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1 SG, 9.2%, 180 fps 3 SGs, 6.0% , 76 fps 5 SGs, 3.4 %, 55 fps 7 SGs, 2.0% , 36 fps 9 SGs, 1.1% , 27 fps

1 ASG 11 SGs, 0.54% , 22 fps 13 SGs, 0.26% , 19 fps 15 SGs, 0.11% , 17 fps 1 ASG, 0.10% , 125 fps reference

Figure 1: Comparison of the SG (Spherical Gaussian) based approximation with the ASG (Anisotropic Spherical Gaussian) based ap-
proximation in rendering a highly anisotropic metal dish, under an environment light and two local lights. The BRDF of the metal dish is
approximated by different number of ASGs or SGs in different images. Notice the superior property of ASGs over SGs. The result generated
by 1 ASG already matches the path-traced reference well (with a L2 error of 0.10%), and achieves a high framerate of 125 fps, while, to
achieve a similar quality, more than 10 SGs are required, but with much lower framerates (19 fps for 13 SGs or 17 fps for 15 SGs). The L2

error and the framerates for each configuration are also given in the corresponding subtitle.

Abstract

We present a novel anisotropic Spherical Gaussian (ASG) func-
tion, built upon the Bingham distribution [Bingham 1974], which is
much more effective and efficient in representing anisotropic spher-
ical functions than Spherical Gaussians (SGs). In addition to re-
taining many desired properties of SGs, ASGs are also rotationally
invariant and capable of representing all-frequency signals. To fur-
ther strengthen the properties of ASGs, we have derived approxi-
mate closed-form solutions for their integral, product and convolu-
tion operators, whose errors are nearly negligible, as validated by
quantitative analysis. Supported by all these operators, ASGs can
be adapted in existing SG-based applications to enhance their scal-
ability in handling anisotropic effects. To demonstrate the accuracy
and efficiency of ASGs in practice, we have applied ASGs in two
important SG-based rendering applications and the experimental re-
sults clearly reveal the merits of ASGs.
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1 Introduction

Effective and compact representation of spherical function is bene-
ficial for computer graphics applications, especially rendering. To
achieve real-time rendering of complex reflectances (BRDFs) un-
der real-world environmental lighting, recent approaches [Tsai and
Shih 2006; Wang et al. 2009; Iwasaki et al. 2012a] adopt Spher-
ical Gaussians (SGs) to effectively represent lighting, BRDFs or
visibility for computing light transport. The reason why SGs have
been chosen is due to their several desirable properties: First, SGs
have varying support sizes (bandwidths) and are rotationally invari-
ant, and hence it is convenient to use SGs to represent all-frequency
signals, such as lighting and BRDF, and to rotate them freely; sec-
ondly, SGs have closed-form solutions for integral, product, and
convolution, which are fundamental operators for evaluating ren-
dering integrals [Kajiya 1986] and many other applications [Han
et al. 2007; de Rousiers et al. 2012].

SGs are isotropic, or circularly symmetric around its lobe axis.
Hence, to faithfully represent most real-world lightings or BRDFs,
which are anisotropic to some degree, a mixture model of n scat-
tered SGs, or simply an SG Mixture, is usually required and applied.
Yet, since the SG mixture basis is not orthogonal, a product of two
n-term SG mixtures has complexity O(n2) [Tsai and Shih 2006].
Therefore, using SGs to represent anisotropic functions always has
to compromise between accuracy and performance, which is an in-
trinsic limitation.

To address this limitation, we present a novel anisotropic Spherical
Gaussian (ASG) function based on the Bingham distribution [Bing-
ham 1974], which can represent anisotropic spherical functions de-
fined in arbitrary local frame (Section 3). To represent complex
anisotropic functions, similar to SGs, a mixture model of scattered
ASGs (ASG Mixture) needs to be applied. Due to the anisotropic
nature of ASGs, a much smaller number of ASGs are usually
enough to faithfully represent anisotropic functions, which leads to
improvements in both accuracy and performance. Such an example
is given in Fig. 1, where a single ASG is able to accurately render
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a metal dish with a highly anisotropic BRDF, while 15 SGs are re-
quired to achieve a similar quality, but with much lower framerates.

Meanwhile, ASGs still retain those desired properties of SGs (Sec-
tion 4). It is clear that, by definition, ASGs are still rotationally
invariant, and are capable of representing all-frequency signals. Al-
though the integral, product and convolution operators of ASGs
have no exact closed-form solutions, we have derived approximate
closed-form solutions for all of these operators. Through quanti-
tative validations we show that these approximate solutions have
nearly negligible approximation errors, and we expect to find appli-
cation in fields beyond just computer graphics.

Supported by all these operators, ASGs can be adapted in exist-
ing SG-based applications, enhancing their scalability in handling
anisotropic effects. To demonstrate the accuracy and efficiency of
ASGs in practice, we develop an ASG-based rendering framework
(Section 5) to implement two important applications: all-frequency
rendering with dynamic BRDFs [Wang et al. 2009] and bi-scale
BRDF editing [Iwasaki et al. 2012a] (Section 6), the promising ex-
perimental results of which reveal the merits of the ASGs.

2 Related Works
Spherical Gaussians (SGs) in Graphics. Spherical Gaussians
(SGs), also known as von Mises-Fisher distribution [Fisher 1953],
have been widely adopted in computer graphics to represent spher-
ical functions, such as environment light, light transport functions,
BRDFs, etc.

Tsai et al. [2006] used SGs to represent both environment light and
light transport functions for all-frequency precomputed radiance
transfer (PRT) [Sloan et al. 2002]. Relying on the PRT-based ren-
dering routine, Green et al. [2006] approximated the light transport
using sum of SGs, and achieved high-frequency view-dependent
effects by non-linear interpolation of per-vertex SG parameters.
These two PRT-based techniques mix reflectance and visibility in
the precomputation stage, which limit the reflectance of rendered
objects to be static (i.e. cannot be changed during rendering). Af-
terwards, Green et al. [2007] improved their previous method by
decoupling visibility from BRDF.

To render dynamic, spatially-varying reflectance, Wang et
al. [2009] approximated the microfacet BRDFs using SGs. This
is done by first approximating the 2D Normal Distribution Func-
tion (NDF) using SGs, and each 2D BRDF slice at a specific view
direction can then be approximated by SGs through a newly intro-
duced spherical warping operator. However, due to the isotropy
of SGs, it requires a large number of SGs to well approximate
highly anisotropic BRDFs. Iwasaki et al. [2012a] proposed an SG-
based bi-scale BRDF editing method, where large-scale BRDFs are
considered as convolutions of small-scale BRDFs and the Bidirec-
tional Visible Normal Distribution (BVNDF) [Wu et al. 2011]. This
method represents both small-scale BRDFs and the BVNDF using
SGs, and approximates convolved large-scale BRDFs again using
SGs through a newly derived closed-form convolution operator. To
validate the merits of ASGs in practice, we implement all-frequency
rendering with dynamic BRDFs [Wang et al. 2009] and bi-scale
BRDF editing [Iwasaki et al. 2012a] as two applications of ASGs.

