Image vectorization and editing via linear gradient layer decomposition
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Fig. 1. Given the input image (1st column) and a segmentation mask (2nd column), we can decompose the image into several linear gradient layers to be
saved in vector graphics (3rd column). Then we can perform recoloring (4th column) or object remove-insert-replace edits using these linear gradient layers in
illustrator software (5th column). Image designed by Altagracia Art on Shutterstock.com.

A key advantage of vector graphics over raster graphics is their editability.
For example, linear gradients define a spatially varying color fill with a few
intuitive parameters, which are ubiquitously supported in standard vector
graphics formats and libraries. By layering regions filled with linear gradi-
ents, complex appearances can be created. We propose an automatic method
to convert a raster image into layered regions of linear gradients. Given an
input raster image segmented into regions, our approach decomposes the
resulting regions into opaque and semi-transparent linear gradient fills. Our
approach is fully automatic (e.g., users do not identify a background as in
previous approaches) and exhaustively considers all possible decompositions
that satisfy perceptual cues. Experiments on a variety of images demonstrate
that our method is robust and effective.
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1 INTRODUCTION

Image editing is a ubiquitous task in computer graphics. Raster
images define each pixel’s color independently. Any edit is possible,
yet every edit is tedious. For example, image scaling often introduces
unexpected noise and is difficult to eliminate. In contrast, vector
graphics image formats define images in a structured way, such
as an arrangement of parametric strokes and regions filled with
color-defining functions. For example, a linear gradient g(x,y) is
defined by a 2D line and (potentially semi-transparent) linearly
interpolated colors along the line. The color of any point x,y is
defined as the color of the closest point on the line. Linear gradients
are ubiquitously supported in 2D vector graphics standards and
APIs (e.g., SVG, PostScript, CSS).

We propose an algorithm to decompose a segmented raster image
into layered regions of linear gradients. Once decomposed, the linear
gradient color-defining functions allow the image to be easily edited
in a structured way. Our decomposition prefers semi-transparent
upper layers, so complex effects like glossy highlights are preserved
when editing the base color (Figure 1). Like other recent work on
linear gradient decomposition [Favreau et al. 2017; Richardt et al.
2014], our approach also requires a segmentation of the input raster
image into piecewise-continuous regions and does not consider
the problem of converting the region boundaries into parametric
curves. Unlike these approaches, our approach requires no manual
interaction.
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Our contribution is a fully automatic approach to gradient layer
decomposition that finds globally optimal region groups and layers
given a segmented input image. Expressed as a discrete optimization
problem, the search space is intractably large. We drastically reduce
the search space with perceptually-motivated constraints, resulting
in a small space that can be exhaustively enumerated quickly.

2 RELATED WORK

Image vectorization. Most image vectorization algorithms propose
to represent images using various parametric representations, such
as linear or quadratic gradients [Lecot and Levy 2006], diffusion
curves and inverse diffusion curves [Orzan et al. 2008; Xie et al. 2014;
Zhao et al. 2018], gradient meshes [Sun et al. 2007], subdivision
surfaces [Liao et al. 2012] and so on. These methods provide specific
global data structures with high complexities to represent the image
content, rarely considering the image content’s semantic structure
and inter-relationships between objects in the image. The editability
enabled by these complicated parametric representations is limited.
Several methods vectorize line drawings [Bessmeltsev and Solomon
2019; Favreau et al. 2016; Kim et al. 2018; Puhachov et al. 2021;
Stanko et al. 2020] (see [Yan et al. 2020] for a recent survey), region
boundaries [Alberto Dominici et al. 2020; Hoshyari et al. 2018],
and textured materials [Lopez-Moreno et al. 2013; Song et al. 2015].
Recently, deep-learning-based image vectorization methods have
been introduced, either via a supervised training approach using
CNNs or RNNs [Huang et al. 2018; Reddy et al. 2021; Shen and
Chen 2021] or an unsupervised optimization with the help of a
DNN [Sbai et al. 2020]. In our work, we propose to use a graph-
based search to decompose the image contents into several editable
layers whose colors and transparency are represented by linear
gradient parameters.

Layer decomposition. Decomposing the image into several editable
layers containing meaningful content can enable efficient and in-
tuitive editing. Commercial tools like Photoshop also manipulate
images using layers as their data structure.

Various layers extracted in [Aksoy et al. 2017, 2018; Du et al.
2021; Koyama and Goto 2018; Tan et al. 2018a, 2015, 2018b,c, 2016;
Wang et al. 2019; Zhang et al. 2021, 2017] are in raster image format.
These layers are either ordered RGBA semi-transparent layers or
unordered mixing weights maps, each of which corresponds to each
palette color. Intrinsic layer decomposition [Meka et al. 2021; Shen
et al. 2008] is suitable only for photographs and a particular kind of
illumination-aware edit.

The most similar works to ours are [Richardt et al. 2014] and
[Favreau et al. 2017]. The former work proposed to iteratively de-
compose the image region into vectorized layers (linear or radial
gradient) by manually selecting the ordered regions. [Favreau et al.
2017] proposed a Monte Carlo Tree Search algorithm that can de-
compose and merge layers in a sampling manner, also with the help
of both user hints for determining opaque layers and the X-junction
hint [Singh and Huang 2003] for determining layer order. In con-
trast, we propose an efficient graph-based method to extract several
linear gradient layers automatically, without any user intervention.
We reduce the search space in a global manner using predefined

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

rules, leading to a better chance of finding globally optimal solutions
and more reasonable decomposition results.

