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Figure 1: Input scene (first column) and three material suggestions automatically generated by our system.

Abstract

Assigning textures and materials within 3D scenes is a tedious and
labor-intensive task. In this paper, we present Magic Decorator,
a system that automatically generates material suggestions for 3D
indoor scenes. To achieve this goal, we introduce local material
rules, which describe typical material patterns for a small group of
objects or parts, and global aesthetic rules, which account for the
harmony among the entire set of colors in a specific scene. Both
rules are obtained from collections of indoor scene images. We cast
the problem of material suggestion as a combinatorial optimization
considering both local material and global aesthetic rules. We have
tested our system on various complex indoor scenes. A user study
indicates that our system can automatically and efficiently produce
a series of visually plausible material suggestions which are com-
parable to those produced by artists.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism; I.3.8 [Com-
puting Methodologies]: Computer Graphics—Applications;

Keywords: Material suggestion, Indoor scene, Data-Driven con-
tent creation, Computer-aided aesthetic design

1 Introduction

Despite the growing number of 3D models available on the Internet,
3D modeling remains a difficult job that requires specialist skills.
It is hard for ordinary users to master modern modeling software
such as Autodesk 3DS Max and Trimble SketchUp. This is the main
reason why the number of 3D digital models is far less than the
number of 2D digital images. Helping average users to create 3D
models and scenes is thus a topic of current interest in computer
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graphics [Xu et al. 2011; Chen et al. 2014].

Building correct geometric shapes is just the first step of 3D model-
ing. To complete designs, one also needs to specify material prop-
erties and textures for each 3D part in the model. For 3D models
such as cars, this is manageable as there are not many alternative
materials for each part (e.g. the surface of a car is typically made of
shiny painted steel, windows and tyres are made of glass and rub-
ber respectively). However, when it comes to 3D indoor scenes, the
problem becomes much more complex as a scene may contain hun-
dreds of semantic parts [Jain et al. 2012] and each part may have a
variety of material choices. Specifying material properties for the
entire scene is a tedious and labor-intensive task. Even worse, one
also needs to consider the aesthetic appearance and visual consis-
tency of the scene as a whole. This requires specialized aesthetic
knowledge, which most ordinary users may lack. Thus, our goal is
to develop a method that can perform automatic material suggestion
for indoor digital scenes.

Although very desirable, performing automatic material suggestion
is challenging for several reasons. Firstly, indoor scenes primarily
contain man-made furniture and objects. There exist strong cor-
relations between object categories and the type of materials they
are made of. In addition, aesthetic rules exist regarding material
choices for groups of functionally related objects as well as for en-
tire scenes. Acquiring knowledge of such relationships and rules
from real-world data is crucial to the success of material sugges-
tion. The questions are how to acquire such knowledge from real
data, and which data sources should be used. Secondly, it is nontriv-
ial to represent the acquired knowledge in a generalizable form that
can be applied to novel scenes to obtain high-quality material as-
signment results. Thirdly, interior design has many different styles,
and there is not a unique correct solution to material selection for
a digital scene. Different users may have different preferences. A
further challenge is how to develop mechanisms for incorporating
user-provided constraints.

In this work, we present a novel system that automatically gener-
ates material suggestions for every object part in a 3D digital scene.
Since at present the number of available digital scenes with both
high-quality geometry and material properties is very limited, our
system acquires knowledge from annotated images of objects and
scenes. For this purpose, we built an image database with thousands
of indoor objects and interior design cases. Our system learns local
material rules from this image database at both the part level (feasi-
ble materials for each part) and the scene level (potential combina-
tions of materials in a scene). Global aesthetic rules, which account
for the harmony among the entire set of colors in a scene, are also



extracted from the image database.

Given a hierarchically organized indoor scene with a semantic tag
for every object and part, our system can automatically generate
a series of visually plausible material configurations for the scene.
The whole process is guided by learned knowledge. Specifically,
we cast the solution process as a combinatorial optimization prob-
lem, with multiple energy terms encoding local material and global
aesthetic rules, which is solved by simulated annealing. As differ-
ent users may have different preferences, our system can narrow
down the range of plausible results by incorporating various forms
of user-provided constraints. A user study indicates that our gener-
ated material configurations are comparable to those manually cho-
sen by artists.

In summary, the contributions of this paper are as follows.

• We have built a database of annotated images of objects and in-
door scenes for complex scene-level material suggestion, and ex-
tracted knowledge from these annotated real-world images instead
of 3D digital models. Statistics collected from our image database
have been used for constructing local material rules and global aes-
thetic rules.

