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Fig. 1. Automatic furniture layout adjustment via differentiable rendering. Given a target image with the desired furniture layout, we initialize the scene with

randomly placed furniture models in the room and optimize for their transformations (i.e., translation within X-Z plane and rotation around Y axis) using

existing differentiable renderers with standard color derivatives vs. our method using RGBXY derivatives. PyTorch3D [Ravi et al. 2020] fails to match the

target even with silhouette masks provided. Nvdiffrast [Laine et al. 2020] produces slightly better results with the gradients from analytic antialiasing, but

often gets stuck in local minima with suboptimal convergence. In contrast, our method consistently outperforms existing methods thanks to the RGBXY

derivatives, yielding accurately matched results to the reference. Lastly, we show that our method can be combined with traditional methods through a hybrid

optimization strategy, further improving accuracy among a variety of inverse rendering tasks. (Note that optimization is performed using rasterized images

with a resolution of 256 × 256, as shown in the second column, while other images are re-rendered in a high resolution with ray tracing for higher display

quality).

Traditional differentiable rendering approaches are usually hard to converge
in inverse rendering optimizations, especially when initial and target ob-
ject locations are not so close. Inspired by Lagrangian fluid simulation, we
present a novel differentiable rendering method to address this problem. We
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associate each screen-space pixel with the visible 3D geometric point cov-
ered by the center of the pixel and compute derivatives on geometric points
rather than on pixels. We refer to the associated geometric points as point
proxies of pixels. For each point proxy, we compute its 5D RGBXY deriva-
tives which measures how its 3D RGB color and 2D projected screen-space
position change with respect to scene parameters. Furthermore, in order to
capture global and long-range object motions, we utilize optimal transport
based pixel matching to design a more sophisticated loss function. We have
conducted experiments to evaluate the effectiveness of our proposed method
on various inverse rendering applications and have demonstrated superior
convergence behavior compared to state-of-the-art baselines.

CCS Concepts: • Computing methodologies→ Rendering.

Additional Key Words and Phrases: differentiable rendering, RGBXY deriva-
tives, optimal transport

ACM Reference Format:
Jiankai Xing, Fujun Luan, Ling-Qi Yan, Xuejun Hu, Houde Qian, and Kun
Xu. 2022. Differentiable Rendering using RGBXY Derivatives and Optimal
Transport. ACM Trans. Graph. 41, 6, Article 189 (December 2022), 13 pages.
https://doi.org/10.1145/3550454.3555479

ACM Trans. Graph., Vol. 41, No. 6, Article 189. Publication date: December 2022.

HTTPS://ORCID.ORG/0000-0002-8341-9952
https://orcid.org/0000-0002-8341-9952
https://doi.org/10.1145/3550454.3555479
https://doi.org/10.1145/3550454.3555479


189:2 • Jiankai Xing, Fujun Luan, Ling-Qi Yan, Xuejun Hu, Houde Qian, and Kun Xu

1 INTRODUCTION

Recent advances in differentiable rendering bridge the gap between
photorealistic image synthesis of 3D models and inverse rendering
of these model parameters through iterative gradient descent. Mod-
ern computer graphics pipelines can synthesize images either by
ray tracing the 3D scene for light transport simulation (e.g., VFX
applications) or rasterizing the renderable primitives to map the
scene geometry to pixels (e.g., real-time game engines). These for-
ward rendering pipelines can be made differentiable with respect to
the 3D scene parameters, including camera pose, geometry, mate-
rial appearance and illumination. As a result, one can optimize and
recover such unknown scene parameters through gradient-based
optimization on some predefined image loss functions between the
rendered image and target reference (e.g., captured photos), where
gradients are computed using a differentiable renderer.

However, despite that differentiable renderers have demonstrated
a broad impact on various inverse rendering applications such as
object capture [Munkberg et al. 2021] and 3D model simplifica-
tion [Hasselgren et al. 2021], we would like to note that existing
differentiable rendering approaches typically rely on per-pixel im-
age loss functions (such as L2 loss) from a pair of RGB images
and compute per-pixel color derivatives with respect to desired
scene parameters. Such per-pixel color derivatives are intrinsically
sparse and local, leading to less robustness in optimization — it is
naturally well suited for fine-scale geometry refinement (e.g., dis-
placement) with sufficiently overlapped and aligned image regions,
while quickly becoming less effective for optimizing global, long-
range object translation and rotation when the rendered image and
the target reference are far from a perfect per-pixel alignment. For
instance, given a scene containing a sphere, let us set the goal to be
optimizing for a translation offset that moves the sphere from left
(initial state) to right (target state), when our initialization of the
sphere location is not so close to the target, the rendered sphere will
have no overlapped image pixels compared to the reference sphere,
yielding an unchanged L2 loss with zero gradients that break the
optimization.
To address this problem, we draw inspiration from Lagrangian

fluid simulation. Our key idea is to associate each pixel with a point
proxy and compute derivatives on point proxies instead of on a
fixed grid of pixels. A point proxy of a pixel refers to the visible 3D
geometric point on the mesh covered by the center of the pixel. First,
for each point proxy, we derive its 5D RGBXY derivatives to measure
how its 3D RGB color and 2D XY screen-space position change with
respect to desired scene parameters. Second, we leverage optimal
transport to find a pixel matching between rendered and target
images and design a novel loss function based on the pixel matching.
Our RGBXY derivatives are dense and could account for global and
long-range object motions through the optimal transport based
loss function, naturally leading to better robustness in optimization.
Taking the sphere scene mentioned above as an example, on one
hand, optimal transport helps find the correspondences between
the rendered sphere and the reference sphere, on the other hand, by
including screen-space positions (XY) in the definition of RGBXY
derivatives, we could explicitly drive the sphere moving from left
to right, even when their initial and target positions are far away.

To validate our theory and algorithms, we compare them with
state-of-the-art approaches on a set of applications and demonstrate
that our method consistently improves the result. Our contributions
include:

• we derive novel 5D RGBXY derivatives on point proxies;
• we propose an optimal transport based loss function that
considers global and long-range pixel correspondences;

• based on the 5D RGBXY derivatives and the optimal trans-
port based loss function, we present a novel differentiable
rendering method which has demonstrated to have more
robust convergence behavior compared to state-of-the-art
works and can be easily integrated into existing differentiable
rendering frameworks.

The code of our method is available at https://www.github.com/
jkxing/DROT.

2 RELATED WORK

2.1 Differentiable Rendering

Inverse rendering requires formulating a novel forward paramet-
ric model and computing derivatives with respect to its parame-
ters, specifically for each reconstruction problem via analysis-by-
synthesis techniques. Recently, there is a surging interest in devel-
oping fully-differentiable forward rendering methods in graphics
and vision community, also known as differentiable rendering, to
facilitate statistical inference and deep learning pipelines (e.g., the
decoder network of an auto-encoder architecture [Che et al. 2020])
in an end-to-end fashion, enabling a wide range of practical in-
verse rendering applications such as object capture [Cai et al. 2022;
Deng et al. 2022; Luan et al. 2021; Munkberg et al. 2021] and ma-
terial estimation [Gao et al. 2019; Guo et al. 2020; Shi et al. 2020].
Please refer to Kato et al. [2020a] and Zhao et al. [2021] for a more
comprehensive survey.
The first general-purpose differentiable rendering frameworks

such as OpenDR [Loper and Black 2014] and Neural 3D Mesh ren-
derer [Kato et al. 2018] have been developed to enable analytical
differentiation at the cost of utilizing approximate forward models,
which focus on primary visibility and cannot handle complex ma-
terials or light transport effects. On the other hand, one technical
difficulty in differentiatingMonte Carlo renderers (e.g., a path tracer)
is proper handling of edge derivatives, typically due to geometry
discontinuities around the object silhouettes and depth boundaries,
where simple automatic differentiation can only handle interior
gradients while completely missing the boundary term [Zhang et al.
2020], yielding inaccurate gradient estimates and suboptimal con-
vergence consequently.