3 BACKGROUND

Layers are indispensable components in digital image editing soft-
ware to create images. Our paper focuses on vectorized images that
are composed of one specific type of layer, named linear gradient
layers. Below, we first review its concept, then describe how images
can be composed with them.

Linear gradient layers. Formally, a linear gradient layer is defined by
a mask L and several parameters. The color and opacity at a pixel
position p = (x,y) can be written as:

0 , ifpis outside L,
p-n)-cg+co , ifpisinside L.

CraBa(p) = { ( 1)
We use a 4-channel RGBA vector Crgga = (Crga, Ca) to denote
the RGB colors (Crgp) and alpha-channel opacity (Cp) together.
n = (ny,ny) is the normalized gradient direction. cg and co are
both 4-channel color vectors. cg indicates the derivatives of colors
and opacity along the gradient direction, and c¢ indicates color and
opacity values at the origin. Inside its mask, both the color and
opacity values change smoothly and linearly along the gradient di-
rection n, while the values are zero outside the mask. In addition, we
also restrict the 4-channel RGBA vector within the unit hypercube
[0, 1]4, to ensure valid RGB color and opacity values.

In summary, besides the mask L, the parameters of a linear gradi-
ent layer include the gradient direction n and two 4-channel vectors
Cg and co. Since n is a normalized direction, the total degrees of
freedom of the parameters is 9. For simplicity, we refer to linear
gradient layers as layers.

Image compositing from linear gradient layers. Given a sequence of
n layers, the colors of image I could be composited through iterative
alpha blending from bottom to top:

k Kk ~k ey k-1
Ipge = Ca - Crgp + (1 = C1) - Iygps @)

where I}%G  denotes the colors of the default opaque canvas, and

I = I is the final composited colors. CIIEGB and Cllg denote the
color and opacity values of the k-th layer, respectively. Note that
the compositing is performed in a pixel-wise manner, but we omit
the pixel position p in the above equation for denotation simplicity.

Different orders of layers would result in different composition
results. However, the order does not always matter. If two layers
(i-e., their masks) do not overlap with each other, switching their

order would not change the result.

4 OUR METHOD
4.1 Problem Formulation

The goal of our method is to solve the inverse problem of layer
compositing described in Equation 2: finding compositing layers for
a given input rasterized image. Specifically, two types of parameters
need to be determined. One type is the discrete parameters: the
number of layers, their masks, and stack order, which we refer to as
the layer configuration. The other type is the continuous parameters:
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Fig. 2. A layer configuration corresponds to a region supporting tree. (a)
The input image and region segmentation, (b) a layer configuration, (c) the
corresponding region supporting tree, (d) another layer configuration of (c).
The region node colors in (c) correspond to the region colors in (a).

the linear gradient direction and two 4-channel color vectors for
each layer, which we refer to as the layer parameters.

Once all the layers are obtained, we could naturally reconstruct
the original image and make edits to it by modifying the masks,
color/opacity parameters, or adding/removing objects as shown in
Fig. 1. However, the above problem is rather non-linear and very ill-
posed. The number of layers, their masks, as well as layer parameters,
are all unknown. To reduce the difficulty of the problem, we follow
previous work [Favreau et al. 2017] and ask users to additionally
provide a segmentation of the input image.

4.1.1 Input and outputs. Formally, given an input image I and its
segmentation which partitions the input image into a set of disjoint
regions, i.e., R = {Ry, ..., Ry }, we seek a sequence of parameterized
layers L = [Ly, ..., L,] in ascending order (i.e., L; is on the bottom
while Ly, is on the top), which faithfully reconstruct the input image
through alpha blending (Equation 2).

4.1.2  Assumption on layer masks. With the given segmented re-
gions in hand, we impose an assumption that each layer (i.e., its
mask) can only be composed of one or more adjacent regions. In
other words, regions are the basic units forming layer masks.

An example is shown in Fig. 2, where the image is segmented
into 6 regions. The bottom layer L; is composed of all 6 regions, i.e.
L; = {Ry, Rz, R3, R4, Rs, Rg}, while the top layer Ly is composed of 3
regions, i.e. Ly = {Rq4, Rs, Rg}. While regions are disjoint, layers are
allowed to overlap with each other. A region can be covered by one
or more layers.

Note that exchanging the order of two non-overlapping layers
would not change the compositing result. As shown in Fig. 2 (b),
layer configurations [L1, Ly, L3, L4] and [L1, L3, Ly, L4] are identical.
In fact, only the topological order of layers matters.

4.1.3  Energy function. In order to find the best layer sequence, we
define an energy function to assess its quality. The criteria of a
good energy function would be considering both the fidelity of its
reconstruction and the compactness of the layers. Specifically, our
energy function is defined as the weighted sum of a reconstruction
term Erecon, @ gamut term Egamut, and a compactness term Ecompact:

E = wrErecon + WgEgamut + WeEcompact- 3)

We empirically set the weights to w, = 20, wy = 10, and w, = 0.02
for all examples.

