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Neural Global Illumination: Interactive Indirect
Illumination Prediction under Dynamic Area

Lights
Duan Gao, Haoyuan Mu, Kun Xu

Abstract—We propose neural global illumination, a novel method for fast rendering full global illumination in static scenes with dynamic
viewpoint and area lighting. The key idea of our method is to utilize a deep rendering network to model the complex mapping from each
shading point to global illumination. To efficiently learn the mapping, we propose a neural-network-friendly input representation including
attributes of each shading point, viewpoint information, and a combinational lighting representation that enables high-quality fitting with a
compact neural network. To synthesize high-frequency global illumination effects, we transform the low-dimension input to
higher-dimension space by positional encoding and model the rendering network as a deep fully-connected network. Besides, we feed a
screen-space neural buffer to our rendering network to share global information between objects in the screen-space to each shading
point. We have demonstrated our neural global illumination method in rendering a wide variety of scenes exhibiting complex and
all-frequency global illumination effects such as multiple-bounce glossy interreflection, color bleeding, and caustics.

Index Terms—Global illumination, Deep Learning
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1 INTRODUCTION

FAst global illumination (GI) is an important but challeng-
ing research problem. In photorealistic rendering, global

illumination provides many realistic visual effects such as
color bleeding, glossy interreflection, and caustics. Existing
global illumination rendering methods can be classified
into offline rendering methods and interactive rendering
methods. Classic offline rendering methods such as path
tracing [26, 33, 63] and photon mapping [25, 19, 18] can
achieve photorealistic rendering quality. However, these
methods are time-consuming and take minutes or even hours
to render a single noise-free frame which makes them not
suitable for interactive applications.

Existing interactive global illumination approaches could
be classified into three categories. The first category includes
approximated methods such as screen-space rendering meth-
ods [49, 48, 40, 68] or volume-based methods [28, 29, 8].
Such methods are usually limited to low-frequency global
illumination effects. The second category exploits filter-
ing [51] or denoising [5] to reconstruct high-quality images
from the noisy path-traced images generated at low sample
rates. However, such methods cannot achieve real-time
performance for high-quality global illumination due to the
high cost of ray tracing. The third category is precomputation-
based methods including lightmaps [23] and precomputed
radiance transfer [54]. However, existing precomputation-
based methods are usually restricted to certain conditions,
i.e., static lighting [23, 58] or point light sources [47].

To address these limitations, we propose neural global
illumination for generating rich global illumination effects
in static scenes under dynamic area light sources. The
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motivation of our method is to reduce the gap between
offline and interactive methods by applying deep learning
to the global illumination problem. The key idea of our
method is to utilize a deep neural network to represent the
complex mapping from input scene information (including
attributes of each shading point, the viewpoint, and the
incident lighting information) to global illumination. Our
method can be regarded as an advancement on classic
precomputation-based methods (e.g. PRT, lightmaps, and
light probes) and supports full global illumination for glossy
materials and dynamic area lighting. The training data
generation and network training serve as sampling and
fitting of the scene’s radiance fields. The trained network
is a compact learning-based scene representation that can
generate high-frequency global illumination during run-
time rendering. Our method can be applied to interactive
applications that rely on precomputed global illumination
techniques (similar configuration as PRT, i.e. static scenes
with dynamic lighting).

We use a deep fully-connected neural network (also
known as multilayer perceptron or MLP) to model the global
illumination. Global illumination is a high-dimensional,
highly non-linear function, thus learning high-frequency
global illumination effects efficiently with a compact neural
network is non-trivial. We introduce three strategies to
address the issue. The first strategy is to map the low-
dimension input vector into higher dimensional space by
positional encoding technique [62, 59]. Positional encoding
enables the MLP to learn high-frequency global illumination
successfully. The second strategy is to represent the incident
lighting by a combinational lighting representation that takes
advantage of different lighting cues which is crucial for
generalizing our method in complex scenes with dynamic
area light sources. The last strategy is to share global
information between shading points in screen space by a
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Fig. 1. Realistic rendering results with neural global illumination. (a) Kitchen with multiple glossy interreflection, (b) Living room with mirror reflection
and glossy reflection, (c) Bathroom-2 with strong indirect illumination and mirror reflection and (d) Cornell box with color-bleeding, glossy interreflection
and caustics.

convolutional neural network (CNN) which enlarges the
receptive fields and makes the training process easier and
more robust.

Our method can generate all-frequency global illumina-
tion in static scenes with dynamic area lighting at 22 FPS.
Our method supports many realistic global illumination
effects such as glossy interreflection (e.g. Figure 1 (a, b)),
caustics (e.g. Figure 1 (d)), mirror reflection (e.g. Figure 1 (b,
c)) and color bleeding (e.g. Figure 1 (d)). Besides, our screen-
space CNN naturally supports high resolution due to the
fully-convolutional design and our MLP rendering network
can generate global illumination independently for each
shading point. Therefore, our method can scale up to higher
resolution image generation without retraining. Thanks to the
proposed efficient learning-based representation, the storage
cost of our method is only 55.9 MB for each scene which is
compact compared to existing precomputed-based methods.

In summary, our main contributions are:
• a carefully designed framework for interactively render-

ing global illumination with dynamic area light sources;
• an end-to-end method that generates realistic global

illumination only from direct lighting and other screen
space buffers which can be rendered by any existing
renderers easily;

• a combinational incident lighting representation suitable
for dynamic area light sources; and

• a screen space neural buffer that informs the rendering
network on how to compute the global illumination
efficiently.

2 RELATED WORK

In this section, we will review recent work on interactive
global illumination and neural rendering.

2.1 Precomputed Global Illumination
Precompute radiance transfer (PRT)
In PRT [54, 55, 41, 46], the light transport for each shading
point is precomputed and stored as coefficients of basis
functions. The run-time direct/global illumination is then
reduced to a dot product. Early methods represent lighting
by spherical harmonics function and only support low-
frequency global illumination effects. Later methods [65, 16]
extend to use wavelets or spherical Gaussian as the lighting

basis and achieve all frequency global illumination. However,
all these methods assume distance lighting. Wang and
Ramamoorthi [64] presents a novel analytic derivation for
spherical harmonic coefficients from uniform polygon area
lights. Recently, Wu et al. [66] proposes an analytic formula
for the spatial gradients of the spherical harmonic coefficients
which enables PRT to support many polygon area lights in
real-time. However, existing PRT-based methods [32, 64, 66]
that support local light sources cannot handle high-frequency
global illumination well.

Lightmaps and light probes

Lightmap stores the precomputed diffuse global illumination
and is interpolated at run time to generate global illumina-
tion. The lightmap can be generated by offline rendering
algorithms such as radiosity [6] or path tracing [26]. For non-
diffuse objects, light probes are often used in production to
generate real-time global illumination. The light probe was
first introduced by Greger et al. [17] that supports global
illumination for dynamic diffuse objects. Recently, McGuire
et al. [36] proposed light fields probe that stores the full light
field and visibility in static scenes and supports real-time
global illumination. Rodriguez et al. [50] presented glossy
light probes that store glossy light paths. The glossy lighting
is reprojected from these precomputed glossy light probes
and is added to diffuse lighting to generate the final global
illumination. However, all these methods are limited to static
lighting. In contrast, our method can generate full global
illumination with dynamic area lighting.