Due to the aforementioned challenge, there have been mainly
two types of differentiable rendering methods that are developed to
tackle this problem, namely physics-based differentiable rendering
and differentiable rasterization.

Physics-based differentiable rendering. This type of method aims
at fully differentiating a path tracer that handles global illumination
through light transport simulation. Li et al. [2018] propose the edge
sampling algorithm that estimates the boundary gradient term using
Monte Carlo sampling. This approach has been further reformulated
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in path space using the Reynolds transport theorem [Zhang et al.
2020, 2021]. Alternatively, fast approximation of boundary term
by sampling the continuous area instead of the silhouette can be
achieved through reparameterized integrals [Bangaru et al. 2020;
Loubet et al. 2019]. Vicini et al. [2022] further design and apply
efficient reparameterization for SDF representations that enable
accurate shape parameter derivatives. These approaches can handle
complex light transport effects such as caustics and glossy inter-
reflection, while typically being computationally expensive and
heavy in implementation.

Differentiable rasterization. This type of method rasterizes render-
able primitives in a scene by projecting and shading mesh vertices
on the image plane with automatic differentiation. To handle the
geometry discontinuities around mesh silhouettes, triangles along
camera rays are each assigned a transparency value (a.k.a. “soften-
ing”) based on a signed distance function and blended through a
differentiable aggregating process, such as SoftRas [Liu et al. 2019]
and PyTorch3D [Ravi et al. 2020], enabling efficient gradient back-
propagation to multiple triangles along a ray. Nvdiffrast [Laine et al.
2020] uses analytic antialiasing method on top of rasterization to
generate reliable visibility gradients. It achieves much higher perfor-
mance than previous frameworks through a highly optimized hard-
ware implementation. Existing differentiable rasterization methods
could be combined with preconditioned gradient descent for stably
optimizing the vertex positions of meshes [Nicolet et al. 2021]. In
this work, we mainly use differentiable rasterizers as the backend of
our differentiable rendering method, for the ease of implementation
and fast speed in gradient-based optimization.
Note that, current differentiable rendering approaches utilize

per-pixel image derivatives which are computed locally pixels on
a set of fixed grid locations. Therefore, such per-pixel derivatives
cannot help with global and long-range optimization during inverse
rendering when few or no pixels are overlapped between the image
pairs.

2.2 Optimal Transport

Optimal transport [Kantorovich 1942; Monge 1781], in its discrete
form, gives a framework to measure the “distance” between two dis-
tributions, where each distribution is discretized into a set of points,
each carrying an amount of “mass”. In order to minimize the dis-
tance, optimal transport solves for the amount of mass transported
between pairs of points from the two distributions, respectively.
Recent works in computer graphics have applied optimal trans-

port to various subareas [Bonneel et al. 2016, 2011; Solomon et al.
2015]. Since optimal transport often computes slowly, approximate
solutions have been proposed to enable faster calculation, such as
Sinkhorn divergences [Cuturi 2013], convolutional Wasserstein dis-
tances [Solomon et al. 2015], Sliced Optimal Transport (SOT) [Paulin
et al. 2020] and Sliced Partial Optimal Transport (SPOT) [Bonneel
and Coeurjolly 2019].

We are especially interested in a special case of optimal transport
that finds one-to-one mapping. In this case, the optimal transport
is equivalent to finding a minimum weight matching in a bipartite
graph, but can be performed in a much more efficient way with a

slight approximation using Sinkhorn divergences [Feydy et al. 2019].
Since optimal transport provides global optimal mapping, which is
automatically shape-aware, the acquired mapping provides us with
nice correspondence for our method.
It is worth mentioning that the goal of optimal transport is also

closely related to bipartite graph matching [Crouse 2016; Kuhn and
Yaw 1955] and optical flow [Ilg et al. 2017; Truong et al. 2022]. In
our experiments, we have demonstrated the superiority of optimal
transport over alternative techniques for our task.

2.3 Fluid Simulation

Since our idea is inspired by fluid simulation, we provide a brief
discussion of it. There are two viewpoints towards the motion of a
continuous fluid [Bridson 2008], including the Eulerian viewpoint
and the Lagrangian viewpoint. The Eulerian viewpoint, i.e., grid-
based fluid simulation methods [Fedkiw et al. 2001; Stam 1999],
focuses on fixed locations in space and tracks how fluid quantities
(i.e., densities, velocities, temperatures, etc.) change with time at
these fixed locations. Differently, the Lagrangian viewpoint, i.e.,
smoothed particle hydrodynamics (SPH) based methods [Desbrun
and Gascuel 1996; Müller et al. 2003; Premžoe et al. 2003], considers
the fluid as a particle system, where each particle could be thought
as a molecule of the fluid. The Lagrangian viewpoint tracks how the
position, velocity and other associated quantities of each particle
change with time.
The Eulerian viewpoint and the Lagrangian viewpoint could be

connected through the material derivative [Bridson 2008]:
𝐷𝑠

𝐷𝑡
=
𝜕𝑠

𝜕𝑡
+ ∇𝑠 · 𝑑p

𝑑𝑡
, (1)

where 𝑡 denotes the time, p and 𝑠 denote the position and a specific
quantity (e.g., temperature) of a particle, respectively, and ∇(·) de-
notes the spatial gradient operator. The Eulerian derivative 𝜕𝑠/𝜕𝑡
tracks how the quantity at the fixed location changes with time.
The material derivative 𝐷𝑠/𝐷𝑡 tracks how the quantity of the par-
ticle changes with time, and 𝑑p/𝑑𝑡 is the positional derivative (or
velocity) of the particle.

We draw inspiration from Lagrangian fluid simulation and define
derivatives on movable geometric points rather than on pixels at
fixed locations.

3 BACKGROUND AND MOTIVATION

In this section, we first briefly review existing differentiable ren-
derers in Sec. 3.1, then we present the motivation of our method in
Sec. 3.2.
In the following, we focus on differentiable rasterizers. Support

for ray tracing or other geometry types such as implicit surfaces
remains future work.