The reconstruction term Erecon prefers the reconstructed image
to be as close to the input image as possible. We follow Favreau
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et al. [2017] and define it as the average L2 difference between the
reconstructed image I and the input image I°™:

1 i 2
Erecon = 37 Do IRaA (D) = s DI, @

where p denotes a pixel, N is the pixel count, and the summation
enumerates over all pixels. Note that the channel format of the input
image is allowed to be either 4-channel RGBA or 3-channel RGB. If
it is the latter, we only compute the L2 difference on RGB colors.

We define a gamut term to penalize layers with color outside the
RGB cube or large opacity (i.e., larger than 0.8). Its purpose is to
generate layers with valid color and opacity values, and encourage
more semi-transparent layers to achieve good editability. It is defined
as:

1 & . 2 : 7 2
Egamut = 21] p;_ IChan (@) = Chga®IIF + IC (p) - CL (@)%
&)

where M denotes the total number of enumerated pixels. Note that if
a pixel is covered by multiple layers, it would be considered multiple
times. In the equation, C} ;5 (p) and C}, (p) denote the RGB color

and opacity of the i-th layer at pixel p, respectively. Cf{GB (p) denotes
the projected color to the RGB cube, i.e., the closest color inside

the RGB cube to CﬁGB(p). Cj\(p) = clip(0, 0.8, Cf\(p)) clamps the
opacity value within [0, 0.8].

The compactness term Ecompact encourages smaller-sized layers
to be on top of larger-size layers. It is defined as:

Ecompact = lei<j§n,L,ﬂLj¢(D ]I(|Li| < |Lj|)s (6)

where |L;| and |L;| denote the pixel number in L; and L;, and I(-) is
an indicator function with value 1 if the condition is satisfied and
value 0 otherwise. In this term, we enumerate all overlapping layer
pairs and penalize whenever the lower layer (L;) has a smaller size
than the upper layer (L;).

4.2 Method Pipeline

To compute the layers of a given rasterized image, we need to first
determine the layer configuration and then estimate the layer param-
eters. We solve this challenging problem with two key observations.
First, we find that a layer configuration can be derived from a novel
data structure we call the region supporting tree (Section 4.3). Second,
we find that the space of region supporting trees can be effectively
reduced with some perceptually-motivated rules, which makes the
search process very efficient.
Based on these observations, we design our method as follows:

e Construction of region adjacency graph. First, based on the
region segmentation of the input image, we build a region adja-
cency graph. It is a directed graph where a node corresponds to
a region and an edge corresponds to a supporting relationship
between adjacent regions. The graph essentially defines the space
of all region supporting trees. See Sec. 4.4 for details.

e Enumeration of region supporting trees. Second, we perform
a depth-first-search on the region adjacency graph to find all
valid region supporting trees. To speed up this search, we further
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Fig. 3. Pipeline of the proposed approach. Our method takes an image and the region segmentation as input and outputs the decomposed linear gradient
layers. The pipeline mainly contains three steps. 1) Construct the initial region adjacency graph and further simplify it with some additional criteria. 2)

Enumerate all region supporting trees from the simplified region adjacency graph. 3) For each region supporting tree, derive the layers’ masks and estimate
the layer parameters. At last, we evaluate the decomposition results and output the best one (the first column in the middle row). The region node color in the

graph and tree is consistent with the regional segmentation. Rectangles with different colors in the 3rd column of the middle and bottom rows indicate the

layers’ mask range.

impose a few rules considering tree depths and X-junctions to
quickly prune invalid branches in the search space. See Sec. 4.5.

e Layer merging and parameter optimization. Next, for each
valid region supporting tree, we perform layer merging to get
the layer configuration and further estimate the layer parameters.
Finally, we pick the candidate with minimal loss and return it to
the user. See Sec. 4.6 and Sec. 4.7.

The full pipeline of our method is illustrated in Fig. 3.

4.3 Supporting Relationships

We first introduce three concepts used throughout the paper: layer
supporting relationships, top layers, and region supporting relation-
ships.

4.3.1 Layer and region supporting relationships. In the example
shown in Fig. 2, the image contains 6 regions {R1, ..., Rg}. Fig. 2 (b)
shows a layer configuration with 4 layers (from bottom to top):

Ly ={R1,Ro, ... Rs}, Ly = {R3, Ry}, L3 = {R3,R¢}, Ly = {R4, R5,Rs}. (7)

Layer supporting relationship. We say that a lower layer L;
supports a higher layer L; if they satisfy two conditions: 1) the two
layers overlap; 2) one or more overlapping regions are not covered
by any in-between layer Ly (i < k < j). The overlapping regions
satisfying condition 2) are referred to as the supporting region(s)
from layer L; to L;. For example, L1 supports Ly through regions
Ry and Ry, Ly supports Ly through region R4, and L3 supports Ly
through region Rg.

Top layer. One region might be covered by multiple layers. We
denote the highest covering layer of a region as its top layer. For
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example, Ry is covered by three layers L1, Ly, and Ly, so its top layer
is the highest layer Ly.

Region supporting relationship. Given two regions R; and Rj,
suppose their top layers are L; and L;, respectively. We say that R;
supports Rj (denoted as R; — Rj) if 1) they are adjacent regions
in the segmentation; 2) layer L; supports layer L;; and 3) region
Rj is one of the supporting regions from L; to L;. For example, Ry
supports Ry, and R3 supports Rs. However, Ry does not support Ry.
While Ry’s top layer (L1) supports R4’s top layer (Lg), Ry does not
belong to their supporting regions. This is because Ry is covered by
an in-between layer, Ly, in addition to L; and Ly.