Regression-based global illumination

Ren et al. [47] proposed a radiance regression function to
model the radiance fields of each shading point in a static
scene. They consider point lighting only while our method
can generate full global illumination for scenes with dynamic
area lighting. To support dynamic area lighting, we propose
a combinational lighting representation that represents inci-
dent lighting more efficiently. Besides, unlike Ren et al. [47],
we do not rely on complex spatial data structure at run time
and utilize a single network to fit radiance fields of the whole
scene.
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2.2 Screen Space Global Illumination
Classic screen space approach
Classic screen space global illumination is a separate post-
processing pass to generate approximate global illumination
effects from screen-space buffers. Dachsbacher and Stam-
minger [9] proposed a reflective shadow map technique that
extends the classic shadow map to handle single bounce
indirect lighting for diffuse objects. Ritschel et al. [48]
extended screen-space ambient occlusion to handle more
indirect illumination effects such as directional shadow
and diffuse color bleeding. However, these methods are
limited to producing an approximate result for local indirect
illumination. Robison and Shirley [49] proposed to blur a
perfectly specular reflection buffer at run time to generate
blurry reflections and soft shadows. However, there are still
artifacts for glossy interreflection.

Learning-based screen space approach
Learning-based screen space global illumination approaches
take several screen buffers as input and predict global
illumination directly from the input. Nalbach et al. [40]
proposed a Deep Shading framework that can predict indirect
illumination from screen space buffer. Recently, Xin et al. [68]
proposed a lightweight neural network that generates single-
bounce indirect illumination for diffuse scenes. However, as
with all the screen-space global illumination approaches,
synthesizing global illumination from only screen-space
information is a highly under-constrained and ambiguous
problem. The mapping from screen-space buffer to global il-
lumination is a one-to-many mapping that cannot be learned
by neural network efficiently. Besides, these methods fail to
produce full global illumination effects such as color bleeding
within multiple diffuse objects or glossy interreflection. Our
method can generate high-quality full global illumination in
static scenes with dynamic area lighting.

2.3 Real time ray tracing
The latest GPU embedded with ray tracing cores supports
much faster path tracing [67] compared with CPU-based path
tracing. Real-time ray tracing (RTRT) utilizes neural network-
based denoiser [5, 2, 69] to denoise the noisy image generated
by GPU path tracing with extremely low samples per pixel
(typically only one sample per pixel). However, classic RTRT
fails to generate high-frequency global illumination such as
multiple bounce glossy reflection because a single sample
per pixel is not sufficient for such complex light transport
and the latest denoisers are not suitable in these cases either.

Recently, Bitterli et al. [4] proposed a novel algorithm
(ReSTIR) for real-time ray tracing by utilizing nearby samples
in both spatial and temporal domains. ReSTIR supports high-
performance direct illumination rendering for scenes with
many lights. However, ResTIR is limited in direct illumina-
tion and cannot be easily extended to global illumination.
Concurrently, Müller et al. [39] proposed neural radiance
caching (NRC) method for fast rendering of global illumina-
tion in dynamic scenes. The main idea is online training the
radiance cache while path tracing rendering. However, NRC
fails to capture high-frequency global illumination effects
which are unrelated to the local surface features such as
shadows and caustics. To achieve real-time performance,

NRC relies on a deep-learning based real-time denoiser [20]
to produce noise-free images. Latest denoising algorithms
fail to reconstruct high-frequency indirect lighting such as
glossy reflection and caustics; thus, NRC will generate blurry
results for high-frequency global illumination effects after
denoising. In contrast, our method supports high-frequency
global illumination such as caustics (as shown in Figure 1
(d)) and can generate noise-free results on the fly without
applying any denoisers. Besides, NRC requires a lot of
complex engineering to achieve high performance while
our method can be integrated into existing rendering engines
and deep learning frameworks smoothly without specific
engineering optimization.

2.4 Neural rendering

Combining deep learning with computer graphics is rapidly
evolving. Neural rendering have successfully been utilized
in many traditional computer graphics research problems
ranges from appearance modeling [35, 10, 13], image-based
rendering [37, 14, 61], scene representation [12, 15], and light
transport [38, 71]. We will focus this review of related work
on light representation in neural rendering. For more details,
we refer to the overview of neural rendering [60].

Efficient lighting representation is crucial for photoreal-
istic neural rendering with dynamic lighting. The goal of
lighting representation is to properly provide information
about incident lighting to the neural network. There are a
variety of lighting representations proposed for different
lighting setups. Ren et al. [47] proposed to encode incident
point lighting by the coordinate of the point light source.
The position of the light source provides global lighting
information to each shading point and is sufficient for the
point light source. However, the area light source cannot
be determined only by the position. Sun et al. [57] relit
human face under natural lighting and model the lighting
by a low-resolution environment map. Granskog et al. [15]
proposed a neural scene representation that disentangles
geometry, material, and lighting. Lighting was represented
by a compact neural vector. However, both the environment
map and disentangled neural vector are not efficient for
our setup: a static scene with dynamic area light sources.
Recently, Gao et al. [14] proposed radiance cues as the
lighting representation for image-based relighting. Radiance
cues are an image-space incident lighting representation and
are suitable for different types of lighting such as local point
lighting and distant environment lighting. The limitation of
such screen-space representation is the lack of global lighting
description which is important for local lighting. We focus on
the incident lighting representation of area light sources and
an efficient lighting representation enables accurate global
illumination with dynamic incident lighting. We propose a
combinational lighting representation that combines both
global lighting information and screen-space representation.

In a concurrent work, Diolatzis et al. [11] proposed
a Markov-Chain-Monte-Carlo-based approach for efficient
training data generation. The neural renderer combined with
an explicit parameterization scene representation can render
global illumination for dynamic scenes. Rainer et al. [45]
proposed neural PRT for global illumination renderings of
static scenes under dynamic environment lighting.
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Fig. 2. Overview of Neural Global Illumination. The input Ip includes: attributes of each shading point g(p) = {p, np,mp}, view information ωv and
area lighting information Le(p) = {Ld(p), {Rk

p}Kk=1, ωe}. First, we transform the input Ip to higher dimension space by positional encoding to get
encoded feature Γ(Ip). Next, a screen-space neural buffer Bp is generated by a convolutional neural network C: Bp = C(Ip). Finally, the original
input Ip, positional encoded feature Γ(Ip) and screen-space neural buffer Bp are concatenated and fed into rendering network R to predict the
indirect illumination L∗(p). Adding direct illumination Ld(p) with the predicted indirect illumination L∗(p) produces the final rendering image.

3 METHOD

3.1 Overview

By assuming there are no participating media in the scene,
the exitant radiance could be formalized by the rendering
equation [26]:

L(p, ωv) = Le(p, ωv)+

∫
S2

fp(ωv, ωi)Li(p, ωi)|np ·ωi|dωi,

(1)

where p, np, fp denote the position, normal and BSDF of the
shading point, respectively, ωv is the view direction, Le(p, ωv)
is the emitted radiance, and Li(p, ωi) is the incident radiance
from incident direction ωi.

Based on where the incident radiance comes from, i.e.,
light sources or other non-emissive objects, the global illumi-
nation defined in Equation 1 can be divided into direct illu-
mination Ld(p, ωv) and indirect illumination L∗(p, ωv). The
direct illumination from area light sources can be computed
efficiently by Linearly Transformed Cosines (LTCs) [21, 22].
Rendering indirect illumination from area light sources is
a much more challenging problem and takes a rather long
time to compute in general.