3.1 Background

3.1.1 Formulation. Given a 3D scene containing mesh-based ge-
ometries, lights, materials, textures, cameras, etc, a rasterizer renders
a 2D image I depicting the scene. The final RGB color c = (𝑟, 𝑔, 𝑏)
of each screen-space pixel p = (𝑥,𝑦) of the rendered image could
be formulated by:

I(p) = c = 𝑓 (p,Θ), (2)
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where 𝑓 (·) denotes the complex rendering function that includes
computations of shading, interpolation, projection, filtering (an-
tialiasing), etc., and Θ denotes the set of scene parameters such as
camera pose, light direction, vertex position, texture color, etc. For
simplicity, we interchangeably denote the color of a pixel p using
I(p) or using symbol c.
A differentiable renderer augments the rasterizer by addition-

ally providing derivatives with respect to specific scene parameters
besides rendered pixel colors. Specifically, it provides the color deriv-
ative 𝜕I(p)/𝜕𝜃 (short as 𝜕c/𝜕𝜃 ) at each pixel p where 𝜃 is a specific
scene parameter. Note that the derivative 𝜕c/𝜕𝜃 is computed at
fixed screen-space locations, and we refer to it as the standard color
derivative, short as standard derivative.
The standard color derivatives for the whole image 𝜕I/𝜕𝜃 could

also be given by:
𝜕I
𝜕𝜃

=

[
𝜕I(p1)
𝜕𝜃

, · · · , 𝜕I(pN)
𝜕𝜃

]
=

[
𝜕c1
𝜕𝜃
, · · · , 𝜕cN

𝜕𝜃

]
, (3)

where 𝑁 is the number of pixels, pi denotes the 𝑖-th pixel and ci
denotes the color of pixel pi.

3.1.2 Loss function. In a typical inverse rendering problem, the
goal is to recover some specific scene parameters through gradient
based optimization on a predefined scalar loss function. The loss
function 𝐿 is usually defined as the sum of pixel-wise differences
between the rendered image I and a given target reference image
Iref , such as an L2 loss:

𝐿(I) =
𝑁∑︁
𝑖=1

𝐿(pi), where 𝐿(pi) = (I(pi) − Iref (pi))2 . (4)

The differentiable renderer could then compute the derivative
of loss function 𝐿 with respect to a scene parameter 𝜃 through the
chain rule:

𝜕𝐿

𝜕𝜃
=
𝜕𝐿

𝜕I
· 𝜕I
𝜕𝜃
. (5)

The final scene parameters could be recovered by optimizing the
loss function 𝐿 through an iterative gradient descent process with
the above derivative 𝜕𝐿/𝜕𝜃 .

3.2 Motivation

While traditional differentiable renderers have demonstrated very
nice performance on many inverse rendering tasks, they quickly
become less robust for optimizing global, long-range object trans-
formation. Recall the simple example of a scene containing a single
sphere: if the initial sphere location is far away from the target loca-
tion, i.e., there are no overlapped pixels between the initial sphere
and target sphere, the L2 loss would simply produce zero gradients
and the optimization would probably get stuck in undesired local
minima. The reason for such problem is due to the fact that pixels
are at fixed screen space locations and the standard derivatives com-
puted on pixels are intrinsically local. While the problem could be
alleviated through blurring with soft boundaries [Liu et al. 2019]
or multi-resolution strategies [Li et al. 2018], it is still not robust
enough.
This motivated us to seek for a more robust differentiable ren-

dering method that could deal with global and long-range object
motions.

pixel p

point
proxy q

(a)

traditional our method

(b)

Fig. 2. Illustrations. (a) we associate each pixel with (at most) one geometric

point — the underlying visible 3D geometric point on the mesh. (b) we

employ optimal transport to find a pixel matching between rendered and

target images while traditional methods could be viewed as always using

an identity matching.

4 METHOD

In this section, we first present the overview of our method in
Sec. 4.1, after that, we introduce the 5D RGBXY derivatives in Sec. 4.2
and the optimal transport based loss function in Sec. 4.3.

4.1 Overview of our method

The problem setup and pipeline of our method are almost the same
as traditional differentiable rasterizers (Sec. 3.1). Considering an
inverse rendering task, our goal is to optimize for some specific
scene parameters through iterative gradient descent, so that the ren-
dered image could be as close as possible to a given target reference
image. The major difference lies in that our method uses movable
geometric points instead of fixed-location pixels as the primitives
for computing derivatives and loss functions.

Specifically, we associate each pixel with (at most) one geometric
point — the visible 3D geometric point on the mesh covered by
the center of the pixel, namely point proxy, as shown in Fig. 2 (a).
For each point proxy, we derive its 5D RGBXY derivatives, which
measures how its color (RGB) and its projected screen-space position
(XY) change with respect to desired scene parameters. The RGBXY
derivatives could track not only its appearance change but also its
movement. See Sec. 4.2 for details.

Furthermore, in order to explicitly drive each point proxy to the
correct location, we employ optimal transport to obtain a pixel
matching between a pair of rendered images and target reference
images. Then, we design a novel loss function by considering both
color and positional differences between matched pixels. See Sec. 4.3
for details.
A simple illustration of the difference between our method and

traditional differentiable rasterizers is given in Fig. 2 (b). Traditional
methods could be viewed as always using an identity matching
between rendered and target images, in contrast, we use optimal
transport based pixel matching to define a more sophisticated loss
function.

4.2 RGBXY Derivatives

As described in Sec. 4.1, instead of computing derivatives at fixed
screen space locations (i.e., pixels), we associate each pixel with a
point proxy (i.e., the visible underlying 3D geometric point on the
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mesh it covers) and compute the RGBXY derivatives on the point
proxy with respect to scene parameters.
Specifically, considering a point proxy q on the mesh, denoting

its projected screen-space pixel position as p = p(q) = (𝑥,𝑦), and its
observed RGB color as c = c(q) = (𝑟, 𝑔, 𝑏), we define its 5D RGBXY
derivative as the combination of a 3D color derivative and a 2D
positional derivative: [

𝐷c
𝐷𝜃

,
𝜕p
𝜕𝜃

]
, (6)

where 𝐷c/𝐷𝜃 and 𝜕p/𝜕𝜃 measure how the RGB color and the pro-
jected screen-space position of the point proxy change with respect
to scene parameters 𝜃 , respectively. Imagine that when scene pa-
rameters change, the point proxy always corresponds to the same
underlying 3D geometric point on the mesh, i.e., the 3D point on the
same triangle with the same interpolating barycentric weights. We
refer to𝐷c/𝐷𝜃 as thematerial derivative, and 𝜕p/𝜕𝜃 as the positional
derivative, respectively.

4.2.1 Computation of RGBXY derivatives. Denoting the three ver-
tices of the triangle which q belongs to as vi (1 ≤ 𝑖 ≤ 3), it is easy
to know that:

q = 𝑤1v1 +𝑤2v2 +𝑤3v3, (7)
where𝑤𝑖 (1 ≤ 𝑖 ≤ 3) are barycentric weights satisfying

∑
𝑖 𝑤𝑖 = 1.

Note that the barycentric weights of q are considered as unchanged
by definition, so that we have 𝜕𝑤𝑖/𝜕𝜃 = 0. Accordingly, the posi-
tional derivative could be computed by:
𝜕p
𝜕𝜃

=

[
𝜕ℎ(q)
𝜕q

]
·
[
𝜕q
𝜕𝜃

]
=

[
𝜕ℎ(q)
𝜕q

]
·
[
𝑤1

𝜕v1
𝜕𝜃

+𝑤2
𝜕v2
𝜕𝜃

+𝑤3
𝜕v3
𝜕𝜃

]
,

(8)
where ℎ(·) is the projection function that maps the 3D point q to
screen space position p, i.e., p = ℎ(q).

