A)/d(A)2.
Now, consider a node N that contains a set of triangles, the solid
angle can be evaluated as an integral over all the area occupied by
node N : ‖�N‖ = ∫

N
	(A) cos θd (A)/d(A)2 dA. It is easy to obtain

the following inequality

‖�N‖ ≥
∫

N

	(A) cos θmax
d

d2
max

dA = cos θmax
d

d2
max

∫
N

	(A) dA

= 	N · cos θmax
d

d2
max

,

where θmax
d is the largest possible value of θd (A), and dmax is the

largest possible distance from the node to the receiver point. The
upper bound of the solid angle can be obtained in a similar way.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable comments.

REFERENCES

Aner Ben-Artzi, Kevin Egan, Fredo Durand, and Ravi Ramamoorthi. 2008.
A precomputed polynomial representation for interactive BRDF editing
with global illumination. ACM Trans. Graph. 27, 2, 13:1–13:13.

Min Chen and James Arvo. 2000. Theory and application of specular path
perturbation. ACM Trans. Graph. 19, 4, 246–278.

Ewen Cheslack-Postava, Rui Wang, Oskar Akerlund, and Fabio Pellacini.
2008. Fast, realistic lighting and material design using nonlinear cut ap-
proximation. ACM Trans. Graph. 27, 5, 128:1–128:10.

Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and El-Mar
Eisemann. 2011. Interactive indirect illumination using voxel cone trac-
ing. Comput. Graph. Forum 30, 7, 1921–1930.

Carsten Dachsbacher and Marc Stamminger. 2005. Reflective shadow maps.
In Proceedings of the Symposium on Interactive 3D Graphics and Games
(I3D’05). 203–231.

Carsten Dachsbacher and Marc Stamminger. 2006. Splatting indirect illu-
mination. In Proceedings of the Symposium on Interactive 3D Graphics
and Games (I3D’06). 93–100.

Tomas Davidovic, Jaroslav Krivanek, Milos Hasan, Philipp Slusallek, and
Kavita Bala. 2010. Combining global and local virtual lights for detailed
glossy illumination. ACM Trans. Graph. 29, 6, 143:1–143:8.

Charles De Rousiers, Adrien Bousseau, Kartic Subr, Nicolas Holzschuch,
and Ravi Ramamoorthi. 2012. Real-time rendering of rough refraction.
IEEE Trans. Vis. Comput. Graph. 18, 10, 1591–1602.

William Donnelly and Andrew Lauritzen. 2006. Variance shadow maps. In
Proceedings of the Symposium on Interactive 3D Graphics and Games
(I3D’06). 161–165.

Bartosz Fabianowski and John Dingliana. 2009. Interactive global photon
mapping. Comput. Graph. Forum 28, 4, 1151–1159.

Vclav Gassenbauer, Jaroslav Kivnek, and Kadi Bouatouch. 2009. Spatial
directional radiance caching. Comput. Graph. Forum 28, 4, 1189–1198.

Iliyan Georgiev, Jaroslav Krivanek, Tomas Davidovic, and Philipp Slusallek.
2012. Light transport simulation with vertex connection and merging.
ACM Trans. Graph. 31, 6.

Toshiya Hachisuka and Henrik Wann Jensen. 2010. Parallel progressive
photon mapping on gpus. In Siggraph Asia Sketches. 54:1–54:1.

Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A
path space extension for robust light transport simulation. ACM Trans.
Graph. 31, 6.

Charles Han, Bo Sun, Ravi Ramamoorthi, and Eitan Grinspun. 2007. Fre-
quency domain normal map filtering. ACM Trans. Graph. 26, 3.

Pat Hanrahan, David Salzman, and Larry Aupperle. 1991. A rapid hierarchi-
cal radiosity algorithm. In Proceedings of the 18th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH’91). 197–
206.

Milos Hasan, Jaroslav Krivanek, Bruce Walter, and Kavita Bala. 2009. Vir-
tual spherical lights for many-light rendering of glossy scenes. ACM Trans.
Graph. 28, 5, 143:1–143:6.

Milos Hasan, Fabio Pellacini, and Kavita Bala. 2007. Matrix row-column
sampling for the many-light problem. ACM Trans. Graph. 26, 3, 26:1–
26:10.

Matthias Hollander, Tobias Ritschel, Elmar Eisemann, and Tamy Boubekeur.
2011. ManyLoDs: Parallel many-view level-of-detail selection for real-
time global illumination. Comput. Graph. Forum 30, 4, 1233–1240.

Kei Iwasaki, Yoshinori Dobashi, and Tomoyuki Nishita. 2012a. Interactive
bi-scale editing of highly glossy materials. ACM Trans. Graph. 31, 6.