Our key observation is that indirect illumination L∗(p, ωv)
of static scenes is determined by the shading point, view
direction, and incident area lighting since the indirect illu-
mination is synthesized from only these inputs in offline
rendering algorithms. Based on this observation, we can
rewrite the indirect illumination of static scene as:

L∗(p, ωv) = F(g(p), ωv, Le(p)), (2)

where g(p) are the attributes of the shading point including:
position p, normal np and material parameters mp, Le(p) is
the representation of area light sources and F represents the
complex, highly non-linear mapping from these inputs to
indirect illumination.

Our main idea is to utilize a deep neural network to
represent the complex mapping F . The pipeline of our
method includes preprocess stage and rendering stage.
During preprocessing, we will construct the training dataset
by rendering images with full global illumination using

offline rendering algorithms and then train a deep neural
network on the training dataset in an end-to-end manner. The
trained deep neural network is a compact representation for
global illumination of the scene. This neural representation
can predict high-frequency global illumination effects with
dynamic area lighting and viewpoints and does not need
any complex data structure or expensive storage cost. In the
rendering stage, we can render the direct illumination and
other buffers through a real-time rendering pipeline easily
and feed these inputs into our trained network to generate
the indirect illumination. The overview of our method is
summarized in Figure 2.

Although deep neural network is well-suited to fit high di-
mensional function, there remain challenges to represent the
high-frequency global illumination from a low dimensional
input with a compact network. In the rest of this section,
we first introduce how to encode the input information
in a neural-network-friendly way in Section 3.2. Then in
Section 3.3 we propose a screen-space neural buffer that
shares the input information between nearby shading points
and informs long-distance global information to each shading
point. After that, we will describe the MLP-based neural
rendering network that predicts indirect illumination for
each shading point in Section 3.4. We will describe the
training process in Section 3.5 and how to use our method
in rendering in Section 3.6. The implementation details are
listed in Section 3.7.

3.2 Neural-network-friendly inputs
As we mentioned earlier, the indirect illumination of the
shading point is determined by the shading point, viewpoint,
and incident area lighting. The view information can be
represented efficiently by the view direction ωv of each
shading point.

In theory, position p is sufficient to represent a shading
point in static scenes. However, given the 3D position only
for each shading point, the neural network needs to predict
global illumination together with other auxiliary attributes
such as spatially-varying normal vector and other material
parameters implicitly. Combining position with other auxil-
iary attributes as the representation for each shading point
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Fig. 3. The network structure of CNN screen space neural buffer
extracting network C (a) and MLP rendering network R (b). Note that
there is no activation applied after the last layer of R.

allows a more efficient approximation with a compact deep
neural network which is important to achieve interactive
performance. In our implementation, we concatenate the
position p to normal vector np and material parameters mp

(including diffuse albedo, specular albedo and roughness) to
get the input vector g(p) for each shading point. Note that for
the shading point with perfectly specular material, we cast a
specular reflection ray to get the intersection and assign the
input vector of the intersection to the original shading point.

The representation of incident area lighting Le(p) is more
complicated. Although the vertex positions of area light
source are sufficient to describe incident lighting in theory,
deep neural network cannot learn the complex mapping from
such naive lighting representation efficiently. We propose to
encode the incident lighting in a neural-network-friendly
manner. More specifically, the incident area lighting is
encoded by a combinational lighting representation that
includes both screen-space lighting cues and global lighting
cues. The redundancy in lighting representation allows
efficient approximation with a compact deep neural network
since the network can take advantage of different input cues
in different cases. For example, the color bleeding effects
between nearby diffuse objects can be synthesized more
efficiently from screen-space lighting cues while the glossy
reflection from off-screen objects will benefit from global
lighting cues.

3.2.1 Combinational lighting representation
Our combinational lighting representation includes screen-
space lighting cues (direct illumination and radiance cues)
and a global lighting direction map.

Direct illumination. Direct illumination Ld is an integral
of the product of BRDF and incident radiance emitted

directly from light sources. Direct illumination is a physically-
based representation considering both material and incident
lighting; thus, direct illumination provides strong cues about
incident lighting of each shading point to the deep neural
network. For the fast rendering of direct lighting under
area lighting, we first use Linearly Transformed Cosines
[21] to approximate the BRDF; then the direct illumination
integral of BRDF and polygon area lighting can be analyt-
ically computed in real-time. For soft shadows of direct
illumination, we use the ratio estimator proposed by Heitz
et al. [22] to combine stochastic shadows with analytic direct
illumination.

Radiance cues. For a highly glossy or perfectly specular
reflection surface, direct illumination is always black since
the BRDF is a delta distribution whose value is zero almost
everywhere. In such cases, direct illumination provides al-
most no information about the incident lighting which makes
the neural network has no knowledge about varying lighting.
We take inspiration from Deferred Neural Lighting [14] that
uses radiance cues to represent incident lighting for scenes
with unknown geometry and materials. We adapt radiance
cues as an additional incident lighting representation mainly
for highly glossy surfaces which provide cues to the neural
network on the impact of varying incident lighting. Radiance
cues Rk

p = Ld(p, ωv|bk) is a set of direct illumination images
synthesized with K predefined basis materials {bk}Kk=1.
Unlike Gao et al. [14], we do not use homogeneous basis
material for every object, but instead replace only the non-
diffuse material with homogeneous basis material because
the direct illumination is sufficient to represent the incident
lighting for diffuse surfaces. Besides, we consider direct
illumination only in the rendering of radiance cues since
global illumination is expensive to compute.

In our implementation, we use a set of K = 4 basis materi-
als that cover different frequencies. More specifically, we use
a pure Lambertian BRDF and three Cook-Torrance BRDF [7]
with roughness parameters 0.05, 0.13, 0.34 respectively. We
can render radiance cues together with direct illumination in
a deferred rendering pipeline efficiently by sharing common
steps. For example, the G-buffer except materials can be
shared in rendering the unshadowed shadings and the ray-
traced visibility can be shared in rendering the soft shadow
by ratio estimator.

Global lighting direction map. Alongside the screen-
space lighting cues, we propose to encode global lighting
information by the lighting direction ωe of each shading
point. For area light source, we use the center position of
area light source to approximate the light position. This
global lighting direction map enables each shading point to
be aware of the lighting position in the scene and allows the
neural network to learn long-distance global illumination
effects. Global lighting direction map also helps to overcome
the ambiguity issues of pure screen-space representation: in
some cases, two different incident lighting will have similar
shading effects which confuse the neural network.

In summary, our combinational lighting representation
can be represented by: Le(p) = {Ld(p), {Rk

p}
K

k=1
, ωe}.

3.2.2 Positional encoding
If we directly use the attributes of shading point g(p),
view direction ωv and incident lighting Le(p) as the inputs
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for the rendering neural network, the neural network will
generate blurry results and is not able to capture the high-
frequency global illumination details. This is consistent with
the observation proposed by earlier works [44, 37, 59].

We use the positional encoding technique similar
to Mildenhall et al. [37] to transform the inputs to higher
dimensional space by a predefined Fourier feature mapping:

γ(x) = {γ0(x), . . . , γL(x)},
where γl(x) = {sin(2l−1πx), cos(2l−1πx)}, l ∈ [0, L]

(3)

The mapping γ(·) is applied to each component of
original inputs Ip = {g(p), ωv , Le(p)} independently. Prac-
tically, we use L = 9 for all inputs. Note that unlike in
Mildenhall et al. [37], we apply positional encoding to not
only position and view direction but also the attributes of
each shading point and incident lighting. Since both the
movement of viewpoint and lighting will lead to high-
frequency appearance changes. And the mapping from the
attributes of each shading point to global illumination effects
is also high-frequency.