Similarly, the observed color c at point proxy q could be generally
expressed as a shading model as below:

c = 𝑔(a) = 𝑔(𝑤1a1 +𝑤2a2 +𝑤3a3), (9)

where a, ai denote specific attributes at q and at the three triangle
vertices vi (1 ≤ 𝑖 ≤ 3), respectively. The attributes may include
normal, albedo and other shading parameters and 𝑔(·) denotes a
specific shading model. The attributes a are computed through
barycentric interpolation from the attributes at the three triangle
vertices.

Accordingly, we could compute the material derivative through:
𝐷c
𝐷𝜃

=

[
𝜕𝑔

𝜕a

]
·
[
𝐷a
𝐷𝜃

]
=

[
𝜕𝑔

𝜕a

]
·
[
𝑤1

𝜕a1
𝜕𝜃

+𝑤2
𝜕a2
𝜕𝜃

+𝑤3
𝜕a3
𝜕𝜃

]
. (10)

Similar to computing the positional derivative in Eq. 8, the barycen-
tric weights are kept unchanged and their derivatives are naturally
zero (i.e. 𝜕𝑤𝑖/𝜕𝜃 = 0) which will not contribute to the material
derivative.

4.2.2 Relationship between RGBXY derivatives and standard deriva-
tives 𝜕c/𝜕𝜃 . There are two major differences between our RGBXY
derivatives and standard color derivatives. First, RGBXY derivatives
are defined on geometric points associated with pixels while stan-
dard derivatives are defined on pixels. Second, RGBXY derivatives
are 5D, measuring the changes of both colors and positions with

respect to scene parameters. In contrast, standard derivatives track
only color changes observed at fixed screen-space locations.

Despite the differences, the standard derivatives on a pixel could
be connected to the RGBXY derivatives on the point proxy of that
pixel, through:

𝜕c
𝜕𝜃

=
𝐷c
𝐷𝜃

− 𝜕c
𝜕p

· 𝜕p
𝜕𝜃

=
𝐷c
𝐷𝜃

− ∇c · 𝜕p
𝜕𝜃
, (11)

where ∇c denotes the spatial gradient of color, i.e., how image color
changes with screen space locations. Notice that the form of the
above equation is rather similar to Eq. 1 in fluid simulation.

𝜃 : 𝑥-axis translation

q

(0,0) (2,0)
𝑥

𝑦 (1,2)

Let us look at a simple example
(shown on the left) to better understand
the concepts of all types of derivatives
and their relationships. There is a col-
ored triangle in the screen space with
only one scene parameter 𝜃 which con-
trols the amount of translation in the 𝑥-
direction. Its three vertices are located
at (0, 0), (2, 0), and (1, 2), respectively.
Their colors are pure red, blue, and
green, respectively. Let’s consider the

center point of the triangle q which is projected at pixel p in screen
space. Considering the standard derivative on pixel p and our RG-
BXY derivatives on its point proxy q, it is easy to obtain that the
standard derivative 𝜕c/𝜕𝜃 = (0.5, 0,−0.5), our material derivative
𝐷c/𝐷𝜃 = 0, and our positional derivative 𝜕p/𝜕𝜃 = (1, 0), satisfying
Eq. 11.

In this example, we could observe a seemingly conflicting fact that
the material derivative 𝐷c/𝐷𝜃 is zero but the standard derivative
𝜕c/𝜕𝜃 is non-zero. The zero-valued material derivative is simply due
to the color of the underlying geometry point is always unchanged
when the triangle moves. However, the color observed at a fixed
pixel location could be changed due to the movement of the triangle,
leading to a non-zero standard derivative.

4.3 Optimal Transport based Loss Function

In order to capture global and long-range correspondences, instead
of using pixel-wise loss functions such as L1/L2 losses (Eq. 4), we
propose to use a more sophisticated loss function based on optimal
transport.

4.3.1 Our loss function. Discrete optimal transport algorithms solve
the following transportation problem. Imagine there are 𝑁 suppliers
where the amount of “mass” of supplier 𝑖 is 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑁 ), and there
are𝑀 consumers where the amount of demandingmass of consumer
𝑗 is 𝑦 𝑗 (1 ≤ 𝑗 ≤ 𝑀), satisfying

∑𝑁
𝑖=1 𝑥𝑖 =

∑𝑀
𝑗=1 𝑦 𝑗 . The goal is to find

a transportation matrix 𝑇 with minimal overall transportation cost
𝐿:

𝐿 =

𝑁,𝑀∑︁
𝑖, 𝑗=1

𝑇𝑖 𝑗𝑐 (𝑖, 𝑗), subject to
𝑀∑︁
𝑗=1

𝑇𝑖 𝑗 = 𝑥𝑖 ,
𝑁∑︁
𝑖=1

𝑇𝑖 𝑗 = 𝑦 𝑗 , (12)

where 𝑇𝑖 𝑗 and 𝑐 (𝑖, 𝑗) denote the transportation amount, and unit
transportation cost from supplier 𝑖 to consumer 𝑗 , respectively.
Our scenario naturally fits to the formulation of the optimal

transport problem. Consider all the pixels in the rendered image I
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as suppliers and all the pixels in the target image Iref as consumers,
we simply set all 𝑥𝑖 = 1 and all 𝑦𝑖 = 1 (we assume I and Iref have the
same number of pixels so that 𝑁 = 𝑀). The unit transportation cost
from pixel pi in the rendered image I to pixel pj in the target image
Iref is set as the sum of a color distance and a positional distance:

𝑐 (𝑖, 𝑗) = 𝜆(ci − Iref (pj))2 + (1 − 𝜆) (pi − pj)2, (13)
where ci = I(pi) is the color of the rendered image at pixel pi,
Iref (pj) denotes the color of the target image at pixel pj, and 𝜆 is
a balancing weight controlling the relative contributions between
color and position. We set 𝜆 = 0.5 in our experiments.
In our scenario, the transportation matrix 𝑇𝑖 𝑗 actually denotes

a one-on-one mapping between pixels in the rendered and target
images. Note that the pixel matching between rendered and target
images could be also viewed as a matching between point proxies
in the rendered image and pixels in the target image, since ci and pi
could also denote the color and screen space position of the point
proxy of the 𝑖-th pixel.
After the pixel matching is obtained, our loss function could be

viewed as the sum of color and positional distances (Eq. 13) between
matched pixels. Different from traditional L2 loss which is computed
on aligned pixel locations, our loss function is able to handle global
and long-range object correspondences.

4.3.2 Derivative of loss function. The above optimal transport based
loss function (Eq. 12) can be easily differentiated by fixing the pixel
matching (i.e., 𝑇𝑖 𝑗 in the equation). Note that the pixel color and
position in the target image (Iref (pj) and pj) are also fixed. So that
we could directly compute the derivative of the loss 𝐿 with respect to
both color ci and screen space position pi of point proxies according
to Eq. 12, which is: [

𝜕𝐿

𝜕c1
,
𝜕𝐿

𝜕p1
, · · · , 𝜕𝐿

𝜕cN
,
𝜕𝐿

𝜕pN

]
. (14)

The final derivative with respect to a scene parameter could be
computed through the chain rule:

𝜕𝐿

𝜕𝜃
=

[
𝜕𝐿

𝜕c1
,
𝜕𝐿

𝜕p1
, · · · , 𝜕𝐿

𝜕cN
,
𝜕𝐿

𝜕pN

]𝑇
·
[
𝐷c1
𝐷𝜃

,
𝜕p1
𝜕𝜃

, · · · , 𝐷cN
𝐷𝜃

,
𝜕pN
𝜕𝜃

]
,

(15)
where the second term includes the RGBXY derivatives of all point
proxies (Eq. 6). Imagine that, the purpose of the above derivatives
would not only push the screen space position of the point proxy
to be closer to that of the matched pixel, but also enforce its color
closer to the matched pixel’s color.