More SG-based graphics applications include: Han et al. [2007]
performed accurate normal map filtering by representing normal
distribution function using SGs. Olano and Baker [2010] further
proposed Linear Efficient Antialiased Normal (LEAN) mapping to
achieve real-time filtering of specular highlights in normal maps.
Laurijssen et al. [2010] presented a method for efficiently render-
ing indirect highlights by an SG-based approximation of BRDF
lobes and an efficient algorithm to merge multiple SGs into one. Xu
et al. [2011] achieved interactive rendering of hairs with dynamic

appearance by approximating hair scattering functions by circular
Gaussian, which is a 1D variant of SG. De Rousiers et al. [2012]
achieved real-time rendering of rough refractions by approximat-
ing the Bidirectional Transmittance Distribution Function (BTDF)
using SGs. Yan et al. [2012] introduced a method for accurately
rendering homogeneous translucent materials under SG lights, en-
abled by a derived closed-form integral of BSSRDF with SG lights.
Iwasaki et al. [2012b] proposed integral spherical gaussian, which
enables efficiently integrating SGs over spherical rectangles using
summed-area tables.

Other Spherical Functions used in PRT. Besides SGs, a few
other functions have been adopted to represent spherical functions
in PRT, such as spherical harmonics (SH) [Ramamoorthi and Han-
rahan 2001; Sloan et al. 2002], wavelet [Ng et al. 2003], spheri-
cal piecewise constant basis functions (SPCBF) [Xu et al. 2008],
and pixel basis with biclustering approximation [Sun et al. 2011].
Specifically, SH can smoothly reconstruct low-frequency signals
with a small number of coefficients, but they are inefficient in rep-
resenting high-frequency functions, such as anisotropic lighting or
BRDFs. The wavelet basis [Ng et al. 2003] or biclustering approx-
imation [Sun et al. 2011] can well represent all-frequency func-
tions, while temporal flickering or ghosting artifacts might be in-
troduced due to the reconstruction errors of non-linear approxima-
tion. SPCBFs approximate the incident lighting based on its piece-
wise spherical partition, and hence cannot effectively handle high-
frequency BRDFs. In comparison, ASGs inherit the nice properties
of SGs, and can represent all-frequency functions and rotate them
freely. Moreover, the anisotropic nature of ASGs guarantees their
capability of representing anisotropic functions efficiently.

Anisotropic Appearance. Anisotropic appearances exhibit change
with respect not only to the azimuthal differences between incom-
ing and outgoing directions, but also to different incoming az-
imuthal directions. In general, most real-world BRDFs are more
or less anisotropic, such as brushed metal, satin and hair. The
anisotropic BRDF model was first introduced by Kajiya [1985]. A
number of anisotropic parametric models have been proposed, in-
cluding Ward’s [1992] and Ashikhmin’s [Ashikhmin and Shirley
2000] anisotropic BRDFs. There are also some newly-introduced
anisotropic parametric BRDFs [Edwards et al. 2006; Kurt et al.
2010]. Compared with ASGs that support an arbitrary local frame,
these parametric BRDF models are limited to a fixed normal-based
local frame and hence cannot well represent complex anisotropic
effects, such as off-specular highlight. A comprehensive accuracy
analysis of parametric BRDF models is detailed in [Ngan et al.
2005].

The microfacet BRDF model [Torrance and Sparrow 1967; Cook
and Torrance 1982] assumes that surfaces are composed of many
mirror-like microfacets, each of which are purely reflective. Hence,
the specular reflection of large-scale BRDFs can be computed based
on the normal distribution function (NDF) of the microfacets. As
demonstrated in [Ngan et al. 2005], the microfacet model can faith-
fully convey a large class of real-world reflectances. Recently,
Pacanowski et al. [2012] introduced a general representation for
BRDFs, called Rational BRDF, which can be used to reproduce
some anisotropic effects .

Besides surface reflectance, anisotropic appearances are also found
to be important in volume scattering [Jakob et al. 2010]. Various
techniques have been proposed to model and render the anisotropic
appearances of cloth and fabric [Irawan and Marschner 2012; Zhao
et al. 2012; Sadeghi et al. 2013].

Directional Statistics. As aforementioned, the definition of ASG
is built upon the Bingham distribution [Bingham 1974]. During
the process of formalizing ASGs, we also experimented with other



widely-used anisotropic distributions in directional statistics, e.g.,
the Fisher-Bingham distribution [Mardia 1975] and the Kent distri-
bution [Kent 1982]. However, for the Fisher-Bingham distribution,
it is unclear how to efficiently (and analytically) compute its inte-
gral. Further, it has 8 parameters and hence requires a non-trivial
fitting process and is expensive to compute. The Kent distribution is
a simplified version of the Fisher-Bingham distribution, which con-
tains only 5 parameters. However, the product of two Kent distri-
butions is no longer a Kent distribution. In contrast, our Bingham-
based ASGs permit approximate closed-form solutions for their in-
tegrals, products, and convolutions (see Section 4). More informa-
tion about all these different distributions are detailed in the direc-
tional statistics book [Mardia and Jupp 1999].

3 Definition of an ASG
In this section we define a new family of functions that behave sim-
ilar to SGs, but are anisotropic instead of isotropic.

Definition. We define the anistoropic Spherical Gaussian (ASG) to
be the function of unit direction v:

G(v; [x,y, z], [λ, µ], c) = c · S(v; z) · e−λ(v·x)2−µ(v·y)2 , (1)

where z,x,y are the lobe, tangent and bi-tangent axes, respec-
tively, and [x,y, z] forms an orthonormal frame; λ and µ are the
bandwidths for x- and y-axes, respectively, satisfying λ, µ > 0.
c is the lobe amplitude; the smooth term is defined as S(v; z) =

max(v · z, 0). The term e−λ(v·x)2−µ(v·y)2 is denoted as the expo-
nential term. Overall, Eq. 1 is referred to as the geometric form of
an ASG.