Kei Iwasaki, Yoshinori Dobashi, Fujiichi Yoshimoto, and Tomoyuki Nishita.
2007. Precomputed radiance transfer for dynamic scenes taking into ac-
count light interreflection. In Proceedings of the 18th Eurographics Con-
ference on Rendering Techniques (EGSR’07). 35–44.

ACM Transactions on Graphics, Vol. 33, No. 1, Article 10, Publication date: January 2014.

10:16 • K. Xu et al.

Kei Iwasaki, Wataru Furuya, Yoshinori Dobashi, and Tomoyuki Nishita.
2012b. Real-time rendering of dynamic scenes under all-frequency light-
ing using integral spherical gaussian. Comput. Graph. Forum 31, 727–734.

Wenzel Jakob and Steve Marschner. 2012. Manifold exploration: A markov
chain monte carlo technique for rendering scenes with difficult specular
transport. ACM Trans. Graph. 31, 4, 58:1–58:13.

Henrik Wann Jensen. 2001. Realistic Image Synthesis Using Photon Map-
ping. A. K. Peters, Ltd.

James T. Kajiya. 1986. The rendering equation. In Proceedings of the
Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH’86). 143–150.

Leif Kobbelt. 2000. Root 3-subdivision. In Proceedings of the 27th An-
nual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH’00). 103–112.

Alexander Keller. 1997. Instant radiosity. In Proceedings of the 24th An-
nual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH’97). 49–56.

Jaroslav Krivanek, Pascal Gautron, Sumanta Pattanaik, and Kadi Bouatouch.
2005. Radiance caching for efficient global illumination computation.
IEEE Trans. Vis. Comput. Graph. 11, 5, 550–561.

Jurgen Laurijssen, Rui Wang, Philip Dutre, and Benedict J. Brown. 2010.
Fast estimation and rendering of indirect highlights. Comput. Graph.
Forum 29, 4, 1305–1313.

Bradford J. Loos, Lakulish Antani, Kenny Mitchell, Derek Nowrouzezahrai,
Wojciech Jarosz, and Peter-Pike Sloan. 2011. Modular radiance transfer.
ACM Trans. Graph. 30, 6, 178:1–178:10.

Morgan Mcguire and David Luebke. 2009. Hardware-accelerated global
illumination by image space photon mapping. In Proceedings of the Con-
ference on High Performance Graphics. 77–89.

Don Mitchell and Pat Hanrahan. 1992. Illumination from curved reflectors.
In Proceedings of the 19th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH’92).283–291.

Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. 2003. All-frequency shad-
ows using non-linear wavelet lighting approximation. ACM Trans. Graph.
22, 3, 376–381.

Eyal Ofek and Ari Rappoport. 1998. Interactive reflections on curved ob-
jects. In Proceedings of the 25th Annual Conference on Computer Graph-
ics and Interactive Techniques (SIGGRAPH’98). 333–342.

Adriaan Van Oosterom and Jan Strackee. 1983. The solid angle of a plane
triangle. IEEE Trans. Bio-Med. Engin. 30, 2, 125–126.

Jiawei Ou and Fabio Pellacini. 2011. LightSlice: Matrix slice sampling for
the many-lights problem. ACM Trans. Graph. 30, 6, 179:1–179:8.

Minghao Pan, Rui Wang, Xinguo Liu, Qunsheng Peng, and Hujun Bao.
2007. Precomputed radiance transfer field for rendering interreflections
in dynamic scenes. Comput. Graph. Forum 26, 3, 485–493.

Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared
Hoberock, David Luebke, David Mcallister, Morgan Mcguire, Keith Mor-
ley, Austin Robison, and Martin Stich. 2010. OptiX: A general purpose
ray tracing engine. ACM Trans. Graph. 29, 4, 66:1–66:13.

Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jensen,
and Pat Hanrahan. 2003. Photon mapping on programmable graphics
hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware (HWWS’03). 41–50.

Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Bain-
ing Guo. 2013. Global illumination with radiance regression functions.
ACM Trans. Graph. 32, 4.

Tobias Ritschel, Thomas Engelhardt, Thorsten Grosch, Hans-Peter Seidel,
Jan Kautz, and Carsten Dachsbacher. 2009. Micro-rendering for scalable,
parallel final gathering. ACM Trans. Graph. 28, 5, 132:1–132:8.

Tobias Ritschel, Thorsten Grosch, Carsten Dachsbacher, and Jan Kautz.
2012. State of the art in interactive global illumination. Comput. Graph.
Forum 31, 1, 160–188.