There are two properties for region supporting relationships: 1)
Initially, a region can support multiple regions at the same time,
but it can only be supported by at most one region. 2) We define
Ri —» Rj — --- — Ry as a supporting path starting from any
region R;. We claim that this path does not include cycles, because
a supported region’s top layer is always higher than that of the
supporting region. If there is a loop, a higher layer will in turn
support a lower one, which is impossible.

4.3.2  Region supporting trees. From the above concepts and prop-
erties, we find that the region supporting relationship of a given
layer configuration can be formulated as a DAG (directed acyclic
graph), such as the one shown in Fig. 2 (c). In the DAG, each region
corresponds to a node whose in-degree is < 1. A directed edge de-
notes a supporting relationship between two regions. Furthermore,
for simplicity, we add a virtual node Ry representing the canvas and
also add virtual directed edges from Ry to those regions without any
support. Thanks to the virtual node Ry serving as the unique root,



the DAG thus becomes a directed tree, which we call the region
supporting tree.

The region supporting tree naturally inherits all the properties
of a tree, such as that it is a connected graph and there are no
cycles in it. Although a layer configuration corresponds to a unique
region supporting tree, conversely, a region supporting tree may
correspond to multiple layer configurations. Such an example is
shown in Fig. 2 (d). The difference between this layer configuration
and the one in Fig. 2 (b) lies in whether the top layers of R4, Rs, and
R should be different layers or merged into one layer. We discuss
this further in Sec. 4.6.

: (%]

(@)

Fig. 4. Region adjacency graph simplification. (a) The input region segmen-
tation. (b) The initial region adjacency graph. (c) Edges removed with the
surrounding rule. (d) Edges removed with the size rule. (e) Edges removed
with the adjacent strength rule.

4.4 Construction of Region Adjacency Graph

Given an input image and its region segmentation, the first step
of our method is to construct a region adjacency graph. We treat
all regions as nodes and additionally add a virtual region node Ry
to indicate the image canvas. A directed edge from region R; to
region R; indicates that R; is allowed to support R;. Initially, for
all pairs of adjacent regions, we add bidirectional edges between
them indicating that they are allowed to support each other. For the
virtual region Ry, we add directed edges from it to all other regions.

The region adjacency graph essentially defines the space of all
possible region supporting trees, i.e., a spanning tree of the region ad-
jacency graph is exactly a region supporting tree. However, directly
enumerating over all spanning trees of the above initial densely-
connected graph would be rather expensive. Motivated by figure-
ground and part perception of shapes [Wagemans et al. 2012], we
propose three rules to remove those very unlikely supporting edges
from the graph to reduce the search space.

e Surrounding rule. Consider a region R; which has holes in it.
For any region Ry in its hole, we do not allow R to support Ry,
as this would violate figure-ground perception. Furthermore, we
do not allow Ry to be supported by the virtual region Ry. This is
because Ry should be supported by its enclosing region (i.e., Ry)
or the descendant nodes of R;.

e Size rule. Consider two adjacent regions R; and Ry. If the size

[Rz |

= >
A 2, we do

of Ry is much larger than the size of Ry, i.e.,

Image vectorization and editing via linear gradient layer decomposition « 1:5

not allow the small-sized region Ry to support the large-sized
region Ry. Violation of this rule will probably lead to larger layers
covering smaller layers, which we would like to avoid, as this
violates figure-ground perception.

o Adjacent strength rule. Consider a region R; which is adjacent
to multiple other regions. Let Ry be one of its adjacent regions and
define the adjacency strength S(Rg2, R1) of Rz to R; as the length of
their shared boundary. Let the largest adjacency strength from R;
to any of its adjacent regions R; be Syqx = max; S(R;, R1). If the
adjacency strength of R is extremely small, i.e., % < 0.4, we

do not allow Rz to support R;. This rule removes rggljé;es between

adjacent regions that are very weakly linked to each other. This
is supported by the skeletal model of shape part perception.

After applying the above rules, the region adjacency graph is heavily
simplified. Fig. 4 provides an example of the simplification process.

4.5 Enumeration of Region Supporting Trees

After obtaining the simplified region adjacency graph, we perform
a depth-first search to find all spanning trees. Recall that each span-
ning tree is exactly a region supporting tree. The depth-first search
starts from the virtual canvas node, which is always considered the
root of the tree, and recursively grows the tree until all nodes have
been visited. For acceleration, we further introduce two pruning
rules to efficiently eliminate unnecessary search branches.

The first pruning rule is to restrict the tree’s depth. A region
supporting tree with a large depth would lead to a relatively large
number of layers and unnecessarily complex layer ordering. We set
the maximum tree depth to 8.