Applying positional encoding to all inputs enables the
rendering network to capture high-frequency global illumi-
nation effects. We will compare the positional encoding with
other alternative techniques in subsection 4.3. The encoded
high-dimensional features Γ(Ip) are concatenated with the
original inputs Ip to feed into our rendering network.

3.3 Screen-space neural buffer
The neural-network-friendly input noted in Section 3.2
contains only the information of a single shading point
without considering information of nearby shading points
which is quite useful in some cases. For example, glossy
reflection between two nearby objects and the color bleeding
effects that occurred between two nearby diffuse planes
strongly rely on the nearby information. Predicting these
effects from each shading point independently without
considering nearby information is inefficient.

We propose to predict a screen-space neural buffer B
from Ip by a convolutional neural network C which helps
to exploit context information, i.e., the relationship between
different objects within screen space. In our implementation,
we use the fully-convolutional U-Net [24] architecture. The
encoder transforms the per-pixel inputs to a compact latent
space vector while the decoder propagates the latent space
vector back to each pixel. The output neural buffer has
the same spatial resolution as the input and stores a high-
dimension neural feature vector Bp in each pixel that
contains both global information in screen space and local
features corresponding to the pixel.

The advantages of the proposed CNN module are:
• the screen-space neural buffer extends the receptive

fields of the MLP rendering network and informs global
information in screen-space to each shading point.

• the fully-convolutional structure supports different reso-
lutions naturally without any retraining.

Summary
We summarize the inputs I+p = {Ip,Γ(Ip), Bp} before
introducing the details about rendering network as following:

Fig. 4. Our eight test scenes. (a) Kitchen, (b) Bathroom-2, (c) Cornell
box, (d) Bathroom, (e) Living room-3, (f) Living room, (g) Bedroom and
(h) Staircase-2.

1) neural-network-friendly inputs Ip contains attributes
of each shading point, view direction, and incident
lighting;

2) high-dimensional feature Γ(Ip) that is transformed from
Ip by a positional encoding; and

3) a learned neural feature vector Bp that contains global
information within screen-space.

3.4 Rendering network

The rendering network R takes I+p as input and generates
indirect illumination L∗(p, ωv) of the corresponding shading
point. We follow the network architecture of Park et al. [42].
As shown in Figure 3 (b), we use an 8 layer MLP network
which gets a good balance between running performance
and network capacity. The MLP network is trained together
with the CNN network (Figure 3 (a)) that extracts screen-
space neural buffer. The screen-space neural buffer informs
the MLP rendering network on how to compute the global
illumination efficiently and the rendering network guides
the CNN network on how to extract useful features in screen
space.

The reasons that we use an MLP neural network instead
of classic CNN to synthesize the indirect illumination are:
MLP learns the mapping from each shading point indepen-
dently while CNN takes nearby pixels into account; thus
MLP is more suitable for learning a disentangled mapping
by utilizing the consistency of multiple batch data of each
shading point efficiently. For example, given two batch data
of a shading point, while the input data are the same except
for incident lighting, the shared attributes (e.g. viewpoint,
position, normal) will be ignored by an MLP to synthesize the
appearance differences caused by different incident lighting.
However, for a CNN network, the shared attributes will
be distorted with nearby pixels in screen space during
convolution which makes the network more difficult to
disentangle input attributes. In a typical rendering dataset,
there are always multiple samples for each attribute that help
the MLP network to learn a disentangled mapping from the
input attribute to the output.

3.5 Neural network training

As noted before, the MLP rendering network R and the
CNN-based screen-space neural buffer extracting network C
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are trained together for each scene:

R∗, C∗ = argmax
R,C

N∑
i

L(I+p , Lp|R, C), (4)

where L is the training loss function, Lp is the global
illumination of shading point p, N is the number of training
data.

The training loss function L is defined as the sum of a
pixel loss term and a perceptual loss term:

L(a, b) = Lpixel(a, b) + λLperceptual(a, b), (5)

where λ is a weight to balance the two terms and we set λ to
1.0 in our implementation, the pixel loss Lpixel is defined as
per-pixel L1 distance on log-encoded pixel values:

Lpixel(a, b) = ∥ log(a+ ϵ)− log(b+ ϵ)∥1, (6)

where ϵ = 1.0/e. The perceptual loss Lperceptual is defined
following Zhang et al. [70] which measures the similarity of
two images in a way that accounts for human perception. The
perceptual similarity is measured by the distance between
deep features extracted by pre-trained neural network. In
our implementation, we use 5 Conv layers from the VGG
network [52] in computing the perceptual loss as suggested
by Zhang et al. [70]. We will discuss in Section 4.3 that
combining both losses yields plausible and visually accurate
results.

3.6 Rendering
After training the neural network, the global illumination un-
der dynamic viewpoint and area lighting can be synthesized
by our method. First, we render G-Buffer (including posi-
tion, view direction, lighting direction, normal vector, and
material maps), direct illumination, and radiance cues by real-
time rendering pipeline. Then we get the high-dimensional
encoded inputs by positional encoding and CNN-based
global feature extracting. After that, we concatenate all these
inputs and feed them into our MLP rendering network to
generate indirect illumination. Global illumination is the
sum of rendered direct illumination and predicted indirect
illumination.

It is straightforward to support multiple area light sources
thanks to the linearity of light transport. During rendering,
the rendered images lit by each area light source can be
synthesized by our pipeline and the sum of all these rendered
images is the final rendered image lit by multiple area light
sources. The computational complexity is proportional to
the number of area light sources. In application, we can
parallelize the rendering of each area lighting since the
computation is independent. As shown in Figure 12 (q, r),
our method is able to generate plausible rendering results
for multiple area light sources.

3.7 Implementation details
3.7.1 Training
We implemented our method in TensorFlow [1] and use
Adam optimizer [30] to train our framework using a learning
rate of 10−4 and set β1 = 0.9 and β2 = 0.999. We train
our framework for 1,000k iterations using a batch size of 1.
Training takes 22 hours for each scene on an NVIDIA RTX
2080Ti GPU.

TABLE 1
Quantitative results of test data for each scene. The errors are computed
over 100 test images with novel lighting and viewpoint for each scene.

#Input #Vert. MAE MSE SSIM PSNR LPIPSAlex
Kitchen 4,900 443k 0.0064 0.00034 0.984 37.82 0.0270
Bathroom-2 4,915 696k 0.0074 0.00020 0.983 39.96 0.0206
Cornell box 5,250 1,127k 0.0053 0.00017 0.992 40.99 0.0133
Bathroom 5,300 258k 0.0062 0.00041 0.985 36.85 0.0249
Living room-3 5,217 3,596k 0.0088 0.00028 0.988 36.74 0.0146
Living room 5,786 117k 0.0018 0.00004 0.996 47.10 0.0105
Bedroom 6,250 1,052k 0.0083 0.00050 0.985 36.67 0.0233
Staircase-2 6,000 101k 0.0054 0.00011 0.991 42.78 0.0169

TABLE 2
Quantitative comparison to selected prior work on Kitchen scene. The

errors are computed over 100 test images with novel lighting and
viewpoint. Ours* is a variant of our method that does not use perceptual
loss during training. The best results are marked in bold and the second

best results are underlined.