This definition of ASG is based on the Bingham distribution [Bing-
ham 1974] in directional statistics, which is derived from the in-
tersection of a zero-mean, trivariate Gaussian distribution with the
unit sphere. Specifically, the exponential term e−λ(v·x)2−µ(v·y)2

of ASG is defined to be the same as the exponential term of the
Bingham distribution B(v). Since the Bingham distribution is an-
tipodally symmetric (i.e. B(v) = B(−v) and has two peaks at
v = ±z, respectively), we incorporate an additional smooth term
S(v; z) to constrain its value in the upper hemisphere while pre-
serving its smoothness. Fig. 2 gives several examples of ASGs
with different parameters. Notice that the peak of ASG is at the
lobe position v = z. In the following sections, for simplicity of
notation, G(v; [x,y, z], [λ, µ], c) is denoted as G(v) for short, and
the amplitude c is assumed to be 1 if it is omitted.

Algebraic form. The ASG definition can also be equivalently writ-
ten in algebraic form:

G(v;A) = S(v; z) · e−vTAv, (2)

where A is a 3×3 symmetric matrix, and z is its eigen-vector with
the smallest eigen-value. Eq. 2 is referred to as the algebraic form
of an ASG. To prove the equivalence of these two forms (Eq.1 and
Eq.2), we first apply a singular value decomposition (SVD) to the
symmetric matrix A in the algebraic form (Eq.2):

A =[x,y, z] · diag(λA, µA, νA) · [x,y, z]T = λAxx
T + µAyy

T

+ νAzz
T = (λA − νA)xxT + (µA − νA)yyT + νA · I,

where λA, µA, and νA are the three eigen-values of A; x, y, and z
are the corresponding eigen-vectors of A. diag(·) represents a 3×3
diagonal matrix. The last term in the above equation has used the
property that xxT +yyT +zzT = I (I is the 3×3 identity matrix).
Without loss of generality, we can assume λA ≥ µA ≥ νA. Hence,
Eq. 2 can be written in a geometric form G(v; [x,y, z], [λ, µ], c)
(Eq. 1), where c = exp(−νA), [λ, µ] = [λA−νA, µA−νA]. Sim-
ilarly, it is also easy to convert the geometric form to the algebraic
form.

y
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(a) An ASG with (λ = 4, µ = 1);

(b) other ASG examples.

Figure 2: Definition of Anisotropic Spherical Gaussians (ASGs).
(a) An ASG with parameters (λ = 4,µ = 1). (b) Several ASG
examples with parameters (λ = 1, µ = 1), (λ = 10, µ = 1),
(λ = 100, µ = 10), and (λ = 300, µ = 3), respectively. Each
ASG is illustrated by projecting its upper hemisphere to a disk using
Lambert equal-area parameterization.

Relationship to traditional SGs. Our ASG is isotropic when the
two bandwidths are the same (i.e., λ = µ). However, such an
isotropic ASG is not exactly the same as the traditional Spherical
Gaussian (i.e. the von Mises-Fisher distribution), which is defined
as Giso(v;p, ν) = exp(2ν(v · p − 1)), where p is the lobe axis
(i.e. center), and ν is the bandwidth. However, in practice, they are
approximately the same:

Giso(v;p, ν) ≈ G(v; [x,y,p], [ν, ν]), (3)

where x, y are two arbitrary orthogonal directions that form a local
frame with p. Detailed evaluation can be found in Section 1 of the
supplemental document.

4 Supported Operators
Spherical Gaussians (SGs) possess several desirable properties for
graphics applications. First, SGs are rotationally invariant, mak-
ing them a good choice in representing spherical functions (e.g.,
lighting) that demand rotation; secondly, the support size (band-
width) of SGs can be arbitrarily changed and hence they are capable
of representing all-frequency signals; more importantly, SGs have
closed-form solutions for integral, product, and convolution; These
mathematical properties are crucial to make SGs especially suitable
for rendering calculations.

Closed-form integrals of spherical distributions are necessary be-
cause the rendering process is essentially calculating an inte-
gral [Kajiya 1986]. Closed-form products are also important, since
rendering often involves multiplications of different functions, such
as lighting, BRDF and visibility. Closed-form convolutions pro-
vide fundamental support for several graphics applications, such
as normal map filtering [Han et al. 2007], bi-scale BRDF calcula-
tion [Iwasaki et al. 2012a], and rough refraction [de Rousiers et al.
2012], in which large-scale effective BRDFs (or BTDFs) are ob-
tained by convolving NDF with small-scale BRDFs (or BTDFs).
Closed-form convolution is also potentially applicable for render-
ing indirect highlights [Laurijssen et al. 2010], in which calcula-
tions of indirect lighting can be formulated as convolutions of the
BRDFs of two bouncing surfaces.

Compared with SGs, ASGs are more general and scalable in repre-
senting anisotropic functions. Meanwhile, ASGs still retain those
desired properties of SGs. It is easy to see that, by definition, ASGs



are still rotationally invariant, and are capable of representing all-
frequency signals. As for the integral, product, and convolution op-
erators, ASGs do not have exact closed-form solutions. However, in
the following derivations and validations, we will show and prove
that ASGs have approximate closed-form solutions for all these op-
erators, the accuracy of which is enough for graphics applications.

4.1 Integral of an ASG

In this subsection, we will derive an analytic approximation for the
integral of an ASG over the unit sphere Ω, written as

∫
Ω
G(v) dv.

Without loss of generality, we assume x = (1, 0, 0)T , y =
(0, 1, 0)T , z = (0, 0, 1)T , and represent v in spherical coordi-
nates: v = (sin θ cosφ, sin θ sinφ, cos θ), where θ ∈ [0, π/2],
φ ∈ [0, 2π]. The integral

∫
Ω
G(v) dv can be rewritten as:

2π∫
φ=0


π
2∫

θ=0

e−λ(sin θ cosφ)2−µ(sin θ sinφ)2 sin θ cos θ dθ

 dφ, (4)

where the sine term is the Jacobian from spherical parameterization,
and the cosine term is the smooth term of ASG. By denoting k =
λ cos2 φ + µ sin2 φ, it is easy to find that the inner integral over θ
has an analytic solution as (the derivation can be found in Section 2
of the supplemental document):∫ π

2

θ=0

e−k sin2 θ sin θ cos θ dθ =
1

2k
(1− e−k). (5)

By substituting it back, Eq. 4 can be rewritten as:∫
Ω

G(v) dv =
1

2

∫ 2π

0

1− e−k

k
dφ =

1

2

2π∫
0

1

λ cos2 φ+ µ sin2 φ
dφ− 1

2

2π∫
0

e−λ cos2 φ−µ sin2 φ

λ cos2 φ+ µ sin2 φ
dφ. (6)

The following task becomes how to evaluate the two integrals in
Eq. 6, respectively. First, it is easy to derive an analytic solution for
the first integral:

2π∫
0

1

λ cos2 φ+ µ sin2 φ
dφ =

4tan−1(
√

µ
λ

tanφ)
√
λµ

∣∣∣∣∣
π
2

0

=
2π√
λµ

.