4.3.3 Approximation using Sinkhorn divergences. While our loss
function in Eq. 12 and its derivatives could be directly computed
using standard optimal transport algorithms [Peyré et al. 2019], how-
ever, it would be very slow to find the exact optimal solution. Instead,
we utilize an approximated but rather efficient algorithm for opti-
mal transport using Sinkhorn divergences [Cuturi 2013; Feydy et al.
2019]. It has a parameter 𝜖 to control its accuracy. Smaller values of
𝜖 lead to higher accuracy. We set 𝜖 = 0.01 in our experiments.

4.3.4 An explanatory example. Let us look at a simple example to
see why our method works. Fig. 3 shows a white rectangle with a
single scene parameter 𝜃 which controls the amount of translation in

Input Blurred
input

Standard
derivatives

RGBXY
derivatives

1

0.5

0.25

0.0

-0.25

-0.5

-1

Initial Initial 𝜕c/𝜕𝜃 𝐷c/𝐷𝜃 𝜕p/𝜕𝜃

Target Target 𝜕𝐿/𝜕𝜃 Matching 𝜕𝐿/𝜕𝜃

Fig. 3. An explaining example of comparing standard color derivatives and

our RGBXY derivatives. The single scene parameter 𝜃 controls the amount

of translation in the 𝑥-direction.

the 𝑥-direction. We would like to move it from left (initial location)
to right (target location), while there is no overlapping between
the initial rectangle and the target rectangle. Blurred or anti-aliased
input images are used to compute the standard color derivatives in
order to prevent very large or infinite values.

We could draw some useful observations from the results in Fig. 3.
First, the standard derivatives (𝜕c/𝜕𝜃 ) are sparse — they are non-
zero only near object boundaries, while our positional derivatives
(𝜕p/𝜕𝜃 ) are much denser — having non-zero values in the whole
interior area. This shows that our RGBXY derivatives could be more
stable and useful. Second, by carefully looking at the map of loss
derivatives (𝜕𝐿/𝜕𝜃 ) computed from standard derivatives, we could
find that it is positive on one side and negative on the other side,
probably leading to an overall zero-valued loss derivatives. The
location of the rectangle would easily get stuck during optimization.
In contrast, the map of loss derivatives in our method has dense and
consistent values, and could effectively drive the rectangle move to
the target location.
How to efficiently and effectively deal with object boundaries

has been recognized as an open problem in differentiable render-
ing [Kato et al. 2020b]. The difficulty lies in the computation of the
standard derivatives at edge boundaries which may involve very
large values or infinitely-valued Dirac delta functions. While a lot
of progress has been achieved by spatial blurring [Laine et al. 2020;
Liu et al. 2019; Ravi et al. 2020], anti-aliasing [Laine et al. 2020],
edge sampling [Li et al. 2018] or reparameterization [Bangaru et al.
2020; Loubet et al. 2019] however, due to intrinsic limitations of
standard derivatives, i.e., its sparsity and locality, it is still not robust
in handling scenes when the initial and target transformations differ
a lot.

In contrast, we provide a simple and elegant solution for dealing
with object boundaries. As shown in the above example, our method
generates dense derivatives in interior regions and relies much
less on boundary regions compared to traditional differentiable
rendering methods. In other words, we can compute a dense, stable
derivative and avoid computing problematic standard derivatives at
object boundaries, i.e., having very large or infinite values.
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5 OPTIMIZATION STRATEGIES AND IMPLEMENTATION

5.1 Optimization Strategies

Given a scene with parameters to be optimized, we could use opti-
mizers like stochastic gradient descent or more sophisticated ones
such as Adam optimizer [Kingma and Ba 2014]. In our experiments,
we find that the Adam optimizer is less sensitive to parameter scales
compared to stochastic gradient descent, hence, we always use the
Adam optimizer. Compared with previous works, we need to change
how the gradient is computed at each iteration, i.e., replacing the
standard color derivatives (Eq. 3 and Eq. 5) with our RGBXY deriva-
tives (Eq. 6 and Eq. 15).
Below, we further introduce two simple strategies used in the

optimization process, which lead to higher running speed and better
convergence.

5.1.1 Compute matching at intervals. As mentioned, our optimal
transport based loss function requires computing pixel matching,
i.e., the transportation matrix 𝑇 in Eq. 12, as well as computing the
color and positional distances between matched pixels (Eq. 13). On
one hand, computing pixel matching is costly and is the bottleneck
in computation. On the other hand, there are only subtle changes
in pixel matching within adjacent iteration steps. Hence, instead
of computing the matching at each step, we opt to compute it at
intervals (i.e., once every 𝐾 + 1 steps, and we use 𝐾 = 5) for higher
speed without hurting accuracy.

5.1.2 Hybrid gradients. Our RGBXY derivatives are highly effective
in capturing global and long-range influence, however, it would be
less effective when initial and target shapes are already aligned
very well. This is probably due to that our used approximated opti-
mal transport method may lead to inaccurate matching when the
initial and target shapes are already very close. Motivated by this,
we additionally introduce a hybrid strategy that combines RGBXY
derivatives and standard derivatives, leveraging the advantages of
both. During optimization, we use RGBXY derivatives (Eq. 15) at the
beginning and switch to standard derivatives (Eq. 5) at the last. In
our implementation, we simply employ a 3:1 split — using RGBXY
derivatives for the first 75% iterations and switching to standard
derivatives for the last 25% iterations.
We will validate the above two strategies later in Sec. 6.1.

5.2 Implementation Details

Our method is very simple to implement on top of existing differen-
tial rendering frameworks. We have implemented our method on
three differentiable rendering frameworks, includingNvdiffrast [Laine
et al. 2020], PyTorch3D [Ravi et al. 2020], and JRender [Hu et al.
2020]. In our implementation, no soft blending along the z-axis or
silhouette blending on pixels is employed.

5.2.1 Barycentric coordinates. All differentiable rendering frame-
works provide functions to fetch the barycentric coordinates of a
pixel with respect to its covering triangle. Care must be taken when
dealing with the barycentric coordinates of point proxies. Since
the point proxies represent the underlying geometric points, hence,

their barycentric coordinates should not change by definition, which
means that their gradient should always be zero.

5.2.2 Background pixels. Background pixels, i.e., those pixels which
do not cover any geometries, are still involved in the computation
of optimal transport based pixel matching. However, since they are
not covered by any triangles and are not associated with any point
proxies, they will not contribute to the final gradients. Nevertheless,
if a foreground mask is additionally provided together with the
target image, we could safely exclude the background pixels in
computations.