MAE MSE SSIM PSNR LPIPSAlex
RRF [47] 0.0226 0.00199 0.899 29.64 0.1111
BCN [68] 0.0190 0.00231 0.917 30.41 0.1579
CNNR [15] 0.0215 0.00606 0.949 28.33 0.0925
RTRT 0.0051 0.00021 0.988 39.56 0.0403
Ours* 0.0051 0.00025 0.987 39.71 0.0334
Ours 0.0064 0.00034 0.984 37.82 0.0270

TABLE 3
Temporal stability comparison to selected prior work on Kitchen scene.
The errors are computed over continuous video sequences with dynamic
view or dynamic lighting. The best results are marked in bold and the

second best results are underlined.

MABDview MABDlight

RRF [47] 0.000588 0.000124
BCN [68] 0.000502 0.000122
CNNR [15] 0.000550 0.000072
RTRT 0.000839 0.000140
Ours 0.000437 0.000097

3.7.2 Training data generation
For each scene, we render around 5000 images as training
data (see the first column of Table 1 for a summary of
the number of rendered images per scene). For viewpoint
generation, we randomly sample the camera position and
look-at target position from a given bounding box. For area
light source generation, we randomly sample the size from
a given range and sample the center position from a given
bounding box. We use the GPU-based path tracer in PBRT-
v4 [43] to render our training dataset at 256× 256 resolution
with 1024 samples per pixel (spp). To capture full global
illumination, we set the max bounce of path tracing to 16.
Note that the rendered images are denoised further by OptiX
Denoiser [5]. The rendering of training data takes 20-26 hours
for each scene with two RTX 2080 GPUs.

4 RESULTS

4.1 Rendering results

To demonstrate the effectiveness of our method for a variety
of global illumination effects, we validate with 8 complex
scenes [3, 50] exhibiting complex global illumination effects
as shown in Figures 1 and 4. We show the scene complexity
by the number of vertices of each scene in the second column
of Table 1. The scenes we used in our paper are: Kitchen
(with glossy interreflection of multiple objects), Bathroom-2
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Reference Ours Differences (×5) Reference Ours Differences (×5)

Fig. 5. Qualitative comparison of results from a novel viewpoint and novel lighting that are rendered by ours and reference. Left: reference results.
Middle: our rendering results. Right: differences (×5) between our results and reference results.

(with strong multi-bounce indirect illumination and mirror
reflection), Cornell box (with strong color bleeding, glossy
reflection and caustics), Bathroom (with difficult specular
light transport due to a large mirror and relatively area
light sources), Living room-3 (with rich texture details, color
bleeding, and mirror reflection), Living room (with glossy
interreflection and mirror reflection), Bedroom (with strong
multi-bounce indirect illumination and mirror reflection) and
Staircase-2 (with strong glossy interreflection). Please refer
to the supplementary material for the nearest neighbors
from the training set to better understand the distribution of
training and test samples.

Figures 5 and 12 show the rendering results generated by
our method in multiple challenging cases and demonstrate
that our method is able to produce visually plausible results.
We also show the scenes rendered with direct illumination
and the indirect illumination rendered by our method
in Figure 15. Our method is robust to different lighting
conditions such as multiple area light sources (see Figure 12
(q, r)) and different size of area lighting (see Figure 10). Please
refer to the supplemental material for more visualizations of
each scene.

The quantitative evaluation results are summarized in Ta-
ble 1. In all our quantitative results, we use five error metrics
(MAE, MSE, SSIM, PSNR, and LPIPSAlex) to measure the
distance between the predicted results and the reference

results. Note that we use LPIPSVGG as the perceptual loss
function in training while the backbone network is different
from LPIPSAlex.

The storage size of our trained neural network is 55.9
MB for each scene. Our method is able to achieve 22 FPS
at run time with 256× 256 resolution. More specifically, we
averaged the running time over all our eight test scenes
with an NVIDIA RTX 2080Ti GPU. At run time, there are
three main steps: G-Buffer generation, direct illumination
rendering (includes direct lighting and radiance cues), and
network inference:

• G-Buffer generation takes 0.7 ms on average;
• Direct illumination rendering includes both direct light-

ing images and four radiance cues images. For a single
pass of analytic direct lighting without shadows, the
average rendering time is 1.4 ms. The total time of
analytic direct lighting rendering is 6 ms. Besides,
rendering stochastic shadow takes 10 ms in total (we set
the spp equals to 4 as Heitz et al. [22] suggested);

• Network inference is the most time-consuming step and
the inference time is independent of the complexity
of scenes since our network takes only screen-space
buffers as inputs. The network inference takes 28.3 ms
on average.
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(a) Reference (b) Ours (c) RRF [47] (d) BCN [68] (e) CNNR [15] (f) RTRT (g) LPV [29]

Fig. 6. Qualitative comparison to selected prior works on the Kitchen scene. Our method (b) is able to generate plausible glossy interreflection with
dynamic viewpoint and lighting compared with the reference (a). RRF (c) fails to fully capture glossy interreflection. BCN (d) cannot produce plausible
results for such a challenging scene with multiple glossy objects. CNNR (e) produces blurry results (e.g. the wood table) and the indirect illumination
is not as accurate as ours even taking three additional images with full global illumination as inputs. RTRT (f) generates overblurred results due to
insufficient samples and denoising. LPV (g) fails to generate plausible global illumination for glossy materials such as glossy interreflections.

4.2 Comparisons

To our knowledge, there is no existing prior work that ren-
ders full global illumination in static scenes under dynamic
viewpoint and area lighting. Thus we try our best to select
prior works that solve similar problems. We compare the
Kitchen scene across all methods. The visual comparison is
shown in Figure 6.

We select the following five prior works to compare
with: RRF [47] predicts global illumination in static scenes
with dynamic lighting. However, they assume point light
sources and use the position of the point light source to
represent the incident lighting. We use the center of the
area light source to approximate the position of the light.
RRF proposes a partition-based strategy to handle complex
scenes. In our implementation, we first decompose the whole
scene into roughly 1, 000 partitions using Kd-Tree and then
train a small RRF network in each partition. The storage
size of each small RRF network is 52 KB (3 hidden layers,
the width of each layer: 128, 64, 32) and thus the final
RRF network has a similar capacity as ours. As shown in
Figure 6 (c), RRF can generate plausible results but fails
to fully capture glossy interreflection. The main differences
compared with the reference (Figure 6 (a)) are the multiple
bounce glossy reflection which demonstrates light position
only is not sufficient to represent complex light sources like
area light sources. BCN [68] is a state-of-the-art screen-space
global illumination method and generates single bounce
indirect illumination for diffuse objects from screen-space
buffers. Although their approach supports dynamic scenes
without any retraining, we train their model on our static
Kitchen scene for a fair comparison. As shown in Figure 6
(d), BCN produces blurry results and cannot generate glossy
indirect illumination well. This indicates that the screen-space
approach is not well-suited to such challenging scenes with

multiple bounce glossy interreflection. CNNR [15] proposed
a neural scene representation that disentangles geometry,
material, and lighting and can be used to predict indirect
illumination. We simplify their method to only consider
dynamic lighting and keep geometry and material static.
Note that for the dynamic lighting scenario, we should first
render three additional images with full global illumination
under the same lighting and different viewpoints and then
feed these three images and G-Buffers together to their
pipeline to generate the final result. And this is not a
practical solution for dynamic lighting because the overhead
of preparing three images is more expensive than rendering
the output directly. As shown in Figure 6 (e), the global
illumination results predicted by CNNR are not as accurate
as ours (e.g. the glossy reflection of the steel pot in the
first example and the soft shadow in the second example).
Besides, CNNR fails to capture all specular highlights and
texture details (e.g. wood texture of both table and floor)
faithfully. RTRT renders noisy images with low samples per
pixel and denoises the rendered images by a post-processing
pass. In our implementation, we use a fast path tracer
that is based on the Falcor rendering framework [27] to
render images. We set the spp equal to 16 for the equal-time
comparison. We utilize the Optix Denoiser [5] to denoise
the rendered images due to its high performance and easy
implementation. Ideally, we should have trained a scene-
specific denoiser for a completely fair comparison, however,
we did not do it since it is non-trivial for retraining the Optix
Denoiser. As shown in Figure 6 (f), RTRT can capture the
overall global illumination effects but fails to generate high-
frequency, artifact-free results due to insufficient samples.
Besides, the errors lead to temporal flickering, especially
for dynamic viewpoints. LPV uses multiple virtual point
lighting (VPL) to approximate indirect illumination and store
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(a) Reference (b) Ours (c) [72]-Net (d) Width 128 (e) Depth 4 (f) w/o Screen.