The junction assumption is a powerful cue for early scene under-
standing [Waltz 1972] and recent transparency detection [Metelli
1974; Sayim and Cavanagh 2011]. The second pruning rule uses
the X-junction assumption. An X-junction denotes 4 regions with
a 2 x 2 grid-like layout, as shown in Fig. 5 (a). We assume that
X-junctions appear when a higher semi-transparent layer covers
two lower layers. According to the X-junction assumption, there
are only 4 allowed configurations of supporting relationships (—
denotes supporting):

1) R; — R, and R. — Ry; Ry, Ry, are supported regions;
d b b PP g

2) Rz — Ry and R; — R¢; Ry, R, are supported regions;
b d b PP g

3) R, — R. and R; — Ry; R., R; are supported regions;
b d d PP g

(4) R — Ry and R, — Ry; Ry, R, are supported regions;

as shown in Fig. 5 (b-e), respectively. If we find an X-junction that vi-
olates the above assumption (e.g., when R; — Ry, and R — Ry), we
prune the search branch. We adopt the same approach as [Favreau
et al. 2017] to extract X-junctions, i.e., detecting the size-4 cliques in
the region adjacency graph. Of course, some 4-connected regions
may not meet the X-junction assumption in practice. Users can
enable or disable this assumption according to the actual situation.

We employ the algorithm introduced by [Gabow and Myers 1978]
to enumerate all spanning trees. The time complexity is O(V + E +
EN), where V, E, and N represent the number of vertices, edges, and
spanning trees, respectively. The above two pruning rules greatly
reduce the number of edges E and therefore reduce the number of
spanning trees N significantly.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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Fig. 5. Layer merging with X-junction constraint. (a) A typical X-junction with four regions. (b), (c), (d) and (e) are four allowed configurations of supporting
relationships at the X-junction. (f) A simple input with three X-junctions, (g) the initial region supporting tree of the input, (h) merging top layers R3 and Rg in
the X-junction (Ry, Re, R3, R4), (i) adding an edge Rs — Rs3 due to R3 and Ry having been merged at the X-junction (Ry, Rs, R3, Rs), (j) merging top layers of

R; and Rs at the X-junction (R, Rz, R3, Rs).

4.6 Layer Merging

For each obtained region supporting tree from the previous step,
we first convert it into a layer representation and then try to merge
some of them according to the X-junction assumption if possible.

Recall that the X-junction assumption supposes there is a higher
semi-transparent layer on top, hence, we know that the two sup-
ported regions should be covered by the same top layer. For example,
considering the configuration in Fig. 5 (b), which is R; — R, and
R: — Ry, we trivially know that R, and Ry, have the same top layer.
We refer to this as the same top layer property.

Suppose we have obtained the region supporting tree shown in
Fig. 5 (g) from the input segmentation in Fig. 5 (f). Simply imagining
that each region corresponds to a layer that covers it and all of
its descendant regions (nodes), we could obtain an initial layer
configuration with 6 layers:

Ly =ARy,....Re}, L2 = {Ra},
L3 = {R3,Rs}, Ly = {Rs},Ls = {R¢}, L = {R3}.
However, it is easy to find that this layer configuration is not optimal,
e.g., Ly, Ls, and Lg are obviously the same layer and should be
merged. We will use the same top layer property of X-junction to
help with layer merging.

This example has 3 X-junctions. Let’s first look at one X-junction
{R1, Rs, R3, R4} (Fig. 5 (h)). According to the edge connections be-
tween them, we could derive that R3 and Rg are supported regions,
hence their top layers (i.e., L¢ and Ls) should be merged. We refer to
the merged layer containing R3 and Rg as Le 5. This leads to a layer
configuration of 5 layers:

Ly ={R1,...,R¢}, Ly = {R2},
L3 = {Rs, R4}, Ls = {Rs}, L5 = {R3, Re}
Then, let’s look at another X-junction {Ry, Rs, R3, R5} (Fig. 5 (i)).
Since Rg and R3 are covered by the same top layer (i.e., Lg5), they
are supported regions, hence, there should be a supporting edge
from Rs to R3, which indicates that Ls (Rs’s top layer) supports
Le,5 (R3’s top layer). Since Lg 5 is already supported by L3, we could

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

merge L3 and L4 into a new layer L3 4, which reduces to 4 layers
overall:

Li={Ry,...,Re},Ly = {Ro}, L34 = {R3, R4, Rs}, Lg 5 = {R3, Re}.

Finally, let’s look at the third X-junction {Ry, Ry, R3, Rs} (Fig. 5
(j))- We know that Ry and Rs are supported regions, so their top
layers (i.e., Ly and Lg 5) should be merged, we call the merged new
layer Lg 5,2. Which finally results in a 3-layer configuration (bottom
to top):

Ly ={R1,...,Rs}, L34 = {R3, R4, R5}, Lg 52 = {R2, R3, Re}.

For layer merging with X-junctions, the time complexity is O (KV+
Klog(V)), where K is the number of X-junctions. It should be noted
that the ordering in which X-junctions are processed will not affect
the results. This is because an X-junction can be viewed as a con-
straint applied to the layer configurations. Multiple X-junctions can
be viewed as an unordered set of constraints.

4.7 Layer Parameter Optimization

Once we have obtained a layer configuration from the previous step
through merging, the next step is to solve for continuous layer pa-
rameters, including the gradient direction and two 4-channel color
vectors of each layer. This is done by a direct non-linear optimization
minimizing the energy function defined in Eq. 3. Specifically, we em-
ploy the L-BFGS-B algorithm [Liu and Nocedal 1989; Nocedal 1980]
via the NLopt library [Johnson 2011] with automatically computed
gradients via the autodiff library [Leal et al. 2018]. We randomly
initialize all layer parameters. The optimization stops if the number
of iterations reaches a predefined threshold (i.e., 1000) or the error
does not change (i.e., < 1.0e™> ). Although the loss function is not
convex, the optimization usually converges quickly.