5.2.3 Antialiased pixels. For antialiased pixels at or near object
boundaries, they may be partially covered by multiple triangles.
The more sophisticated way will need to record all of its cover-
ing triangles, track and compute the RGBXY derivatives for all
underlying geometric points on all covering triangles, however, this
will lead to unnecessary implementation complexity. Instead, we
always associate such pixel with one underlying geometric point,
i.e., the point which pixel center hits. As explained in Sec. 4.3.4, our
derivatives are mainly contributed from interior regions rather than
from boundaries, the above solution works well without sacrificing
accuracy.

5.2.4 Implementation of approximated optimal transport. We opt
for Sinkhorn divergences for an approximated but efficient optimal
transport algorithm. Specifically, we directly use the GPU imple-
mentation provided by Feydy et al. [2019] with parameter 𝜖 = 0.01,
which corresponds to a highly accurate matching. The time complex-
ity of the algorithm is𝑂 (𝑁𝑀), where 𝑁,𝑀 is the total pixel amount
in two images. Processing a matching between two 128×128 images
typically takes about 0.05 seconds on an NVIDIA RTX 3090 GPU.
The processing time increases to 0.43 seconds for two 256 × 256
images, and to 5.72s for two 512 × 512 images.

6 EXPERIMENTS

All experiments are performed on a PC with an NVIDIA RTX 3090
GPU with 24GB memory. Since the Nvdiffrast framework is faster,
we always use our Nvdiffrast based implementation. We leverage
Adam optimizer [Kingma and Ba 2014] using default parameters of
𝛼 = 0.02, 𝛽1 = 0.9 and 𝛽2 = 0.999, with the learning rate decayed by
0.999× after each iteration.

6.1 Evaluation

To evaluate the robustness of our method, we have collected 8
scenes as shown in Fig. 4. Each scene has one or multiple types
of parameters to optimize, including translation vector, rotation
angle, vertex position, camera pose, material, environment light, and
textures. The tested scene parameters include both geometric and
non-geometric parameters, as well as combinations of parameters.
The number of views used for each scene is given in Table 1, ranging
from 1 view to 6 views. For scenes Kitty, Buddha, Cube, Box, and
Teapot, we randomly generate 10 groups of initial scene parameters.
For the 3 other scenes, since randomly initialized parameters may
lead to meaningless configurations, e.g., self-intersection meshes,
we manually provide 1 group of initial scene parameters.
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(a) Kitty (translation) (b) Buddha (rotation) (c) Cube (translation+rotation) (d) Ginger (vertex position)

(e) Box (camera) (f) Teapot (material) (g) Stone (light texture) (h) Joint (trans+rot+scale+tex)

Fig. 4. The 8 scenes for evaluation. For each scene, we provide the initial image on the left and the target image on the right, from one of the views (if having

multiple views). The scene parameters to be optimized are given inside the bracket. (a) Kitty optimizing for a translation vector; (b) Buddha optimizing

for a rotation angle; (c) Cube optimizing for a translation vector and a rotation angle; (d) Ginger optimizing for all vertex positions; (e) Box optimizing for

the camera pose; (f) Teapot optimizing for diffuse and specular parameters; (g) Stone optimizing for the texture representing environment light; (h) Joint

optimizing for several types of scene parameters, including translation, rotation, scale, and texture.

Table 1. Evaluation results on 8 scenes, including (a) alternative matching methods, including optical flow and bipartite graph matching; (b) different values of

parameter 𝜆; (c) different values of matching interval 𝐾 ; (d) different optimization strategies including a randomly combination strategy, the hybrid strategy,

and the basic strategy using only RGBXY derivatives; (e) baseline methods including Nvdiffrast variants with resolution 128 × 128, with resolution 1024 × 1024,
and with two multi-scale schemes, respectively.

Scene Kitty Buddha Cube Ginger Box Teapot Outdoor Joint

Speed
(It/sec)

Optimize
Parameter Translation Rotation Translation

Rotation
Vertex
Position

Translation
View Direction

Diffuse
Specular

Envlight
Cubemap

Trans+Rot+
Scale+Texture

Num of views 6 6 4 1 1 6 6 1
Metric MAE PSNR MAE PSNR MAE PSNR MAE PSNR PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

(a) matching
algo.(𝐾 = 5,basic)

op.flow 0.010 34.25 0.342 22.41 1.020 17.33 0.477 18.93 12.77 0.530 17.43 0.905 18.97 0.813 18.87 0.840 19.49
bipart. 0.013 33.68 0.433 23.09 0.171 24.54 0.598 14.33 14.25 0.620 53.10 0.997 18.95 0.800 16.94 0.540 87.93

(b) param 𝜆
(𝐾 = 5,basic)

𝜆 = 0.01 0.639 19.16 0.970 18.06 0.920 16.98 0.535 14.80 14.71 0.783 44.86 0.997 22.28 0.905 16.56 0.731 62.68
𝜆 = 0.1 0.332 20.74 0.775 19.01 0.007 38.29 0.357 25.18 16.85 0.840 35.95 0.986 18.66 0.828 16.56 0.731 62.56
𝜆 = 0.9 0.001 45.63 0.442 22.55 0.063 27.28 0.306 29.68 22.89 0.930 32.39 0.961 15.89 0.741 25.25 0.886 60.58
𝜆 = 0.99 0.001 47.38 0.429 22.73 0.066 27.11 0.309 29.14 23.69 0.940 33.27 0.969 16.79 0.736 25.89 0.907 54.50

(c) match
interval 𝐾

(𝜆 = 0.5,basic)

𝐾 = 0 0.002 42.04 0.457 24.50 0.066 27.35 0.302 31.26 22.76 0.932 33.88 0.967 17.04 0.779 22.84 0.843 15.34
𝐾 = 1 0.003 41.98 0.460 24.54 0.062 27.59 0.308 28.28 22.34 0.923 33.91 0.967 17.10 0.781 22.05 0.827 27.94
𝐾 = 10 0.002 42.25 0.489 21.66 0.047 29.06 0.300 30.20 22.18 0.920 33.42 0.967 17.19 0.785 23.96 0.865 88.81
𝐾 = 50 0.011 33.88 0.708 18.81 0.048 28.91 0.297 31.34 21.29 0.909 31.66 0.962 16.63 0.793 20.15 0.779 148.28

(d) optim
strategy

𝐾 = 5,𝜆 = 0.5)

rand 0.419 24.32 0.806 20.49 1.666 18.77 0.537 25.85 15.56 0.820 49.59 0.999 54.02 1.000 21.69 0.898 90.15
hybrid 0.003 41.53 0.467 24.53 0.006 37.87 0.305 35.14 25.28 0.952 49.08 0.999 51.21 1.000 44.19 0.996 74.08
basic 0.002 42.41 0.480 22.88 0.052 28.46 0.304 28.69 22.69 0.931 33.86 0.968 16.85 0.779 24.00 0.867 61.96

(e) baseline

nvdf.res.128 0.487 24.47 0.857 21.02 1.887 18.98 0.560 24.68 14.54 0.796 50.16 0.999 54.50 1.000 21.69 0.899 173.20
nvdf.res.1024 0.491 24.56 0.751 20.69 1.878 19.11 0.551 28.14 18.02 0.935 39.18 0.989 53.25 0.999 23.36 0.950 112.88
nvdf.mul.res 0.404 24.28 0.772 19.47 2.217 17.68 0.653 22.24 13.38 0.828 41.81 0.987 44.42 0.986 21.38 0.922 146.35
nvdf.down.res 0.635 24.60 0.449 25.71 1.359 20.00 0.581 29.06 18.91 0.953 38.05 0.970 51.49 0.998 23.36 0.950 109.56

Then, we conduct a series of evaluations to verify our design
choices and parameter settings. Note that when we evaluate on a
specific setting (parameter), other parameters are retained to be the
same as our final method. In each test, we use a rendering resolution
of 128 × 128 and optimize for 1000 iterations.