(g) w/o Pos. (h) SIREN (i) SIREN* (j) w/o Percept. (k) 1,000 images (l) 2,500 images

Fig. 7. Ablation study of neural global illumination. Our method (b) is able to produce plausible global illumination compared to the reference (a).
Using the convolutional neural network of [72] (c) fails to generate sharp glossy reflection and introduces artifacts in other cases. Decreasing the
network size (d, e) produces less accurate results. We also observe that the quality loss of decreasing the network width (d) is larger than decreasing
the depth (e) and this indicates the network width is more important in generating high-quality global illumination. Screen space neural buffer plays an
important role in sharing screen-space object-level information. The results without screen-space neural buffer (f) produce an incorrect intensity
of global illumination and generate artifacts in dark areas (e.g. shadow areas) or bright areas (e.g. glossy reflection of a light source). Positional
encoding is important to generate high-frequency details as demonstrated in (g-i). Although our method without perceptual loss had lower numeric
errors, the visual quality of our method without perceptual loss (j) is worse than ours, especially on indirect illumination. This indicates that perceptual
loss enables the training process to focus on minimizing the errors of indirect illumination areas. Decreasing the number of input images (k, l) fails to
capture indirect illumination accurately and indicates that the number of input images has a significant impact on the visual quality.

the indirect illumination into a 3D volume texture. Light
propagation volume (LPV) [28, 29] is widely used in real-
time applications and is able to generate plausible global
illumination for diffuse objects in real-time. We adopt the
publicly available implementation in Unreal Engine and
import the Kitchen scene manually. Note that the material
models and lighting models are slightly different in Unreal
Engine and other methods resulting in some appearance
differences. As shown in Figure 6 (g), LPV fails to generate
plausible global illumination for glossy materials. Note that
we retrained the neural network of RRF, BCN, and CNNR
for each scene in the same condition as ours for a fair
comparison.

Figure 11 shows additional comparisons of RRF [47],
BCN [68], and RTRT in the Cornell box scene. RRF and BCN
can produce plausible diffuse indirect lighting but fail to
predict caustics and high-frequency glossy interreflections.
RTRT can capture the overall appearance but fails to generate
high-quality glossy reflection and caustics due to insufficient
samples and denoising.

To further validate the effectiveness of our method, the
quantitative evaluation is shown in Table 2. The errors
are computed over 100 rendered images with novel views
and lighting. Our method has a consistently lower error
in all error metrics compared with RRF, BCN, and CNNR.
Compared with RTRT, the errors of our method are slightly

larger in MAE, MSE, SSIM, and PSNR. However, our method
is able to capture sharper and more accurate indirect lighting
effects compared with RTRT (as shown in Figures 6 and 11)
and the perceptual errors agree with the visual comparison.
The MAE/MSE/SSIM/PSNR errors of our method without
perceptual loss are comparable to RTRT while the perceptual
error is lower.

Furthermore, RTRT fails to generate temporal-consistent
results as shown in the supplemental video while our method
is able to generate high-quality videos without temporal
flickering. We use the temporal consistency error metric
(MABD) proposed by Lai et al. [34] to measure the video
stability. The optical flows used in MABD are predicted by
PWC-Net [56]. The temporal quantitative comparison results
are shown in Table 3. We can see that: 1. the temporal
instabilities when changing the viewpoints are more obvious
than changing the lighting. 2. the temporal stability of RTRT
is the worst among all methods which are consistent with the
visual results. 3. Our method is able to produce high-quality
and temporal consistent results.

4.3 Ablation Study
Impact of the network architecture of rendering network
We use a deep fully-connected network to represent the
rendering neural network. As noted in Section 3.4, MLP
network architecture is more suitable than classic CNN
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TABLE 4
Quantitative evaluation for the ablation study. The errors are computed
over 100 test images with novel lighting/viewpoint not part of the training
set. The best results are marked in bold and the second best results are

underlined.

Ablation Variant MAE MSE SSIM PSNR LPIPSAlex
[72]-net 0.0078 0.00050 0.977 36.15 0.0399
Width 128 0.0082 0.00055 0.976 35.86 0.0403
Depth 4 0.0077 0.00048 0.977 36.52 0.0370
w/o CNN. 0.0099 0.00054 0.968 35.70 0.0412
w/o CNN-D12 0.0101 0.00055 0.970 35.85 0.0391
w/o CNN-W512 0.0093 0.00044 0.972 36.37 0.0354
w/o CNN-W1024/D16 0.0084 0.00037 0.976 37.30 0.0320
w/o Percept. 0.0051 0.00025 0.987 39.71 0.0334
w/o Pos. 0.0071 0.00042 0.981 37.15 0.0335
SIREN 0.0112 0.00108 0.963 33.28 0.0647
SIREN* 0.0106 0.00099 0.967 33.60 0.0570
1,000 images 0.0137 0.00130 0.951 32.34 0.0734
2,500 images 0.0108 0.00092 0.964 33.76 0.0567
Light Pos. 0.0207 0.00152 0.926 31.73 0.0604
Light Pos. ext. 0.0109 0.00157 0.969 32.60 0.0466
Light Pos. + Dir. 0.0079 0.00040 0.981 37.49 0.0279
Light Pos. + Dir. + 1 Rad. 0.0068 0.00039 0.982 37.67 0.0277
Light Pos. + Dir. + 2 Rad. 0.0067 0.00038 0.983 37.75 0.0275
Ours 0.0064 0.00034 0.984 37.82 0.0270

networks when used for predicting complex mapping from
low-dimension input. Our MLP rendering network (Figure 7
(b)) is able to capture global illumination effects more
accurate compared with a classic CNN network architecture
that follows the generator design of [72] (Figure 7 (c)). The
quantitative errors listed in Table 4 agree with the qualitative
comparisons.

Impact of the size of rendering network
We use a fully connected network with 8 layers in depth and
256 channels in width to represent the complex mapping
from input to global illumination. In Figure 7 (d, e), we
explore the impact of the size of our rendering network. We
can see that decreasing the size of the rendering network
(either the width or depth) results in significant quality
reduction. At the same time, the size of the rendering network
affects inference performance while a larger network takes
longer times to evaluate. Therefore, we opt for using the
current network size for a balance between rendering quality
and inference performance.

Impact of screen-space neural buffer
The global illumination can be determined completely by
the shading point, view, and incident lighting. However,
the relationship among objects is still useful to inform the
rendering neural network to compute the global illumination
efficiently since the global illumination is generated by
multiple bounce scattering between different objects. We
use the screen-space neural buffer to propagate global
information in screen space to each shading point so that
the complex mapping can be learned by a compact MLP
network.