(7)
Regarding the second integral in Eq. 6, unfortunately, it does not
have an exact analytic solution. To evaluate it, we approximate
the denominator by Gaussians (without loss of generality, here we
assume λ ≥ µ):

1

λ cos2 φ+ µ sin2 φ
≈ 1

λ
+
λ− µ
λµ

e
−λ−µ

µ
cos2 φ

. (8)

The detailed derivations of Eq. 8 are presented in Section 3 of the
supplemental document. Substituting Eq. 8 into the second integral
in Eq. 6 gives:

2π∫
0

e−λ cos2 φ−µ sin2 φ

λ cos2 φ+ µ sin2 φ
dφ ≈ e−µ

λ

(
F(ν) +

ν

µ
F(ν +

ν

µ
)

)
,

(9)
where ν = λ−µ is the difference between the two bandwidths, and
the 1D function F is defined as F(a) =

∫ 2π

0
e−a cos2 φdφ, which in

fact is the Bessel function weighted by an exponential term. To ef-
ficiently evaluate F in practice, it can be precomputed and stored as
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Figure 3: Evaluation of ASG integral approximation. The red curve
gives the approximation using Eq. 11, and the blue curve gives the
approximation using Eq. 10.

a 1D texture, or approximated by an analytic rational function (the
formula can be found in Section 4 of the supplemental document).
Finally, substituting Eq. 7 and Eq. 9 back into Eq. 6, the integral of
an ASG

∫
Ω
G(v) dv can be approximated as:∫

Ω

G(v) dv ≈ π√
λµ
− e−µ

2λ

(
F(ν) +

ν

µ
F(ν +

ν

µ
)

)
. (10)

In practice, when the two bandwidths λ, µ are not very small (i.e.
when λ, µ > 5), the integral can also be well approximated as:∫

Ω

G(v) dv ≈ π√
λµ

, (11)

since the coefficient of the second term (e.g. e−µ/(2λ)) becomes
rather small.

Validation. To validate the accuracy of approximating the inte-
gral of an ASG using either Eq. 10 or Eq. 11, in Fig. 3, we plot the
function curves of the original integral and these two approximation
formulas. It is clear that the errors are subtle and both approxima-
tions are reasonable. We also quantitatively evaluate the bound of
the approximation errors: when λ, µ > 5, the relative error (us-
ing Eq. 10) is smaller than 0.027%, and the relative error (using
Eq. 11) is smaller than 0.68%; when λ, µ > 1, the relative error
(using Eq. 10) is smaller than 5.2%.

Summary. The integral of an ASG can be efficiently evaluated
using Eq. 10. When the two bandwidths satisfying λ, µ > 5, the
integral can be further efficiently approximated by Eq. 11.

4.2 Product of two ASGs
In this subsection, we will show that the product of two ASGs
can still be well approximated by another ASG. Given two ASGs
expressed by the algebraic form: G(v;A1) = max(v · z1, 0) ·
e−vTA1v (G1(v) for short) and G(v;A2) = max(v · z2, 0) ·
e−vTA2v (G2(v) for short), their product can be written as:

G1(v)G2(v) = S(v; z1, z2) · e−vT (A1+A2)v, (12)

where S(v; z1, z2) = S(v; z1) · S(v; z2) is a smooth function, and
the latter term is essentially the exponential term of an ASG (as
shown in Sec. 3). By denoting A3 = A1 +A2, and z3 as the eigen
vector with the smallest eigen value of A3, the above equation can
be rewritten as:

G1(v)G2(v) =
S(v; z1, z2)

max(v · z3, 0)
·
(

max(v · z3, 0)e−vTA3v
)

=
S(v; z1, z2)

max(v · z3, 0)
·G(v;A3) ≈ S(z3; z1, z2) ·G(v;A3).

(13)
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Figure 4: Product of two ASGs. The bandwidth parameters of the
first ASG (λ1 and µ1) and the second ASG (λ2 and µ2) for all exam-
ples are listed below. Example 1: λ1 = µ1 = 3, λ2 = 100, µ2 =
5. Example 2: λ1 = 10, µ1 = 1, λ2 = 100, µ2 = 10. Example 3:
λ1 = 10, µ1 = 1, λ2 = 1000, µ2 = 10.
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Figure 5: L2 Error of ASG product and convolution approxima-
tions. The error is measured by constraining the two input ASGs to
be normalized (i.e., its integral as one).

Here, the smooth term S(v; z1, z2)/max(v·z3, 0) is approximated
as a constant of the function value when v = z3, i.e., at the peak
of the resulted ASG. This approximation is reasonable since the ex-
ponential term of ASG often changes much faster than the smooth
term, and has been adopted extensively by existing methods [Wang
et al. 2009; Xu et al. 2011; Iwasaki et al. 2012a].

Validation. Regarding the error of approximating the product of
two ASGs with Eq. 13, the product of the exponential terms in the
two ASGs is closed-form, and hence the error is solely due to the
approximation of the low-frequency smooth term as a constant. In
Fig. 4, we visualize and compare the approximated (approx.) prod-
uct using a single ASG (Eq. 13) and the ground truth (gt.) product
by taking three ASG pairs as examples. It is clear that the approx-
imated results are visually identical to the ground truth. To more
accurately identify the error, we further plot the quantitative ap-
proximation errors in Fig. 5 (left), of the three examples (Ex.) in
Fig. 4. For each example, the error curve is generated by changing
the lobe axis z2 of the second ASG G2(v) along the green line,
which is shown in the second column of Fig. 4, to ensure the dot
product of the two lobe axes z1 and z2 ranges in [0,1]. Notice that
the error is small for all these examples. Please refer to the sup-
plemental document and accompanying video for more validation
results.

Summary. The product of two ASGs can again be well approxi-
mated by a single ASG, as shown in Eq. 13.