• We introduce a new data-driven technique for scene-level mate-
rial suggestion. The problem of material suggestion for a 3D scene
is cast as a combinatorial optimization problem that searches for
feasible material configurations under the guidance of the learned
material distributions. This optimization problem is solved by sim-
ulated annealing.

• We develop mechanisms to incorporate various forms of user-
provided constraints.

2 Related Work

Image Colorization Image colorization has been an impor-
tant topic in graphics and vision. Image colorization methods
can be split into three categories, interactive colorization tech-
niques [Levin et al. 2004; An and Pellacini 2008; Xu et al. 2009],
color transfer techniques [Welsh et al. 2002; Faridul et al. 2014],
and data-driven colorization methods [Chia et al. 2011; Lin et al.
2013; Huang et al. 2014]. The data-driven methods are the ones
most related to our work. Chia et al. [2011] gave a colorization
method based on Internet images. Suitable reference images are
found by filtering images from the Internet, and final colorized im-
ages are obtained by performing color transfer from such reference
images. Lin et al. [2013] introduced a colorization method for 2D
patterns using a probabilistic factor graph. Their model considers
both color compatibility and the spatial arrangement of pattern seg-
ments, and is trained using example patterns. Colorized results are
obtained with Markov Chain Monte Carlo model sampling. Their
method can impressively colorize patterns. However, since only
low-level features are considered, it would be hard for their model
to deal with natural images or 3D scenes, which need high-level
semantic information.

Appearance Assignment Chajdas et al. [2010] propose a
method which assists users to assign surfaces textures to large
scenes. User assigned textures are automatically propagated to
other surfaces based on a similarity measure. Leifman and
Tal [2012] propose a mesh colorization method. Users are required
to scribble initial colors in certain regions, and these colors are
propagated to other regions under the assumption that adjacent pix-
els having similar intensities should have similar colors. Nguyen et
al. [2012] propose a technique for transferring material styles from
source images to a target 3D scene. They first heuristically esti-
mate material parameters from a single image and then find an op-

timal material assignment for the target 3D scene which minimizes
a visual closeness cost. Yu et al. [2012] proposed a data-driven ap-
proach for automatic dress outfit synthesis. They train a Bayesian
network on real outfit examples, and obtain suitable outfits by op-
timizing a cost function which considers both color compatibility
and dress code suitability. Recently, Bell et al. [2013] presented
OpenSurfaces, which is a large database of image segments, each of
which covers a partial object surface with the same material. Each
image segment is annotated with an object tag, a material type and
reflectance parameters. It is used as the material database in our
system.

However, little work has been conducted on automatic assignment
of true material properties, including both reflectance models and
texture, for complex indoor digital scenes. Jain et al. [2012] discuss
Material Memex, which automatically assigns materials to parts in
a 3D model. It trains a factor graph which accounts for contextual
information between materials and shapes using a database of 3D
models with predefined material properties. While their system fa-
cilitates material assignment, it requires a database with a moderate
number of high-quality 3D models as training data. This makes it
hard to adapt their system to cope with 3D indoor scenes—we can
only find a very limited number of digital scenes with both high-
quality geometry and material properties. To overcome this diffi-
culty, our system collects training data from an annotated image
database of indoor objects and scenes.

Color Compatibility Various methods [Cohen-Or et al. 2006;
O’Donovan et al. 2011] have also been presented to assess the har-
mony or compatibility of multiple colors. Cohen-Or et al. [2006]
improve color harmony in an image by making the colors fit a har-
monious template. O’Donovan et al. [2011] further developed a
data-driven model to predict the rating of a 5-color palette. In our
work, we also take into account color harmony when computing a
scene-level aesthetic result.

Data-Driven Content Creation With the availability of large
datasets of images, 3D models and scenes (e.g. Trimble 3D Ware-
house), data-driven content creation has attracted much interest in
recent years. Different data-driven techniques have been proposed
for various purposes, such as context based model search [Fisher
and Hanrahan 2010], furniture arrangement [Yu et al. 2011], color
theme enhancement [Wang et al. 2010], scene arrangement [Fisher
et al. 2012], sketch based scene retrieval [Xu et al. 2013], and scene
modeling [Chen et al. 2014]. Our work shares the same spirit of
the above methods, but it is targeted at a different topic, which is
complex scene-level material assignment.