Finally, when all these candidate layer configurations along with
layer parameters are obtained, we select the one with minimal
loss (Eq. 3) to generate the resulting vector graph with the Potrace
library [Selinger 2003]. We are also aware that layers with different



stacking orders could also well reproduce the input, users can output
the top k vectorization results for further selection if required.

5 EXPERIMENTS

We perform all experiments on a PC with an Intel 19-9900K 3.6 GHz
CPU with 16 cores and 16 GB RAM. Our method is implemented in
C++. We optimize for the layer parameters of each region supporting
tree in parallel using multithreading. The rest of our algorithm is
single-threaded.

5.1 Results

We generated 47 layer decomposition results. We show 17 of them
in Figs. 1 and 6. More results can be found in the supplementary
material.

We have consistently achieved high-quality decomposition results
in all examples. Notice how the highlight regions in Teacup, Cone,
Purple-circle and Telephone (Fig.6) are all successfully extracted as
transparent layers. In examples Can (Fig. 1), Teapot, and Syn1, TV and
Bottle (Fig. 6), all of which have X-junctions, our method perfectly
recovers the layer stack and achieves reconstruction results with
high accuracy.

We also tested input images with segmentations automatically
generated by the MeanShift algorithm [Comaniciu and Meer 2002;
Demirovi¢ 2019]. Three such examples are provided in Fig. 7. In
general, the decomposed layers reconstruct the input images rather
well. Since automatic segmentation algorithms tend to generate
more fragmented regions compared to manual segmentations, our
method will produce more layers.

Timing and statistics for all examples shown in the paper are
provided in Table 1. From the table, we see that the layer parameter
optimization step is the bottleneck. In general, the processing time is
proportional to the number of region supporting trees. Since only a
few region supporting trees are retained after applying our pruning
rules, the process is usually very fast.

While our method automatically decomposes the input image
together with its segmentation into layers, to improve flexibility, we
also allow users to manually specify opaque layers, especially for
X-junctions that do not meet the transparency assumption. See the
supplementary material for examples.

5.2 Parameter Evaluation

In this subsection, we evaluate the weighting parameters in our
energy function (Eq. 3), including the weight for the reconstruction
term wy, the weight for the gamut term wy, and the weight for the
compactness term w,. The parameters are set as w, = 20, wy = 10,
and we = 0.02 by default. When evaluating one parameter, the
values of the others are fixed to the default.

The decomposition results of the two tested examples are shown
in Fig. 8. For wy, larger values lead to more accurate reconstructions
but might result in more layers, i.e., a small value (w, = 1) leads
to incorrect shading in the reconstructed image of Teapot, while
a large value (w, = 200) generates more complex layers for TV.
For wy, a small value usually leads to layers with invalid colors
out of the gamut, i.e., setting wy = 0.1 generates undesirable layer
colors in both Teapot and TV. Setting wy to a relatively larger value
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(ie., wg = 20-100) leads to acceptable results. For w,, we find that
omitting the compactness term (i.e., setting w. = 0) leads to larger
layers on top of smaller layers, which is undesirable.

Overall, we find that our default parameter setting is generally
very robust. We have used the same set of parameters for all 47
examples and consistently achieved high-quality decomposition
results.

5.3 Ablation Study

We performed an ablation study to evaluate the effectiveness of the
three rules in region adjacency graph simplification, including the
surrounding rule, the size rule, and the adjacent strength rule. We
measure how the number of edges, the number of region supporting
trees, and the energy function (Eq. 3) change when disabling each
rule. Statistics are given in Table 2.

The results demonstrate that these three rules all play important
roles in region adjacency graph simplification. With these rules
enabled, we greatly reduce the number of region supporting trees,
and hence achieve a very large acceleration while maintaining a
relatively low energy loss.

For example, in the Truck example (Fig. 6 (c)), there are several
wheel regions which have holes in them. By enabling the surround-
ing rule (i.e., forcing hole-regions to be supported by their enclosing
regions), we reduce the number of trees from 672 to 112. In the
Teapot (Fig. 6 (b)) example, many adjacent regions have significant
size differences. By enabling the size rule (i.e., forbidding smaller
regions to support larger regions if their size ratio is larger than 2),
we significantly reduce the number of trees from 80,689 to 960. In
the Can (Fig. 1) example, many regions have multiple neighbors and
share short boundaries with its neighboring regions. By enabling
the adjacency strength rule, we successfully reduce the number of
trees from more than 2304 to 64. Notice that in all these examples,
the result quality (i.e., the energy loss E) is almost unchanged after
enabling the rules.

5.4 Comparisons

The most closely related works to ours are by [Richardt et al. 2014]
and Photo2ClipArt [Favreau et al. 2017]. The former completely
relies on user interaction and does not provide source code or an
executable, so we compared our method with the latter using 32
examples. The Photo2ClipArt results were generated by a Windows
executable provided by its authors.

Photo2ClipArt adopts Monte Carlo Tree Search (MCTS) to ex-
plore the space of layer configurations. While MCTS is powerful
in selecting the most promising search branches, it may become
stuck in local minima due to its greedy behavior. Our method re-
duces the search space with perceptually-motivated rules and then
enumerates all possible layer configurations to find the best result.
It is more likely to find the optimal solution.