4.3 Convolution of an ASG with an SG
In this subsection, we will derive the formula to compute
the convolution of an ASG with an SG. Specifically, Given
an ASG G(v), and an SG with center p and bandwidth ν:
Giso(v;p, ν) = e2ν(v·p−1) = e−ν(v−p)2 , their convolution
C(p) =

∫
Ω
G(v)Giso(v;p, ν) dv is calculated as follows:

C(p) =

∫
Ω

S(v; z)e−λ(v·x)2−µ(v·y)2−ν(v−p)2 dv

≈ S(p; z)

∫
Ω

e−λ(v·x)2−µ(v·y)2−ν(v−p)2 dv. (14)

Here, the smooth term S is pulled out of the integral as a con-
stant function. We further approximate the center of the SG p,
and direction v both by a Taylor expansion at G(v)’s peak z:
p ≈ z + (p · x)x + (p · y)y, and v ≈ z + (v · x)x + (v · y)y,
yielding:

(v − p)2 ≈ (v · x− p · x)2 + (v · y − p · y)2. (15)

Substituting Eq. 15 into Eq. 14, gathering the terms of v · x and
v · y, and then pulling terms, which are independent of v, out of
the integral give:

C(p) ≈ M(p)

∫
Ω

e
−(λ+ν)

(
v·x− ν(p·x)

λ+ν

)2
−(µ+ν)

(
v·y− ν(p·y)

µ+ν

)2
dv,

(16)
where M(p) is computed as:

M(p) = S(p; z) · e−
νλ
ν+λ

(p·x)2− νµ
ν+µ

(p·y)2
, (17)

and fortunately, it is in the form of an ASG. The term inside the in-
tegral of Eq. 16 can be approximated as a rotated ASG of direction
v, and hence the integral in Eq. 16 can be approximated as:∫

Ω

e
−(λ+ν)

(
v·x− ν(p·x)

λ+ν

)2
−(µ+ν)

(
v·y− ν(p·y)

µ+ν

)2
dv

≈
∫

Ω

e−(λ+ν)(v·x′)2−(µ+ν)(v·y′)2 dv ≈ π√
(λ+ ν)(µ+ ν)

,

where x′ and y′ are rotated axis directions that are given by x′ =
x− ν

λ+ν
p, y′ = y− ν

µ+ν
p. Substituting the above equations into

Eq. 16 gives:

C(p) ≈ G(p, [x,y, z], [
νλ

ν + λ
,
νµ

ν + µ
],

π√
(λ+ ν)(µ+ ν)

).

(18)
Validation. The error of our convolution approximation is mainly
caused by the approximation in Eq. 15. This approximation is ac-
curate when the value of |p · z − v · z| is small, but will probably
produce large errors when it is large. However, in practice, when
|p · z − v · z| is large, |p − v| is also large, making the value
of convolution kernel (i.e., the SG) to be small and contribute less
to the whole convolution. Hence, in this case, the approximation
error of the whole convolution won’t be affected much. In Fig. 6,
we visualize and compare the approximated (approx.) convolution
using a single ASG (Eq. 18) and the ground truth (gt.) convolution
by taking three examples. It is clear that the approximated con-
volutions are visually indistinguishable from the accurate ones. To
more accurately identify the error, again we plot the quantitative ap-
proximation errors in Fig. 5 (right), of the three examples (Ex.) in
Fig. 6. For each example, the error curve is generated by changing
the convolution kernel size (i.e. the bandwidth ν of the SG). This
approximation is valid when the bandwidths of the ASG λ and µ
are not small. Quantitatively, when λ, µ > 3, the L2-error of the
approximation is smaller than 0.2% (no matter what the convolu-
tion kernel size ν is); when λ, µ > 1, the L2-error is bounded in
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Figure 6: Convolution of an ASG and an SG. The bandwidth pa-
rameters of the ASG (λ and µ) and the SG (ν) in all examples
are listed below. Example 1: λ = µ = 5, ν = 1. Example 2:
λ = 40, µ = 1, ν = 10. Example 3: λ = 100, µ = 10, ν = 100.

2.8%. More validations can be found in the supplemental document
and accompanying video.

Summary. The convolution of an ASG with an SG can be well
approximated by a single ASG using Eq. 18.

5 ASG-based Rendering Framework
In this section, we will show how ASGs can fit into existing SG-
based frameworks to benefit rendering applications especially those
involving anisotropic materials or lighting. Essentially, we follow
the SG-based rendering framework of [Wang et al. 2009], while
represent lighting and BRDFs using ASGs instead of SGs, and
approximate visibility by extending the spherical signed distance
function (SSDF) to accommodate integrations with ASGs. Details
are explained in following subsections.

Rendering formulation. Following [Wang et al. 2009], by assum-
ing distant lighting and static scenes, the outgoing radiance L(o)
(at a point) under direct illumination (ignoring inter-reflection) is
calculated by:

L(o) =

∫
Ω

L(i)V (i)ρ(i,o) max(i · n, 0) di, (19)

where i, o, n denote lighting, view and normal directions, respec-
tively; L, V denote the spherical lighting and visibility functions,
respectively; ρ denotes the 4D BRDF function and Ω denotes the
unit sphere. By decomposing the BRDF into the sum of a diffuse
component and a specular component: ρ(i,o) = kd + ksρs(i,o),
the outgoing radiance L(o) can hence be decomposed into a dif-
fuse term Ld and a specular term Ls [Wang et al. 2009]: L(o) =
kdLd + ksLs(o), where:

Ld =

∫
Ω

L(i)V (i) max(i · n, 0) di, (20)

Ls(o) =

∫
Ω

L(i)V (i)ρs(i,o) max(i · n, 0) di. (21)

5.1 Light Approximation

We represent the environment light using ASG mixtures. Firstly,
some initial ASGs are determined by preserving the local maxi-
mums of the environment light, and then, following [Tsai and Shih

St. Peter’s 50 ASGs 50 SGs 109 ASGs 109 SGs

Grace 30 ASGs 30 SGs 70 ASGs 70 SGs
Figure 7: Comparison of ASGs and SGs in fitting environment
lights of St. Peter’s Basilica and Grace Cathedral.

2006], we use the L-BFGS-B solver [Zhu et al. 1997] to fit the
environment light. Local light sources are approximated by equal-
bandwidth ASGs following the method from [Wang et al. 2009].

As shown in Fig. 7, we fit two environment maps (EMs) using ASG
mixtures and SG mixtures, respectively. Clearly, ASGs are superior
to SGs and better capture those anisotropic features in EMs (i.e.
some ellipse-like regions).

5.2 BRDF Approximation
Based on the microfacet model [Cook and Torrance 1982], the spec-
ular term ρs of BRDF can be represented by:

ρs(i,o) = M(i,o)D(h),h = (i + o)/|i + o| (22)

where h is the unit half vector, D is the normal distribution func-
tion (NDF) and M is a combined function including shadowing
and Fresnel terms, which is smooth [Ngan et al. 2005]. Wang et
al. [2009] approximate the NDF using SG mixtures, and, in con-
trast, we represent it with ASG mixtures. In practice, a single
ASG is usually enough to approximate lots of complex, highly
anisotropic BRDFs.