3 Overview

Our system takes a 3D indoor scene without material properties as
input. We assume that the scene is organized as a 3-level scene-
object-part hierarchy, and all objects and parts therein have already
been given text tags, such as ‘chairs’ and ‘table legs’. Our goal
in this paper is to automatically assign suitable, aesthetic material
properties to all objects parts in the scene.

To achieve this goal, the core idea is to determine whether a spe-
cific material configuration for the input scene follows real-world
knowledge and aesthetic standards. This is achieved using knowl-
edge extracted from an image database of real-world objects and
scenes. Inspired by recent data-driven techniques [Xu et al. 2013;
Chen et al. 2014], our method builds a database of images (Sec. 4.1)
and extracts reliable local material rules from the image database
(Sec. 4.2). A local material rule describes usual material patterns
for a small group of objects or parts. Figure 2 illustrates such pat-



terns. A night table is usually made of wood, a dining chair often
comprises a wooden frame and fabric cushions, and a bed-frame,
night table and dresser in the same bedroom typically share similar
or the same material. In addition, since an aesthetically pleasing set
of colors usually agree with some harmonious template [Cohen-Or
et al. 2006; O’Donovan et al. 2011], we also introduce global aes-
thetic rules to account for harmony among the whole set of colors
in a specific scene (Sec. 4.3).

The overall score of a specific material combination is determined
by how well the local material rules and global aesthetic rules are
satisfied (Sec. 5.1). The materials of all objects in the scene are
chosen by minimizing the overall score using simulated annealing
(Sec. 5.2).

4 Knowledge Building

We represent a scene with a scene-object-part 3-level hierarchy. As
shown in Figure 3, the top-level has a single node, which represents
the scene. The nodes at the second level represent objects in the
scenes (e.g. tables, chairs), and the leaf nodes at the third level rep-
resent object parts (e.g. table top, table leg). Object parts are the
basic units in our material assignment tasks.

4.1 Database

With the prevalence of digital cameras, we have witnessed an ex-
plosion of digital photos on the Internet in the past decades. In
contrast, the growth of free 3D digital models has been relatively
slow. Many techniques have been proposed to enrich the set of 3D
models with the aid of various types of 2D images [Xu et al. 2011;
Chen et al. 2013; Huang et al. 2015; Miao et al. 2015]. Inspired
by these works, we propose to extract material information from a
large collection of images of indoor objects and scenes, and take
advantage of the extracted information to aid material and texture
assignment during 3D modeling.

Our Database We built our own image database by searching In-
ternet images using the names of indoor objects (e.g. bed, night ta-
ble, dining chair) and indoor scenes (e.g. bedroom, living room) as

Figure 2: Local material/color patterns. A night table is usually
made of wood, a dining chair often comprises a wooden frame and
fabric cushions, and a bed-frame, night table and dresser in the
same bedroom typically share similar or the same material.

Scene Level

Part Level

Object Level

Figure 3: 3-Level hierarchy for a scene.

keywords. For each keyword, the top 800 returned images were re-
tained. In total, we used 56 keywords related to indoor objects and
10 keywords related to indoor scenes. In order to obtain aesthetic
images of indoor scenes, the keywords used during search include
modifiers such as ‘beautiful bedroom’ and ‘bedroom design’.

Next, we used the GIST scene descriptor [Oliva and Torralba 2001]
to detect and remove duplicated images, and we also manually re-
moved irrelevant images. At the end, we collected around 6,500
images. Within this collection, about 4,000 images depict specific
indoor objects and about 2,500 images depict indoor scenes con-
taining multiple objects. All the 2,500 scene images are used for
extracting indoor color themes which we will later introduce in sec-
tion 4.3. However, not all scene images are suitable for region la-
beling because object regions in many images are too small. After
further selection, around 1,000 of them were chosen for region la-
beling.

Sofa

Dining-chair:
  >back

Dining-chair:
  >legs

Wall

Floor
Dining-chair:
  >seat

Dining-table
Dining-chair:
  >frame
Bookshelf

Figure 4: Examples of labeled representative regions in the image
database.

Representative Region Labeling After building the image
database, we next needed to annotate associations between object
categories and materials for each database image. This was done
through manual labeling. We manually added such tags to all ob-
ject parts (e.g. chair legs, table frame) existing in each image. Since
we did not need the precise shape of each object part, to simplify
the labeling process, we only needed to specify a rectangular or
elliptical region, which shows the representative appearance of the
material of that object part. Figure 4 shows examples of labeled im-
ages (two object images and one scene image) from our database. If
multiple object parts in the same image exhibit the same material,
we associate the same representative region with all object parts.
For example, in Figure 4, we assign the dining table, dining chair
frame and bookshelf to the same box region on the table surface,
indicating that all these objects in this image share the same mate-



rial, whose representative appearance can be found in the labeled
region.