To better validate the effectiveness of the screen-space
neural buffer, we first compared the results of our method
with and without the screen-space neural buffer. Figure 7
(f) shows the result of this ablation experiment. Screen-
space neural buffers help to produce more accurate global
illumination and reduce visual artifacts (global intensity
mismatch). The numeric errors in Table 4 also show that the
screen-space neural buffer improves the results significantly.

(a) Reference (b) Ours (c) w/o Screen.

(d) D12 (e) W512 (f) W1024-D16

Fig. 8. Additional experiments about screen-space neural buffer. The
rendering results of different variants are shown in the first row. The
close-up views of certain areas and error maps are visualized in the
second row. Our method (b) is able to produce high-quality rendering
results compared to the reference (a). Other variants (MLP only) fail to
capture the full dynamic range and cannot generate plausible results in
dark areas (e.g. the wall behind the area light).

The previous experiment demonstrated that CNN plays
an important role in our method. Since the global illumina-
tion of a shading point can be determined completely by the
shading point itself, a natural question arises on whether a
large MLP performs similarly to our method. We compare
our solution to several alternative MLP-only solutions (as
shown in Figure 8):

1) w/o Screen.: Removing the CNN from our method.
2) D12: Increase the depth of MLP (depth = 12).
3) W512: Increase the width of MLP (width = 512).
4) W1024-D16: Increase both the depth and the width of

MLP (depth = 16, width = 1024).
We can see that increasing the capacity can improve the

rendering results (Figure 8 (d-f) compared with (c)) but MLP-
only solutions fail to generate accurate global illumination
in dark areas. The quantitative results ( Table 4) further
demonstrate that our method can produce more accurate
results than MLP-only variants. Besides, increasing the size of
MLP will affect the run-time performance significantly. More
specifically, the network inference of our method takes 28.3
ms and the other three variants (D12, W512, W1024-D16) take
30.5, 53.2, and 129.1 ms respectively. Therefore, the screen-
space neural buffer is crucial to improve the rendering quality
and enables the compact MLP to learn complex mapping
efficiently.

Impact of positional encoding

Positional encoding enables MLP to learn high frequency
function. There are lots of high-frequency effects in global
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(a) Reference (b) Ours (c) Light Pos. ext. (d) Light Pos. (e) Light Pos.
+ Dir. (f) Light Pos.

+ Dir. + 1 Rad. (g) Light Pos.
+ Dir. + 2 Rad.

Fig. 9. Comparison of the rendering quality with different lighting representations. The errors (×2) are visualized in the second row. We can see that
our full lighting representation (Light position, direct lighting, and radiance cues) faithfully produces global illumination effects. Representing lighting
by position only (d) produces a less accurate result (see the error map). The naive extension (c) fails to generate plausible glossy interreflection. This
indicates that screen-space lighting representation is more efficient. Combining light position with direct illumination (e) can generate plausible results
but still have artifacts, especially in glossy interreflection areas. Adding one (f) or two radiance cues (g) can improve the glossy interreflections further.
The results (b, e-g) show that radiance cues play an important role in providing incident lighting information for glossy surfaces.

illumination such as glossy interreflection, mirror reflection,
and caustics. Figure 7 (b, g) shows the comparison with or
without applying positional encoding. For a fair comparison,
we keep the number of input channels constant by replacing
the positional encoding with naive repeating. We can see
that our method can generate overall plausible results even
without positional encoding. However, transforming low-
dimensional input to higher dimensional space by positional
encoding can improve our results further. Furthermore, we
also compare positional encoding with the latest SIREN [53]
(SInusoidal REpresentation Networks) that shows great
success in novel view synthesis. Figure 7 (h) shows the
results of SIREN and Figure 7 (i) shows the results of
SIREN* (combining naive repeating with SIREN to keep
the number of input channels constant). The results of two
SIREN variants are even worse than the results with naive
repeating in our task which indicates the effectiveness of
ReLU activation function and positional encoding.

Impact of training loss function
We use a per-pixel L1 distance and a perceptual loss to train
our pipeline. The perceptual loss enables the training process
to focus on visually important areas instead of noises or over-
saturated areas. We argue that although adding perceptual
loss will increase the numeric errors (MAE, MSE, SSIM, PSNR
in Table 4), the overall visual quality and perceptual error
will be improved as shown in Figure 7 (j) and Table 4
LPIPSAlex. The role of perceptual loss is not to decrease
the L1/L2 distance between the rendered images and the
reference images but to change the distribution of errors.
In other words, the perceptual loss would encourage the
neural network to place more errors on less important areas
and focus on improving the quality in important areas. The
perceptual loss may be useful for other rendering tasks to
improve the visual quality.

Impact of the number of input images
To generate plausible rendering results for dynamic view-
point and lighting conditions, good coverage of view-

Fig. 10. Results of the impact of different area lighting sizes demonstrated
on the Cornell box scene. Our method can produce plausible results with
hard shadow boundaries for very small area light sources or even point
light sources (a). For a larger area light source (b), the soft shadow can
be generated by our method. For a very large area light source (c), the
shadows almost disappeared as expected.

point/lighting combination is important. In Figure 7 (k, l),
we show the results trained with 1,000 and 2,500 images
sampled uniformly from our 5,000 input images. We can see
that the network trained with 1,000 and 2,500 images gener-
ates blurry results and cannot generate indirect illumination
faithfully. This indicates that dense samples of viewpoint and
lighting space play an important role in generating visually
plausible results. Besides, these artifacts lead to temporal
artifacts in continuous sequences. We use around 5,000 -
6,000 input images for all our scenes that provide a good
balance between accuracy and rendering performance since
rendering high-quality reference images is time-consuming.

Impact of lighting representation
We represent incident area lighting by both global lighting
position and screen-space lighting cues (direct illumination
and radiance cues). Lighting position only is not sufficient
to describe the area light source since both the size and
orientation are ignored. Figure 9 (d) and Table 4 demonstrate
that screen-space lighting representation is important to
produce plausible global illumination results. Since the area
light source can be described by its vertices, a natural
question arises on whether this naive extension of light
position is sufficient. In this naive extension, we represent
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(a) Reference (b) Ours (c) RRF (d) BCN (f) RTRT

Fig. 11. Additional qualitative comparison to prior work: RRF [47], BCN[68], and RTRT on Cornell box scene. Our method (b) is able to produce
high-quality caustics and glossy reflections with dynamic viewpoint and lighting compared with the reference (a). RRF (c) and BCN (d) can produce
plausible diffuse global illumination but fail to predict high-frequency reflections and caustics. RTRT generates overblurred glossy reflections and can
not reproduce high-quality caustics.

the area light source by its center position, positions of each
vertex, and the normal orientation and keep other parts (the
number of input channels, positional encoding, etc.) fixed.
Figure 9 (c) and Table 4 show that such a naive extension
fails to produce high quality global illumination effects
under dynamic area lighting. For the screen-space lighting
representation, we demonstrate that direct lighting is an
efficient lighting representation (Figure 9 (e)) but combining
radiance cues with direct lighting generates the most accurate
result (Figure 9 (b)). In Figure 9 (f, g) we further explore the
impact of the number of radiance cues while keeping the
total number of channels constant by repeating. The results
of a single radiance cue (diffuse only, Figure 9(f)) and two
radiance cues (diffuse + 1 specular basis, Figure 9(g)) are
slightly better compared with the results of no radiance cues.
Our method (with 4 radiance cues) can improve the results
further. The quantitative results as shown in Table 4 confirm
our observation. We should note that multiple radiance cues
can be rendered in the same pass in the real-time rendering
pipeline with negligible additional costs.