Parametric BRDFs. For isotropic parametric BRDF, we first
fit it as sum of SGs [Wang et al. 2009], and then convert SGs
to equal-bandwidth ASGs using Eq. 3. We further approximate
two anisotropic parametric BRDF models using ASGs: the Ward
model [1992] and the Ashikhmin model [Ashikhmin and Shirley
2000]. The Ward model can be approximated using one ASG:

M(i,o) = 1/(4παxαy
√

(i · n)(o · n)),

D(h) = e
− 2

1+h·n

(
(h·x)2

α2
x

+
(h·y)2

α2
y

)
≈ G(h; [x,y,n], [

1

α2
x

,
1

α2
y

]),

and the Ashikhmin model can also be approximated by one ASG:

M(i,o) =

√
(nu + 1)(nv + 1)F (i · h)

8π(i · h) ·max(n · i,n · o)
,

D(h) = (h · n)
nu(h·u)2+nv(h·v)2

1−(h·n)2 ≈ G(h; [u,v,n], [
nu
2
,
nv
2

]),

where F is the fresnel function.

As shown in Fig. 8, we approximate the Ashikmin BRDF using a
single ASG (6th col.), and compare the results with the references
(7th col., which are generated using standard path tracing.) and the
results using different number of SGs (1st to 5th col.). Although 5
SGs are enough in approximating low-anisotropy-ratio BRDFs (e.g.
the second row, with anisotropy ratio = 3), the results of using 19



1 SG 5 SGs 11 SGs 15 SGs 19 SGs 1 ASG reference

41.5% 29.5% 5.1% 0.9% 0.3% 0.02%

9.9% 0.3% 0.03% 0.02% 0.02% 0.003%

26.3% 21.1% 3.4% 0.5% 0.4% 0.1%
Figure 8: Comparison of ASGs and SGs in fitting Ashikmin BRDFs with different parameters. First row: nu = 8,nv = 800 (anisotropy
ratio: 10); second row: nu = 200,nv = 22 (anisotropy ratio: 3); third row: nu = 20000,nv = 200 (anisotropy ratio: 10). The L2 error
for each configuration is also given in the corresponding subtitle.
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Figure 10: Spherical Warping.

SGs still exhibit visible differences (see the close-up views) in ap-
proximating highly anisotropic BRDFs (e.g. the first or third rows,
with anisotropy ratio = 10). In contrast, under all these parameter
settings, the results of using only one ASG are visually indistin-
guishable from the path-traced references, demonstrating the good
scalability of ASGs in approximating anisotropic BRDFs.

Measured BRDFs. We represent measured BRDFs using the gen-
eral microfacet model as in [Wang et al. 2009]. We first fit the NDF
D(h) and the smooth function M from the raw measured BRDFs.
After that, we fit the NDF using ASG mixtures. For spatially-
varying BRDFs, the above procedure is repeated for every point.
In Fig. 9, we fit two real-captured anisotropic BRDFs (brushed alu-
minum and purple satin) using ASGs, and compare the results fitted
with ASGs to those fitted with Ashikmin or Ward BRDFs. While
these parametric models can approximate the top-row brushed alu-
minum BRDF well (although the results still exhibit visible differ-
ences from the references), they cannot model the bottom-row pur-
ple satin BRDF well, since this BRDF exhibits off-specular reflec-
tions that cannot be captured in standard normal-based local frame.
In contrast, the differences between our results with 3 or 4 ASGs
and the references are visually subtle.

Spherical Warping of ASG-based BRDFs. When using micro-
facet BRDFs, given a view direction o, we need to obtain the corre-
sponding 2D BRDF slice to integrate with incident lighting and vis-
ibility functions. Yet, usually the NDF term of a microfacet BRDF
is parameterized using half vector h instead of incident light direc-
tion i. Therefore, for efficient multiplication of BRDF and incident

lighting, a spherical warping strategy as suggested in [Wang et al.
2009] is also required for ASG-based BRDF representation.

Specifically, assuming the NDF D(h) can be approximated by an
ASG: D(h) ≈ G (h; [xh,yh, zh], [λh, µh]) (short for Gh (h) and
shown in Fig. 10 (a)), where h is the half vector of view direction
o and light direction i: h(i) = i+o

|i+o| . We approximate the warped
NDF expressed in terms of lighting direction i again using another
ASG:

Gh (h(i)) = Gh

(
i + o

|i + o|

)
≈ G (i; [xi,yi, zi], [λi, µi]) . (23)

To obtain the parameters of the ASG Gi (i) in the above equation,
we first preserve the lobe position, and have zi = 2(o · zh)zh − o.
Then, the other parameters can be determined by preserving the
local curvature (second-order derivatives) of the exponential term
around lobe position i = zi. Specifically, denote the exponential
order of the warped ASGGh (h(i)) as g(i) (such thatGh (h(i)) =

S(h(i)) · e−g(i)), which has the form of:
g(i) = λh(h(i) · xh)2 + µh(h(i) · yh)2.

To facilitate derivation, at direction i = zi, we define a default local
frame [x′i,y

′
i, zi], making the tangent direction x′i perpendicular to

view direction o (as shown in Fig. 10 (b)). The exponential order
g(i) can hence be approximated as a second order Taylor expansion
at i = zi:

g(i) ≈
(
i · x′i, i · y′i

)
·H(g) ·

(
i · x′i, i · y′i

)T
, (24)

where H(g) is the 2× 2 Hessian matrix, which can be further fac-
torized by eigen-decompostion:

H(g) =

 ∂2g

∂x′2i

∂2g
∂x′i∂y

′
i

∂2g
∂x′i∂y

′
i

∂2g

∂y′2i

 = U·
(
λi 0
0 µi

)
·UT . (25)

The formulas of the second-order derivatives in the Hessian matrix
can be found in Section 6 of the supplemental document. Substitut-
ing Eq. 25 into Eq. 24 yields:

g(i) ≈ λi(i · xi)2 + µi(i · yi)2, (26)



1 ASG 2 ASGs 3 ASGs 4 ASGs reference Ashikmin Ward

6.1% 2.9% 2.7% 2.4% 29.2% 13.8%

1.5 % 41.1 % 1.4 % 0.5 % 13.0% 19.6%
Figure 9: Fitting two real captured BRDFs (brushed aluminum and purple satin) from [Ngan et al. 2005]. We also give the fitted results
using Ashikmin’s and Ward’s parametric anisotropic models for comparison. Notice that the parametric models cannot fit the bottom data
(purple satin) well, since its lobe is off-specular. The L2 error for each configuration is also given in the corresponding subtitle.

where [xi,yi] = U · [x′i,y′i]. Hence the warped ASG Gh (h(i))
can be approximated by an ASGG (i; [xi,yi, zi], [λi, µi]) (Fig. 10
(c)). When using an ASG mixture to represent BRDFs, spherical
warping is applied to each ASG in the mixture. Detailed validation
of spherical warping can be found in Section 7 of the supplemental
document.