Representative Region Matched Region  Type Material

Wood

Wood

Painted

Figure 5: Material annotation examples.

Material Annotation Next, we need to annotate material infor-
mation for each representative region. However, automatic material
recovery from a single image is a long-standing open research prob-
lem in the graphics and vision communities. Fortunately, the recent
work of OpenSurfaces [Bell et al. 2013] provides a large rich anno-
tated image database for indoor scenes (objects). Specifically, for
each labeled region, OpenSurfaces provides a text tag describing
its object category, a text tag describing the material type and ma-
terial parameters (i.e. diffuse, specular and roughness parameters).
We can obtain material information for each representative region
in our database by matching it to labeled regions in OpenSurfaces.
To do so, we define an appearance distance between two regions as
follows:

D(ri, rj) = s(ri, rj)(Dc(ri, rj) + λaDt(ri, rj)), (1)

where ri and rj are two regions, one from our database, and the
other from OpenSurfaces. s(ri, rj) is set to one if the labeled ob-
ject tags of the two regions are consistent, and is set to infinity oth-
erwise. Dc(ri, rj) accounts for color difference and is defined as
the χ-squared distance [Asha et al. 2011] between the HSV color
histograms of the two regions. In our experiments, the hue and sat-
uration channels are quantified into 10 bins, while the value channel
has 3 bins to reduce the influence of different illumination condi-
tions. Dt(ri, rj) accounts for the texture difference and is defined
as the distance between the GLAM (Gray Level Aura Matrix) us-
ing the BGLAM (Basic Gray Level Aura Matrix) measure [Qin and
Yang 2005]. In our experiment, GLAM is computed in a four-
nearest-neighbor neighborhood system with 16 gray scale levels.
Dc and Dt are both normalized to [0,1] by dividing by their re-
spective maximal values. λa is a weight parameter to control the
relative contributions of the two terms.

Our material annotation process has two passes. Specifically, for
each representative region in our database, we first obtain the near-
est 200 regions in OpenSurfaces using the appearance distance met-
ric in Equation 1 with λa = 0. The purpose of the first pass is to
quickly exclude regions with large color differences. In the sec-
ond pass, we re-rank the obtained 200 regions using the appearance
metric but with λa = 1 and retain the top 50 regions. To avoid
noises, we further cluster the top 50 regions according to their ma-
terial types. The region with the smallest appearance distance in
the largest cluster is taken as the final matched region. Its material
information is then transferred to the corresponding representative
region in our database.

We have also evaluated other choices of feature combinations in
defining the appearance distance in Equation 1. For this purpose,
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Figure 6: Examples of texture maps.

we randomly chose 500 representative regions in our database to
form a testing dataset. For every choice of feature combination,
we used the corresponding appearance distance to obtain the best
matching region in OpenSurfaces for every region in the above test-
ing dataset, and manually verified its correctness. In this way, we
measured the precision of the above material annotation process
over the testing dataset for different feature combinations, as shown
in Table 1. Since it is hard to verify the correctness of material pa-
rameters, the precision is based on material types. From the results,
we can see that our feature combination (HSV + BGLAMs + object
tags) achieves a high precision. In addition, with the help of object
tag information, the annotation precision is significantly improved.
This again demonstrates the value of richly annotated databases.

Figure 5 gives an example of annotated results. Figure 5 (left)
shows three regions labeled in Figure 4 (right), and Figure 5 (right)
shows the matched shapes in OpenSurfaces along with the man-
ual annotations of their material types and blobs rendered with the
labeled parameters.

In addition to the above automatic annotation process, we manu-
ally annotate two material types, mirror and glass, and their asso-
ciated parameters because they are highly specular and their reflec-
tion/transmission parameters cannot be reliably recovered from a
single image.