We provide an evaluation with both 3D and 2D metrics, i.e., a 3D
error metric MAE which measures the mean absolute error between
vertices of the optimized and target meshes, and 2D error metrics
including PSNR, SSIM [Wang et al. 2003], RMSE and a perceptual
score LPIPS [Zhang et al. 2018]. The averaged scores are given in
Table 1. Due to space limitations, we only show MAE and PSNR
scores for scenes with only geometric changes and show PSNR and

SSIM for other scenes. Full results can be found in the supplemental
document.

6.1.1 Optimal transport vs other pixel matching methods. As dis-
cussed in Sec. 4.3, our method uses approximated optimal transport
to capture global and long-range correspondences. Other techniques
could also serve the same purpose, such as optical flow or bipartite
graph matching. For optical flow, we have selected a state-of-the-art
method [Truong et al. 2022] to compare with. For bipartite graph
matching, we use the implementation [Crouse 2016] provided in
the SciPy library. Table 1 (a) shows the scores by replacing optimal
transport with optical flow and bipartite graph matching, respec-
tively. Rendering resolution is set to 128 × 128 for optical flow and
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is set to 32 × 32 for bipartite graph matching. A matching interval
𝐾 = 5 is used for a trade-off between speed and quality. Their results
are generally less robust than ours (Table 1 (d)): both of them leads
to unsatisfactory results (PSNR < 20dB) on scenes Box and Ginger.
Furthermore, optical flow [Truong et al. 2022] is slower than ours,
while bipartite graph matching [Crouse 2016] does not scale well
with image size, i.e., it is significantly slower if rendering resolution
is set to 64 × 64. Overall, optimal transport is the best choice.

6.1.2 The weight parameter 𝜆 in Eq. 13. The weight parameter 𝜆
is used to control the relative contributions between colors and
positions in computing the loss. Generally, higher values of 𝜆 lead to
longer-range capturing while lower values 𝜆 lead to closer behavior
to traditional differentiable rendering methods. The results shown
in Table 1 (b) are consistent with our expectations. Small values (i.e.,
𝜆 < 0.5) generally perform better on scenes that do not optimize
for geometric parameters, while large values are on the opposite.
Overall, 𝜆 = 0.5 (Table 1 (d)) is a suitable choice.

6.1.3 The matching interval 𝐾 . As described in Sec. 5.1.1, during
optimization, instead of computing pixel matching at every iteration,
computing it at intervals could accelerate the optimization process.
Here, we evaluate different choices of matching intervals, including
𝐾 = 0, 1, 5, 10, and 50, where 𝐾 = 0 denotes computing matching at
every iteration. As shown in Table. 1 (c) and (d), setting 𝐾 = 5 or
𝐾 = 10 generally lead to similar result qualities compared to setting
𝐾 = 0, while increasing the running speed by 4× to 5×. Hence, we
set 𝐾 = 5 by default.

6.1.4 The hybrid strategy. As described in Sec. 5.1.2, we addition-
ally introduce a hybrid optimizing strategy, which uses RGBXY
derivatives for the first 75% iterations and switches to standard
derivatives for the last 25% iterations. We also test a randomized
strategy for combining RGBXY derivatives and standard derivatives,
i.e., randomly selecting one of them at each iteration. As shown in
Table. 1 (d), the hybrid strategy performs surprisingly well in all
scenes while the random strategy does not show benefits. It agrees
with our expectations: RGBXY derivatives are effective at capturing
global and long-range relationships hence they should be used in
the beginning, and using standard derivatives in the end could help
to finetune parameters for more accurate reconstruction.

6.1.5 Comparison with baselines. We also include 4 versions of
Nvdiffrast [Laine et al. 2020] as baselines for comparison, as shown
in Table. 1 (e), including two without and two with multi-scale
schemes. The first one uses a rendering resolution of 128× 128. The
second one uses a rendering resolution 1024 × 1024. The third one
(with name ‘nvdf.mul.res’ in the table) uses a multi-scale scheme
which progressively increases rendering resolution from 8 × 8 to
1024 × 1024. The fourth one (with name ‘nvdf.down.res’ in the
table) also employs a multi-scale scheme. It always renders images
with a resolution of 1024 × 1024, however, it progressively uses
downsampled rendered images with resolution from 8 × 8 to 1024 ×
1024 for computing loss functions. While using multi-scale schemes
or using a higher resolution (i.e., 1024 × 1024) could improve upon
using a low resolution (i.e., 128 × 128), they still perform generally
less successful than ourmethod using a low resolution (i.e., 128×128),

due to the less effectiveness of standard derivatives compared to
RGBXY derivatives.

6.1.6 Overall observations from evaluation results. First, the results
verify that our basic method (i.e., the one without hybrid strategy)
is highly effective in dealing with geometric scene parameters, es-
pecially when the initial rendered image and target image has large
long-range differences. It is not surprising that we perform less
effectively compared to Nvdiffrast on scenes Teapot and Stone
which only optimize for materials and environment lights, respec-
tively, since optimal transport will not have benefits if there are no
geometric changes between initial and target states.
Second, our hybrid approach is even better and more robust —

it can increase quality in almost all tested examples, and can be
robustly used for all types of scene parameters, including scenes
Teapot and Stone.

Overall, we suggest the following default setting: using weight
𝜆 = 0.5, matching interval 𝐾 = 5, and with hybrid strategy enabled.

6.2 Applications

To demonstrate the practicability, we present several inverse ren-
dering applications of our method, including (1) furniture layout
adjustment, (2) human pose fitting and (3) facial expression recon-
struction. For each application, we compare results optimized with
our method against those optimized with standard L2 loss using
both Nvdiffrast [Laine et al. 2020] and PyTorch3D [Ravi et al. 2020].
For Nvdiffrast, we compute image space L2 loss between antialiased
rendering images and target references. For PyTorch3D, we set the
blur radius to 10−4 and render 50 softened triangles at maximum
along each ray for alpha blending, and the L2 loss is computed be-
tween target references and the aggregated rendering images. Since
the soft boundary is an important feature for PyTorch3D, we also
add another baseline with L2 loss computed on silhouette masks.
Furniture layout adjustment and facial expression reconstruction
use only one view and a rendering resolution of 256 × 256 for op-
timization, while human pose fitting uses 6 views and a rendering
resolution of 128 × 128. We run each method for 1000 iterations.

6.2.1 Furniture layout adjustment. Indoor digital 3D scenes exhibit
rich details including varying materials, intricate layouts, complex
shapes and decorations. In this experiment, we randomly select
50 scenes from the 3D-Front indoor scene dataset [Fu et al. 2021]
and focus on automatically aligning the furniture layout through
differentiable rendering. Given a target image with desired furniture
layout, we initialize the optimizationwith randomly placed furniture
locations in the room. Specifically, for each 3D furniture model, we
optimize for its translation on X-Z plane and rotation along Y-axis.
The visual results of two scenes are shown in Fig. 1. PyTorch3D
uses blurred geometry borders to compute boundary gradients,
leading to significant bias when scene complexity is high. Nvdiffrast
uses analytic antialiasing to produce more reliable gradients, but
often got stuck in local minima due to the lack of global and long-
range gradients. In contrast, our method outperforms the baselines
regarding both 3D and 2D metrics, matching the target layout well.