5 DISCUSSION

5.1 Scenarios of our method
We will re-clarify our scenarios and potential applications
in this section. The scenarios and potential applications of
our method are quite similar to classic precomputed-based
methods (both assume static scenes with dynamic lighting)
which can be used in many applications. Our method can be

regarded as an advancement on classic precomputed-based
methods (e.g. PRT, light map). The training data generation
and neural network training serve as the pre-computation
stage. The parameters of the trained network are a compact
representation of the given scene. The rendering of neural
network inputs and network inference serves as the run-
time rendering stage. Compared with classic precomputed-
based methods, our method supports local lighting and
high-frequency global illumination without any complex
data structures.

5.2 Relationship with screen-space learning-based ap-
proach

Although the inputs of our method are the attributes of
each shading point and screen-space neural buffer, there
are fundamental differences between our method with
existing screen-space approaches. Screen-space learning-
based approach [40, 68] takes screen-space buffers as input
and predicts global illumination by a deep neural network
for dynamic scenes. The role of their neural network is to
predict global illumination from the screen-space buffer of an
arbitrary scene and there is no scene-specific information
stored in the neural network. By contrast, our method
assumes static scenes and synthesizes global illumination of
the specific scene with dynamic viewpoint and lighting. The
training dataset generation and the network training can be
regarded as the sampling and fitting process of the radiance
field of the specific scene respectively. Our rendering network
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Fig. 12. Rendering results of our method from novel viewpoint/lighting combinations. These scenes exhibit rich global illumination effects: glossy
interreflection (a, b, d, e, f, i, j, l, o), mirror reflection (c, d, g, h, i, k, m, n), and color bleeding (e, f, i, j).

is a compact representation of the radiance field of the scene.
At run time, given input of a certain shading point as a query,
the global illumination with dynamic viewpoint and lighting
is interpolated from our compact neural scene representation.

In theory, adding explicit global representation such
as point clouds or voxel-based volumes will enhance the
knowledge about the static scene. However, to keep our
method lightweight without complex data structure or pre-
sampling process at run time, we use screen-space input that
can be generated easily in the real-time rendering pipeline
as the only input information. To make the mapping from
input to global illumination both easy to learn and smooth,
we propose to utilize carefully designed neural-network-
friendly inputs that include the information of shading point,
viewpoint, and lighting.

5.3 Joint bilateral upsampling based high-resolution
pipeline
As mentioned before, our method is able to extend to
higher resolution (e.g. 512 × 512) without any retraining.
In practice, to achieve interactive run-time performance with
high resolution, we utilize joint bilateral upsampling guided
by high-resolution G-buffer (e.g. normal and position) to
scale up the low-resolution indirect illumination generated
by our network [31, 68]. The final render image is the sum of
upsampled indirect illumination and high-resolution direct
illumination which get a good balance between run-time
performance and visual quality as shown in Figure 13.

5.4 Limitations
Our method is able to produce plausible global illumination
with dynamic viewpoint and area lighting on a wide variety
of scenes; however, it still has some limitations.

High res. pipeline Bilateral pipeline

Fig. 13. The comparison of the rendering quality with two high-resolution
pipelines. Our method supports high-resolution input naturally and is
able to generate sharp details in 1024× 1024 resolution (left). However,
feeding high-resolution input directly into our network takes more time
and cannot achieve interactive run-time performance. Instead, we can
feed low resolution (256 × 256) input into our network and scale up to
high-resolution indirect illumination result by bilateral upsampling. This
bilateral pipeline (right) generates plausible high-resolution results and
keep the run-time performance almost the same as low-resolution result.

First, our method supports arbitrary viewpoints and
area lighting. However, our rendering network can only
produce plausible results in the view/lighting space covered
by the training dataset. As noted in Section 3.5, we randomly
sample both viewpoint and area light sources to get good
coverage of view and lighting, but there are still some missing
combinations of view and lighting and our method would
fail in these cases (Figure 14 (b)). Sampling the viewpoint and
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(a) Reference (b) Ours (c) Reference (d) Ours

Fig. 14. Failure cases of our method. Our method fails to generate
plausible results for some view/light combinations (b) that are not covered
by the training dataset. Besides, our method cannot fully reproduce
refraction effects (d).

area light source adaptively (sample denser viewpoint and
lighting in the region with larger fitting error) is an interesting
future direction. The active exploration strategy proposed by
Diolatzis et al. [11] is another interesting direction to sample
the training data more efficiently.

Second, our method supports different materials varying
from diffuse to glossy or even mirror. As shown in the
Bathroom scene (Figure 12 (g, h)), our method can generate
plausible results for glass bulbs. However, current material
representation (based on the material model of opaque ob-
jects) and lighting representation (the radiance cues include
reflection only) are not efficient for translucent objects in
general cases. As shown in Figure 14 (d), for a variant Cornell
box scene (replacing the glossy cube with a glass sphere),
our method fails to produce all refraction effects. We are
interested in exploring other strategies to handle translucent
materials.

Third, our method is able to achieve interactive run-
time performance at 256 × 256 resolution. We plan to
improve the run-time performance to real-time in future
work. One possible solution is that we can split shading
points into groups based on the material properties and
then use smaller MLP per group (e.g. split shading points
into diffuse/specular). Replace a single large MLP with
multiple small MLPs can reduce the total number of trainable
parameters which means smaller storage cost and faster
inference. For high-resolution rendering, we rely on a
bilateral upsampling-based pipeline to achieve interactive
performance. This bilateral upsampling-based pipeline may
miss material-related high-frequency global illumination
details (e.g. texture details that are reflected by highly-glossy
objects). We are interested in exploring efficient strategies that
can preserve such high-frequency details without affecting
performance.

Finally, our method is able to generate high-quality
rendering results for indoor scenes exhibiting a wide range of
global illumination effects (e.g. glossy interreflection, caustics,
color bleeding), material properties (e.g. diffuse, glossy, and
mirror) and geometrical complexity (e.g. grass-like carpet in
Living room-3 and Bedroom, plants in Living room, Staircase-
2, and Living room-3). However, our method is limited to
moderate-size indoor scenes and cannot scale with open-
world large scenes.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel neural global illumination
approach for generating global illumination in static scenes
with dynamic viewpoint and area lighting. The complex

(a) Direct (b) Indirect (c) Direct (d) Indirect

Fig. 15. Visualization of scenes rendered with direct illumination (a, c)
and the indirect illumination rendered with our method (b, d). As shown
here, these scenes exhibit strong multiple bounce indirect illumination.

mapping from the input of each shading point to global illu-
mination is modeled by a deep fully-connected network that
is well-suited to approximate such complex mapping. The
neural-network-friendly input representation plays a crucial
role in reducing the requirement of network size without
affecting fitting quality. The positional encoding technique
and screen-space neural buffer enable the network to learn
high-frequency mapping efficiently. Our method takes direct
lighting and screen-space buffers as inputs and does not need
any complex spatial data structure or precomputation at run
time. The trained model of our method is more compact
(only 55.9 MB for each scene) compared with other existing
precomputed-based GI methods.

For future work, we would like to explore strategies for
efficient training data generation. We also intend to improve
the run-time performance of our method further and extend
our method to handle fully-dynamic scenes.
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