5.3 Visibility Approximation

We adopt the spherical signed distance function (SSDF), which is
presented in [Wang et al. 2009], to approximate visibility. Specifi-
cally, given a visibility function V (i), SSDF θd(i) stores the nearest
angular distance from the direction (point) i to the nearest direction
(point) on the visibility 0/1 boundary, and its sign is positive (+)
when V (i) = 1 or negative (−) when V (i) = 0. By using SSDF,
the product integral of an SG with a visibility function can be com-
puted as a 2D function:∫

Ω

Giso(i;p, ν) · V (i) di ≈ fh(θd(p), ν),

where fh is a sigmoid function composed with a polynomial [Wang
et al. 2009]. However, the above equation cannot be directly used
for ASGs, since the SSDF representation is essentially isotropic
and does not account for azimuthal angle changes. Hence, to
compute the product integral of a visibility function with an ASG
G(i; [x,y,p], [λ, µ]), we instead define an effective bandwidth√
λµ, which is motivated by approximating the ellipse-shape sup-

port of ASG by an equal-size circle-shape support, to compute the
product integral, which is:∫

Ω

G(i; [x,y,p], [λ, µ]) · V (i) di ≈ fh(θd(p),
√
λµ). (27)

The product of an ASG and a visibility function can still be approx-
imated as an ASG, only attenuating the amplitude of the original
ASG:

G(i; [x,y,p], [λ, µ])·V (i) ≈ fh(θd,
√
λµ)

fh(π
2
,
√
λµ)
·G(i; [x,y,p], [λ, µ]).

(28)
Finally, we also employ PCA to compress the precomputed SSDF.

The above approximation using effective bandwidth to compute the
product integral of an ASG with visibility can incur errors when the
anisotropic ratio is large. However, it will only affect the softness
of the shadow boundaries (since in other locations, the visibility
values are mostly either zero or one). In Fig. 11, we evaluate our
visibility approximation. In the test scene, both the teapot and the
cylinder have anisotropic BRDFs in both rows, while the plane has

a diffuse/anisotropic BRDF in top/bottom rows, respectively. No-
tice that in both cases, our approximation without PCA compres-
sion (col. (d)) exhibits subtle differences with the references (col.
(e)). We also give results generated using SSDFs compressed with
16, 32, and 48 PCA terms, respectively. In practice, we find using
48 PCA terms achieves a good trade-off between accuracy and per-
formance, and hence all the other results in the paper are rendered
using 48 PCA terms for visibility approximation.

6 Applications and Results
To demonstrate the merits of ASGs in practice, we implement two
dominant SG-based rendering applications, all-frequency rendering
with dynamic BRDFs [Wang et al. 2009] and bi-scale BRDF edit-
ing [Iwasaki et al. 2012a], using the ASG-based rendering frame-
work. In this subsection, we will describe how to implement these
two applications and show the rendering results. Our implementa-
tions are done in OpenGL on a PC with Intel Xeon 2.27G CPU and
8 GB memory, and an NVIDIA Geforce GTX 680 graphics card.
All the result images are generated with a resolution of 720× 480.
The performance of all the generated results in run-time rendering
is reported in Table 1. As for the timing of ASG fitting procedure,
in our experiments, fitting an environment map (with resolution of
1024 × 768) costs 23-51 seconds; fitting a measured BRDF (with
NDF resolution of 256×256) using 1-3 ASGs takes 0.9-3 seconds.

All-frequency rendering with dynamic BRDFs. To finally
achieve all-frequency rendering, we need to evaluate both the dif-
fuse term Ld (Eq. 20) and the specular term Ls(o) (Eq. 21).

By approximating the incident lighting L(i) using ASG mixtures
L(i) ≈

∑
j ljGj (i) (Gj (i) is short forG (i; [xj ,yj , zj ], [λj , µj ])

), the diffuse term Ld can be approximated as:

Ld ≈
∫

Ω

(∑
j

ljGj (i)

)
V (i) max(i · n, 0) di

≈
∑
j

lj max(zj · n, 0)

∫
Ω

Gj (i)V (i) di, (29)

Here, since the cosine term max(i·n, 0) is smooth, we approximate
it as a constant value and take it out of the integral. The left ASG
integral with visibility can be efficiently evaluated using Eq. 27.

For the specular term Ls(o), we first obtain the ASG-based repre-
sentation of 2D BRDF slice through spherical warping : ρs(i,o) ≈
M(i,o)

∑
kGk (i) (usually 1 ≤ k ≤ 4, and Gk (i) is short for

G (i; [xk,yk, zk], [λk, µk]) ), and then Eq. 21 can be rewritten as:



(a) 16 PCA terms (b) 32 PCA terms (c) 48 PCA terms (d) uncompressed (e) reference

Figure 11: Evaluation of visibility approximation.

scene #vert. BRDF/#ASG. #E.L./ #P.L. fps

dish (Fig. 1) 25k Ashikmin/1 10/2 125
teapot (Fig. 11) 54k Ashikhmin/1 10/0 201

dish ball (Fig. 12) 29k Ward/1 10/2 120
dragon (Fig. 13 (a)) 46k aluminum/4 8/0 83

dish (Fig. 13 (b)) 25k s.v. aluminum/1 14/0 218
pillow (Fig. 13 (c)) 6k s.v. wallpaper/1 8/0 278

dish card(Fig. 13 (d)) 17k s.v. satin/1,s.v. card/1 12/0 245
cloth(Fig. 14) 16k bi-scale BRDF/2 12/0 182

Table 1: Performance of the results shown in this paper. From
left to right, we give the name of the scene, the number of vertices,
the BRDF used (and the number of ASGs used to approximate the
BRDF), the number of ASGs for environment lights and local point
lights, and the framerates.