Tobias Ritschel, Thorsten Grosch, Min H. Kim, Hans-Peter Seidel, Carsten
Dachsbacher, and Jan Kautz. 2008. Imperfect shadow maps for efficient
computation of indirect illumination. ACM Trans. Graph. 27, 5, 129:1–
129:8.

David Roger and Nicolas Holzschuch. 2006. Accurate specular reflections
in real-time. Comput. Graph. Forum 25, 3, 293–302.

Musawir A. Shah, Jaakko Konttinen, and Sumanta Pattanaik. 2007. Caustics
mapping: An image-space technique for real-time caustics. IEEE Trans.
Vis. Comp.Graph. 13, 2, 272–280.

Peter-Pike Sloan, Jan Kautz, and John Snyder. 2002. Precomputed radi-
ance transfer for real-time rendering in dynamic, low-frequency lighting
environments. ACM Trans. Graph. 21, 3, 527–536.

Xin Sun, Kun Zhou, Yanyun Chen, Stephen Lin, Jiaoying Shi, and Baining
Guo. 2007. Interactive relighting with dynamic brdfs. ACM Trans. Graph.
26, 3, 27:1–27:10.

Yu-Ting Tsai and Zen-Chung Shih. 2006. All-frequency precomputed radi-
ance transfer using spherical radial basis functions and clustered tensor
approximation. ACM Trans. Graph. 25, 3, 967–976.

Bruce Walter, Adam Arbree, Kavita Bala, and Donald P. Greenberg. 2006.
Multidimensional lightcuts. ACM Trans. Graph. 25, 3, 1081–1088.

Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael
Donikian, and Donald P. Greenberg. 2005. Lightcuts: A scalable approach
to illumination. ACM Trans. Graph. 24, 3, 1098–1107.

Bruce Walter, Pramook Khungurn, and Kavita Bala. 2012. Bidirectional
lightcuts. ACM Trans. Graph. 31, 4.

Bruce Walter, Shuang Zhao, Nicolas Holzschuch, and Kavita Bala. 2009.
Single scattering in refractive media with triangle mesh boundaries. ACM
Trans. Graph. 28, 3, 92:1–92:8.

Jiaping Wang, Peiran Ren, Minmin Gong, John Snyder, and Baining Guo.
2009a. All-frequency rendering of dynamic, spatially-varying reflectance.
ACM Trans. Graph. 28, 5, 133:1–133:10.

Rui Wang, Minghao Pan, Weifeng Chen, Zhong Ren, Kun Zhou, Wei Hua,
and Hujun Bao. 2013. Analytic double product integrals for all-frequency
relighting. IEEE Trans. Vis. Comput. Graph. 19, 7, 1133–1142.

Rui Wang, Kun Zhou, Minghao Pan, and Hujun Bao. 2009b. An effi-
cient gpu-based approach for interactive global illumination. ACM Trans.
Graph. 28, 3, 91:1–91:8.

Chris Wyman and Scott Davis. 2006. Interactive image-space techniques for
approximating caustics. In Proceedings of the Symposium on Interactive
3D Graphics and Games (I3D’06). 153–160.

Kun Xu, Yun-Tao Jia, Hongbo Fu, Shi-Min Hu, and Chiew-Lan Tai. 2008.
Spherical piecewise constant basis functions for all-frequency precom-
puted radiance transfer. IEEE Trans. Vis. Comput. Graph. 14, 2, 454–467.

Kun Xu, Li-Qian Ma, Bo Ren, Rui Wang, and Shi-Min Hu. 2011. Interactive
hair rendering and appearance editing under environment lighting. ACM
Trans. Graph. 30, 6, 173:1–173:10.

Kun Xu, Wei-Lun Sun, Zhao Dong, Dan-Yong Zhao, Run-Dong Wu, and
Shi-Min Hu. 2013. Anisotropic Spherical Gaussians. ACM Trans. Graph.
32, 6, 209:1–209:11.

Ling-Qi Yan, Yahan Zhou, Kun Xu, and Rui Wang. 2012. Accurate translu-
cent material rendering under spherical gaussian lights. Comput. Graph.
Forum 31, 7, 2267–2276.

Yubo Zhang, Zhao Dong, and Kwan-Liu Ma. 2013. Real-time volume ren-
dering in dynamic lighting environments using precomputed photon map-
ping. IEEE Trans. Vis. Comput. Graph. 19, 8, 1317–1330.

Received October 2012; revised September 2013; accepted September 2013

ACM Transactions on Graphics, Vol. 33, No. 1, Article 10, Publication date: January 2014.