5.4.1  Visual comparisons. 6 of the 32 examples are shown in Fig. 9.
The rest can be found in the supplementary material. As shown in
the Battery example, our method successfully recovers the layer
order at each X-junction, and the layers do not contain holes. In
contrast, Photo2ClipArt fails to obtain complete semi-transparent

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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(a) Teacup

(m) Telephone (n) TV (o) Bottle (p) Tomato

Fig. 6. Image decomposition results. In each example, we provide the input image and its segmentation on the left, the reconstructed images, and all
decomposed layers on the right. ©George Dolgikh on Shutterstock.com, macrovector on Freepik, Freepik, Zheng-Jun Du, Freepik, brgfx on Freepik, bijutoha on
Pixabay, macrovector on Freepik, starline on Freepik, Alex Staroseltsev on Shutterstock.com, Itc, Chino, Sauey, Meicilin, bajinda on Shutterstock.com.
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Fig. 7. Image decomposition results for automatically segmented images. For each example, we provide the input image, the region segmentation generated
by the MeanShift algorithm [Comaniciu and Meer 2002; Demirovi¢ 2019], the reconstructed image, and all decomposed layers.

Table 1. Timing and statistics. For each example, we provide the region count, the number of region supporting trees, the layer count of the resulting vector
graphic, and the processing time of region adjacency graph construction, region supporting tree enumeration, layer merging, and layer parameter optimization.

processing time (s)

Examples #region #tree #layer adj. graph construct. tree enum. layer merging layer param opt. total
Can (Fig.1) 25 64 20 0.1 0.5 0.1 65.8 66.5
Teacup (Fig.6 (a)) 9 10 9 0.1 0.1 0.1 2.3 2.6

Teapot (Fig.6 (b)) 34 960 30 0.1 45.6 0.2 849 894.9
Truck (Fig.6 (c)) 45 12 43 0.1 0.9 0.1 204.3 205.4
Syn1 (Fig.6 (d)) 10 8 6 0.1 0.1 0.1 3.9 4.2

Cone (Fig.6 (e)) 13 10 9 0.1 0.1 0.1 0.1 0.4

Hammer (Fig.6 (f)) 19 24 18 0.1 0.1 0.1 40.2 40.5
Lamp (Fig.6 (g)) 20 56 20 0.1 0.1 0.1 32.8 33.1
Shoe (Fig.6 (h)) 12 46 10 0.1 0.1 0.1 11.8 12.1
Purple-circle (Fig.6 (i)) 12 2 11 0.1 0.1 0.1 9.4 9.7

Battery1 (Fig.6 (j)) 20 7 20 0.1 0.1 0.1 24.4 24.7
Horn (Fig.6 (k) 22 24 22 0.1 0.1 0.1 28.5 28.8
Telephone (Fig.6 (m)) 53 8 52 0.1 0.2 0.1 99.4 99.8
TV (Fig.6 (n)) 28 8 27 0.1 0.2 0.1 17.9 18.3
Bottle (Fig.6 (0)) 24 60 22 0.1 0.2 0.1 60.8 61.2
Tomato (Fig.6 (p)) 16 23 16 0.1 0.1 0.1 11.2 115
Battery2 (Fig.9 (b)) 18 92 14 0.1 0.1 0.1 487 49.0
Coffee (Fig.9 (d)) 19 96 13 0.1 0.1 0.1 48.7 49.0
Syn2 (Fig.9 () 9 8 6 0.1 0.1 0.1 3.2 35

Tiger (Fig.9 (h)) 32 16 28 0.1 0.1 0.1 23.6 23.9
Soda (Fig.9 (j)) 26 8 23 0.1 0.1 0.1 31.9 32.2
Sound (Fig.9 (1)) 32 256 32 0.1 0.2 0.1 931.8 932.2

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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Fig. 8. Evaluating the effects of weighting parameters in our energy function. The weights are for the reconstruction term w;., the gamut term wj, and the
compactness term w.. Outputs with the default parameter values (w, = 20, wy = 10, and w, = 0.02) are shown in the top row. ©pch.vector on Freepik, Sauey.

layers at X-junctions and generates some unnatural layers (high-
lighted in the figure), such as the round layer and the rectangular
layer on the right, both of which contain holes. In the Coffee exam-
ple, Photo2ClipArt generates two broken curves on the coffee cup,
while our method produces complete ones. In the Syn2 and Tiger
examples, Photo2ClipArt generates incomplete layers with unde-
sirable holes, while our method generates more complete layers.
Similarly, in the Soda and Sound examples, our method generates
more semi-transparent and complete layers than Photo2ClipArt.

5.4.2  Reconstruction errors. For the above 6 examples, we also com-
puted the reconstruction error (Eq. 4) of the results generated by
Photo2ClipArt and our method, respectively. Fig. 10 visualizes the
difference between the input image and the reconstructed image gen-
erated by Photo2ClipArt (left) and our method (right), respectively.
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The reconstruction errors are given inside the figure. In general, the
reconstruction quality of both methods is comparable.