Ls(o) ≈
∫

Ω

L(i)V (i)

(∑
k

M(i,o)Gk (i)

)
max(i · n, 0) di

≈
∑
k

M(zk,o) max(zk · n, 0)

∫
Ω

L(i) (V (i)Gk (i)) di

≈
∑
k

M(zk,o) max(zk · n, 0) · gk
∫

Ω

L(i)Gk (i) di. (30)

Here, the first equation relies on the fact that bothM and the cosine
term max(i · n, 0) are smooth, and hence can be approximated as
constants and taken out of the integral. The second equation ap-
proximates the product of an ASG with visibility again by an ASG
(Eq. 28), where gk = fh(θd(zk),

√
λkµk)/fh(π

2
,
√
λkµk).

Next, the specular term is reduced to integrate an ASG with the
lighting, in other words, an ASG-filtered lighting. To efficiently
evaluate the ASG filtered value using graphics hardware, follow-
ing [Wang et al. 2009], we first build a pre-filtered mipmap for
the environment map (stored as cube map texture). At runtime, in-
stead of using an isotropic texture lookup method (i.e. textureLod)
to query the filtered lighting intensity, we use OpenGL built-in
anisotropic texture lookup method (i.e. textureGrad) for that pur-
pose. The gradient directions used for textureGrad are calculated
at run-time from the elliptical support of the ASG. Note that, cur-
rent graphics hardware supports a maximal anisotropy of 16 : 1,
which is usually enough for most anisotropic BRDFs. Alterna-
tively, we can manually put texture samples to obtain filtered re-
sults for extremely anisotropic BRDFs (anisotropy > 16 : 1) or for
better quality.

Fig. 12 shows the results of a dish ball scene containing anisotropic
Ward BRDFs with different levels of anisotropy and different lo-

Figure 14: Bi-scale BRDF editing of the cloth scene.

cal frames. The BRDF of each object is approximated using only
one ASG. Notice the highly anisotropic highlights on the balls
and on the dish. In Fig. 13, we show the results with measured
anisotropic BRDFs and spatially-varying BRDFs from [Ngan et al.
2005; Lawrence et al. 2006; Wang et al. 2008; Dong et al. 2010].
Fig. 13 (a) shows a dragon scene with the measured brushed alu-
minum BRDF from [Ngan et al. 2005], which is approximated us-
ing 4 ASGs. Fig. 13 (b)-(d) show 3 different scenes with mea-
sured spatially-varying BRDFs. Note that the aluminium BRDF in
Fig. 13 (b) is highly anisotropic (i.e., anisotropy ratio is about 10),
and our method is capable of faithfully reproducing its appearance
using only one ASG.

Bi-scale BRDF editing. Let us briefly review the original SG-based
bi-scale BRDF editing method [Iwasaki et al. 2012a]. The large-
scale effective BRDF ρ̄ is the convolution of a small-scale isotropic
BRDF ρsmall and an effective bi-directional visible normal distri-
bution function (BVNDF) γ̄:

ρ̄(i,o) =

∫
Ω

ρsmall(n, i,o)γ̄(n, i,o) dn. (31)

The original method approximates both the small-scale isotropic
BRDF and the effective BVNDF using SG mixtures, and approxi-
mate the convolution of two SGs again by an SG. Hence, the large-
scale effective BRDF ρ̄ can also be approximated by SG mixtures,
and rendering can be achieved using the method of [Wang et al.
2009].

We slightly modify the approximation of BRDFs by representing
the effective BVNDF using ASG mixtures, and still represent the
small-scale isotropic BRDF using SGs. As shown in Sec. 4.3, the
convolution of an ASG with an SG can still be approximated as an
ASG. Hence, the large-scale effective BRDF ρ̄ can be approximated
by ASG mixtures, so that rendering can be achieved using our
ASG-based rendering framework. The advantage of using ASGs
instead of SGs to represent BVNDF lies in that much less number
of ASGs are required for effectively representing highly anisotropic
BVNDFs. In Fig. 14, we show the results of ASG-based bi-scale
BRDF editing. In this example, we approximate the BVNDF of the



Figure 12: Dish Ball.

(a) (b) (c) (d)
Figure 13: Results of measured and spatially varying BRDFs.

“roof shape” small-scale geometry using only 2 ASGs, and in con-
trast, a large number of SGs are required to reach similar quality.
By changing the small-scale geometry, which is shown in the top-
left subfigures in Fig. 14, we can modify the large-scale appearance
accordingly. Please refer to the accompanying video for interactive
editing sequences.

Comparisons with SGs. In the teaser figure (Fig. 1), we further
compare the rendering results using a single ASG with those using
different number of SGs. The test scene consists of a metal dish
exhibiting highly anisotropic appearance, which is modeled by an
Ashikmin BRDF with anisotropy ratio of 10:1. The incident light-
ing includes an environment map and two local lights. As demon-
strated by the rendering results, ASGs are much superior to SGs in
dealing with such scenes.

7 Discussions and Conclusion

Scope. In above, we have demonstrated the usage of ASGs in
two important rendering applications. Supported by the newly-
derived operators, we can easily further adapt ASGs to other ex-
isting SG-based applications and improve their scalability in han-
dling anisotropic effects. E.g., ASGs can be applied in normal map
filtering [Han et al. 2007] to better represent anisotropic NDFs, or
used in indirect highlight rendering [Laurijssen et al. 2010] to deal
with anisotropic BRDFs, or employed by real-time rough refrac-
tion [de Rousiers et al. 2012] to render anisotropic refraction ef-
fects, etc. Besides rendering, since SGs have been widely used for
function approximation and nonlinear regression estimation in the
field of machine learning, ASGs and its operators with closed-form
solutions are also expected to benefit this kind of applications in
fields beyond computer graphics.

Conclusion. In summary, we present a novel anisotropic Spher-
ical Gaussian (ASG) function and the approximate closed-form
solutions for its integral, product and convolution operators, the
accuracy of which is validated by quantitative evaluations. Be-
sides inheriting the nice properties of SGs, ASGs are intrinsically
anisotropic and hence can represent anisotropic spherical function
much more effectively and efficiently compared with SGs. Based
on the ASG-based representations, we have developed an ASG-
based rendering framework and implemented two important ren-
dering applications to demonstrate the effectiveness and efficiency

of ASGs in real applications.

There are several future directions for ASGs. First, we currently
only derive the convolution operator of an ASG with an SG. To
make ASGs more mathematically complete and also benefit future
applications, it is valuable to investigate how to compute the convo-
lution of two ASGs. Regarding the convolution of two ASGs to be
performing anisotropic blurring using one ASG over another one,
it is possible to derive its analytic formula. Secondly, an efficient
and stable method to achieve importance sampling from an ASG
distribution may also potentially benefit offline rendering research.
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