6.2.2 Human pose fitting. Human pose estimation is an active and
important research topic in computer vision. A commonly used
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Target PyTorch3D PyTorch3D (sil) Nvdiffrast Basic (ours) Hybrid (ours)

H
um

an
(1
)

MAE (mm)/PSNR: 113.8/21.85 107.8/23.38 215.7/20.50 7.761/26.38 7.412/27.73

H
um

an
(2
)

MAE (mm)/PSNR: 130.1/20.46 115.8/22.54 237.9/19.78 6.914/27.19 7.181/27.48

Ex
pr
es
si
on

(1
)

MAE (mm)/PSNR: 0.333/28.85 0.565/28.14 0.335/29.09 0.065/34.49 0.002/49.90
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Fig. 5. Visual results of applications, including human pose fitting (top two rows) and facial expression reconstruction (bottom two rows). Our methods

consistently outperform the baselines with a large gap.
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Fig. 6. Error curve. We show how the MAE metric changes with time during the optimization for all 6 scenes in Fig. 1 and Fig. 5.
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parameterization of human model is Skinned Multi-Person Linear
Model (SMPL) [Loper et al. 2015], which takes 24 rotation angles
(around joints) and 10 shape parameters as input to generate a hu-
man mesh. In this experiment, we aim to fit the SMPL parameters to
match a given reference image that contains the target human pose.
We generated 50 target poses by assigning random rotation angles
between [−0.4, 0.4] and rendered 6 views of the human models. We
set all SMPL parameters to zero as initialization. The visual compar-
isons are provided in Fig. 5 top, demonstrating the superiority of
our method.

6.2.3 Facial expression reconstruction. High-fidelity reconstruction
of facial expressions is another important topic in many areas such
as non-rigid registration and deformation. Here, we use Blend-
shape [Lewis et al. 2014] to fit a target expression. We have one
base model 𝑏0 with a neutral expression and 𝑛 = 12 models with
different expressions 𝑏1, 𝑏2 . . . 𝑏𝑛 . Given different combination of
weights 𝑤1,𝑤2 . . .𝑤𝑛 , we can generate face models with various
expressions via 𝑏 = 𝑏0 +

∑𝑛
𝑖=1𝑤𝑖 (𝑏𝑖 − 𝑏0). We generated 50 target

expressions by assigning random weights between [0, 0.5]. Again,
we set weights to zero (i.e., neutral expression) as the initialization
for all methods. As shown in Fig. 5 bottom, our methods consistently
outperform the baselines with a large gap.
In Fig. 6, we further visualize how the reconstruction error (i.e.,

MAE) changes with time during the optimization for all 6 scenes
shown in Fig. 1 and Fig. 5. While PyTorch3D and Nvdiffrast still
exhibit large errors after 1000 iterations, our method converges
quickly on all scenes. Noticing the error curves for Expression (1)
and Expression (2), we could find that our hybrid strategy further
improves converge during the last iteration steps.
More visual results are given in the supplemental document.

6.3 Discussion and Analysis

6.3.1 Relationship with Lagrangian fluid simulation. In a sense, tra-
ditional differentiable rendering methods might be considered as
adopting Eulerian view since they always compute derivatives at
fixed screen space locations, while our method is from Lagrangian
view since we operate on point proxies. Such analogy is different
from the fluid simulation counterparts. First, in fluid simulation, La-
grangian methods are solving the same mathematical problem (i.e.,
the same Navier-Stokes equation) as Eulerian methods, however,
our method is solving a different optimization problem from tradi-
tional differentiable rendering methods since we use a different loss
function. Second, we use RGBXY derivatives by combining material
derivatives and positional derivatives which is different from the
way how Lagrangian derivatives are used in fluid simulation.

6.3.2 Visualization of matching results. In Fig. 7, we show visual-
izations of our optimal transport based pixel matching on three
examples. For each example, we provide the target reference im-
age, the rendered image, the XY positions of matched pixels, and
the reconstructed target image from the rendered image. From the
results, we could find that large-scale transformations of objects
can be generally well captured by optimal transport. However, we

Target Rendered Matching Reconstructed

Fig. 7. Visualization of our optimal transport based pixel matching. We

provide three examples, including scenes Buddha (Fig. 4) and Joint (Fig. 4)

and Living Room (Fig. 1). For each example, from left to right, we provide

the target reference image, the rendered image, the XY positions of matched

pixels, and the reconstructed target image using the color of matched pixels

from the rendered image.

could also notice that many object details are not correctly matched
and there are many noises in the reconstructed target image. This
also suggests that the hybrid strategy that switches to standard
derivatives in the end would be useful.

6.3.3 Limitations. Our method has several limitations. First, if the
movement of an appearance effect is not consistent with the move-
ment of the underlying geometry point, our method would probably
fail, e.g., moving shadows or moving reflection highlights caused
by the movement of light sources. An example of moving reflection
highlights is shown in Fig. 8 top , where we optimize for the posi-
tion of the point light source. While our method could successfully
find the matching of highlight pixels between the initial and target
images, it fails to recover the position of light sources.
Second, our method relies on optimal transport to obtain pixel

matching. The accuracy of pixel matching will certainly affect the
quality of our results. Such an example is shown in Fig. 8 bottom,
where we would like to rotate the textured square by 90◦. However,
since the texture looks rather similar everywhere, optimal transport
cannot produce the correct matching.
It is necessary to note that traditional differentiable rendering

frameworks (i.e., PyTorch3D and Nvdiffrast) cannot robustly handle
the two scenes in Fig. 8, either.

7 CONCLUSION AND FUTURE WORK

We proposed a novel differentiable rendering method to improve
the robustness of differentiable rendering. Instead of computing im-
age derivatives locally on fixed screen space locations, we associate
pixels with point proxies and track the movement of the point prox-
ies. By leveraging RGBXY derivatives and optimal transport based
loss functions, our method is able to capture global and long-range
object correspondences. We further proposed a hybrid gradient
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Target Initial PyTorch3D PyTorch3D (Sil) Nvdiffrast Basic (ours) Hybrid (ours)

Fig. 8. Two failure cases of our method. The top row shows a scene where we would like to optimize for the position of the point light source. The bottom row

shows a scene where we would like to rotate the textured square by 90◦ .

strategy with better convergence properties. Experiments show that
our method is more robust and effective than existing differentiable
rendering methods in various inverse rendering applications.

In the future, first, we would like to extend our method to support
ray tracing in order to handle more complex global illumination
effects. This might be achieved by tracking a full light path, rather
than the first hit geometry point. Second, supporting implicit rep-
resentations such as SDF or NeRF [Mildenhall et al. 2020] is also
an interesting future works. Besides, we believe the limitations
mentioned above (e.g., moving shadows or reflection highlights,
inaccurate pixel matching) would also stimulate future works along
this direction. A possible way to design more sophisticated match-
ing algorithms would be taking 3D geometry into consideration or
dynamically balancing the weights of color and positional distances.
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