Texture Maps Due to occlusion, incompatible illumination and
projective transformation, cropped regions in both OpenSurfaces
and our database are not ideal choices for texture maps. Mean-
while, texture maps are of vital importance for the appearance of
natural materials such as wood and marble. In order to produce
better results, we further downloaded around 600 texture images us-
ing keywords such as ‘wood texture’, ‘marble texture’, and ‘fabric

Features Precision
HSV 43.6%

BGLAMs 14.4%
HSV and BGLAMs 47.2%
HSV and object tags 85.4%

BGLAMs and object tags 26.8%
HSV, BGLAMs and object tags 93.2%

Table 1: Material annotation precision for different features.



texture’. Each texture image is assigned a labeled region in Open-
Surfaces if their appearance distance (Equation 1) is smaller than
0.2. In Equation 1, s(ri, rj) is set to one if the texture and its as-
signed region have the same material type; and it is set to infinity
otherwise. These texture images are used as texture maps for their
corresponding materials in OpenSurfaces during scene rendering.
Figure 6 shows a subset of these textures.

Database Alternatives There are various existing image
databases for indoor scenes, such as LabelMe [Russell et al. 2008]
and OpenSurfaces [Bell et al. 2013]. However, none of them meets
the requirements of our application. The most widely used image
database is LabelMe [Russell et al. 2008], but this database fo-
cuses on labeling object categories, rather than materials. Although
there are works that extend the annotations in LabelMe to material
names( [Endres et al. 2010]), such annotations are not sufficient for
our work. OpenSurfaces is a very good material database with ma-
terial types, reflectance parameters, object labels, and surface exem-
plars. However, it provides little pairwise compatibility information
for materials, i.e. scenes that contain multiple objects with different
materials. Recently, Bell et al. [2015] augmented OpenSurfaces
with newly gathered Internet images and built a larger and more
diverse database. However, their database primarily aims at facili-
tating the classification of materials in real-world images, thereby,
its annotation only includes material types. As object category and
reflection parameters are also essential in 3D scene decoration, the
augmented database is still not suitable for our needs. Although
OpenSurfaces cannot be directly used as our database, it is useful
for inferring material parameters from images. As noted, we relied
on OpenSurfaces when building our own database.

4.2 Local Material Rules

We represent a material as follows, m = (t, c, s, r), where t de-
notes the material type, c, s and r denotes the diffuse, specular
colors and roughness coefficient, respectively. This notation is the
same as that in OpenSurfaces [Bell et al. 2013].

Unary Relationship We estimate the unary likelihood, f1, of a
specific object part category p having a specific material m as fol-
lows,

f1(p,m) = c(p,m)/c(p), (2)

where c(p,m) denotes the number of object parts of category p
with material m in the database, and c(p) denotes the total number
of object parts in category p with any material in the database.

Pairwise Relationship Despite the fact that there exist a variety
of material choices for each individual indoor object, the combina-
tion of materials of multiple objects in a real-world indoor scene
still follows certain compatibility rules. For instance, cabinets in a
kitchen may have different sizes but they most likely share the same
material; a night-table and a dresser may have very different geo-
metric shapes but their materials are typically similar if they appear
in the same bedroom. To account for such context dependent ma-
terial properties, we define a binary likelihood, f2, for a pairwise
combination as follows,

f2(p1,m1, p2,m2) =
∑

m′
1,m

′
2

c(p1, p2,m
′
1,m

′
2)

c(p1, p2)

∏
i=1,2

s(mi,m
′
i),

(3)
where p1 and p2 denote two object part categories, and m1 and m2

denote their corresponding materials. c(·) denotes the total number
of times that the two object categories co-occur with specific/any
materials in the database. The summation operator iterates over all
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Figure 7: Color themes extracted from images of living rooms, din-
ing rooms and bedrooms.

pairs of possible materials. s(m,m′) denotes a proximity function,
valued 1 if the two materials m and m′ are similar, and valued 0
otherwise. We discretize the hue and saturation of a diffuse color
into 12 bins and 5 bins respectively. m and m′ are considered as
similar if and only if they share the same material type and their cor-
responding hue and saturation values each fall into the same bins.
We ignore the value channel of the diffuse color here because this
channel is not defined on an absolute scale and is not directly com-
parable in OpenSurfaces. The roughness coefficient in OpenSur-
faces is taken from 16 glossiness levels. In our experiments, it was
found to be not very accurate when applied to 3D models. As the
roughness is highly correlated with material types, we ignore this
parameter when computing material similarities.

4.3 Global Aesthetic Rules

Local material compatibility rules make sure that the assigned ma-
terials are reasonable and consistent with the functionality of the
objects. Nonetheless, the color combination of all objects in a
scene as a whole is also important. The choice of color combina-
tion contributes significantly to the aesthetic, emotional, and stylis-
tic impressions of what is being visualized [Csurka et al. 2011].
Different color distributions also embody different design styles.
However, the impression given by a color combination is highly
dependent on the perception of different subjects. Different people
may have completely opposite preferences on the color combina-
tion of a room. Even two professional interior designers may not
easily reach an agreement on the colors chosen for the furniture in
a room. As we cannot make any assumptions about user prefer-
ences, our system must be capable of producing results in a variety
of color themes. This means that until the user provides guidance,
our global aesthetic rules should not be narrowed to any specific
styles. To meet this requirement, we built our color compatibility
model from thousands of images of interior designs.