5.4.3 Perceptual study. To further assess the effectiveness of our
method, we conducted a perceptual study with 32 participants (aged
19 to 32). Each participant evaluated the 32 example images. Partic-
ipants were shown the input images and two anonymous vector-
ization results in random order, one generated by Photo2ClipArt
and one by our method. The visualization of vectorization results
showed all semi-transparent layers and allowed participants to inter-
actively choose subsets of the layers to composite. For each example,
participants were asked three questions: Q1 (reconstruction quality):
Which result do you think is closer to the input image? Q2 (shape
consistency): Which decomposition better reflects the parts of the in-
put shape? Q3 (editing convenience): Which decomposition is more
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Table 2. Ablation study. For each example, from left to right, we provide region count, the edge count in the initial adjacency graph, the final edge count, the
number of region supporting trees, and the energy loss E (Eq. 3) when the size rule, surrounding rule, or adjacent strength rule are disabled, respectively.

with all rules enabled w/o surrounding rule w/o size rule w/o adj. strength rule
Examples #region #init_edge #edge #tree E #edge #tree E #edge #tree E  #edge #tree E
Can (Fig.1) 25 109 39 64 1.339 41 64 1.339 69 120 1.339 50 2304 1.339
Teacup (Fig.6 (a)) 9 35 14 10 1.855 14 10 1.855 17 18 1.853 19 194  1.853
Teapot (Fig.6 (b)) 34 142 53 960  1.600 54 960  1.600 75 80,689 1.600 71 60,234 1.597
Truck (Fig.6 (c)) 45 171 58 112 2.490 63 672  2.492 88 1,152 2.491 82 10,814 2.488
Syn1 (Fig.6 (d)) 10 38 16 8 0.350 17 8 0.340 27 16 0.346 17 8 0.350
Cone (Fig.6 (e)) 13 47 33 10 0.570 33 10 0.570 43 147  0.548 34 10 0.570
Hammer (Fig.6 (f)) 19 72 26 6 1245 31 12 1245 37 12 1244 36 200 1.241
Lamp (Fig.6 (g)) 20 58 27 56 3.199 28 74 3.200 34 170 3.198 30 249  3.198
Shoe (Fig.6 (h)) 12 50 21 46 2.179 21 46 2.179 33 120 2.183 27 182 2.178
Battery (Fig.9 (b)) 18 68 29 92 0.929 29 92 0.929 50 328 0925 32 150  0.927
Coffee (Fig.9 (d)) 19 75 33 96 1.376 35 114 1.376 53 96 1.372 37 432 1.375
Syn2 (Fig.9 (f)) 9 37 12 8 0.350 12 8 0.350 23 8 0.350 15 8 0.350
Tiger (Fig.9 (g)) 32 114 40 16 2.448 40 16 2.448 52 64 2.448 49 512 2.448

| @] OF

Input Input (c) Photo2ClipArt (d) Ours

=9

. .
Input (e) Photo2ClipArt (f) Ours
Input (i) Photo2ClipArt (j) Ours Input (k) Photo2ClipArt (1) Ours

Fig. 9. Visual comparisons with Photo2ClipArt [Favreau et al. 2017]. Please zoom in to see the differences. ©macrovector on Shutterstock.com, OpenClipart-
Vectors on Pixabay, Zheng-Jun Du, callmetak on Freepik, brgfx on Freepik, upklyak on Freepik.
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(a) Battery

(d) Tiger

e) Soda B

Fig. 10. Reconstruction quality comparisons. For each example shown in Fig. 9, we visualize the difference between the input image and the reconstructed
image generated by Photo2ClipArt [Favreau et al. 2017] (left) and our method (right). The reconstruction errors are provided (inset). Values are mean-squared

error for RGB values lying in the range [0,1].

convenient for editing? Participants could choose a vectorization
result or indicate that they were equivalent.

For Q1, Q2, and Q3, our method received more votes in 27 (84%), 30
(94%), and 30 (94%) of the 32 examples, respectively. We performed a
¥ test on the voting results of our user study and obtained a p-value
much smaller than 0.001, demonstrating that our method generates
consistently superior results to Photo2ClipArt. More details can be
found in the supplementary materials.

6 CONCLUSION AND LIMITATIONS

In this paper, we proposed a novel automatic approach to image
vectorization, decomposing a rasterized image with a region seg-
mentation into several editable linear gradient layers. To do so, we
constructed a region adjacency graph and then performed a depth-
first search on the graph. We introduced perceptually motivated
rules to drastically reduce the search space, allowing us to find
globally optimal gradient layer decompositions.

Our method has several main limitations. First, our method may
take a relatively long time to process extremely complex inputs
(e.g., more than 10 minutes for the Teapot example). The reason
for the long running time is that the number of remaining region
supporting trees is still large even after pruning, and our algorithm
evaluates all of them. Our method could be further accelerated, for
example, by dynamically changing the parameters in pruning to
ensure the number of remaining region supporting trees is lower
than a predefined value. We could also use GPUs to accelerate the
layer parameter optimization step. Second, multilayer vectoriza-
tion is inherently an ambiguous problem. There are typically many
possible decompositions for a given input. Our algorithm may un-
intuitively decompose some flat-color regions into linear gradient
layers. Our algorithm cannot enumerate all possible decompositions.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

It only considers decompositions that conform to our perception
rules. In the future, we expect to make use of more perception rules
to improve the output. Third, our method only supports linear gra-
dient layers. In the future, we would like to consider other types
of gradients, such as radial or quadratic, to better fit more complex
color variations, especially for real images.
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