Color Compatibility Model We adopt the color compatibility
model proposed in [O’Donovan et al. 2011]. It represents a color
theme with a five-color palette, and rates a color theme using a data-
driven approach. Specifically, it is trained over a labeled dataset of
five-color palettes, where each palette is already given a rating typ-
ically between 0 and 1. After being trained over the dataset, the
model is able to predict a rating of new color themes through the
learned LASSO [Tibshirani 1996] regressor.

Training Dataset In the original work [O’Donovan et al.
2011], they primarily use a public color theme dataset, named



(a) initial, F (M) = 0.664 (b) 1k iterations, F (M) = 0.402 (c) 10k iterations, F (M) = 0.165 (d) 100k iterations, F (M) = 0.058

(e) initial, F (M) = 0.431 (f) 1k iterations, F (M) = 0.135 (g) 10k iterations, F (M) = 0.064 (h) 100k iterations, F (M) = 0.039

Figure 8: Material suggestion results with different numbers of iterations on two examples ((a)-(d) and (e)-(h))
.

COLOURLovers, which has 383,938 five-color palettes. This
dataset is not tied to any specific context, hence, the model trained
using this database predicts generic color compatibility. To cus-
tomize it for our specific scenario of interior decoration, we train
a new model using a modified dataset. Specifically, we collected
around 2,500 images of interior designs (see section 4.1), and ex-
tracted a five-color palette from each of them using the method pro-
posed in [O’Donovan et al. 2011]. Then, we arranged the five colors
in each palette in a decreasing order according to their frequencies
in the image. The complete set of extracted five-color palettes is
denoted as the reference dataset T . Figure 7 illustrates some of the
extracted five-color palettes. After that, we re-rate all color themes
in the COLOURLovers dataset, and the new rating of a color theme
in this database is given by

S′(t) = δS(t) + (1− δ)e
− min

t′∈T
d(t,t′)

, (4)

where t denotes a five-color palette in COLOURLovers; t′ denotes
a five-color palette in the reference dataset T ; S(t) and S′(t) rep-
resent the normalized original and new ratings of t, respectively; δ
is a balancing weight, and we set δ = 0.6 in all our experiments;
d(t, t′) represents the squared distance between two palettes, and it
is defined as

d(t, t′) =
∑

1≤i≤5,j∈{h,s,v}

wj(ti,j − t′i,j)2, (5)

where ti,j denotes the j-th color channel (i.e., hue. saturation and
value) of the i-th color in the palette; wj (j ∈ {h, s, v}) is a weight
for each color channel, and we set wh = ws = 1.0, wv = 0.3 to
reduce the influence of illumination.

Our training dataset includes all color themes in both the
COLOURLovers dataset and the reference dataset. All color
themes in the COLOURLovers dataset have been re-rated using
Equation 4, and all color themes in the reference dataset are as-
signed a rating of 1.

Scene Aesthetic Score Given a scene with material assignment,
we extract its five-color palette as follows. We randomly sample a
number of points (i.e. typically one million) on the surfaces of the
scene, and the color of each point is set to the texture value (i.e. if
having textures) or diffuse color (i.e. if not having textures) at that
point. As we need to update the color theme of the scene during ev-
ery iteration of our material labeling process, and the color theme

extraction algorithm in [O’Donovan et al. 2011] is quite slow, we
simply cluster all point colors using the method in [Lin et al. 2013]
as our run-time solution for extracting the color theme. Specifically,
representative colors from the five largest color groups are taken as
the five-color palette. The aesthetic score of the scene is set to the
predicted rating of its five-color palette using the color compatibil-
ity model described above.

5 Material Labeling

Given a semantically segmented 3D scene with object tags for each
part, our material suggestion problem is formulated as a combina-
torial optimization problem: find a combination of materials for
all parts from a list of candidate materials, which best satisfies
both the local material rules (Sec. 4.2) and the global aesthetic
rules (Sec. 4.3). In the following, we first define the cost func-
tion (Sec. 5.1). Since the cost function is highly nonlinear and the
number of unknowns is also large (a typical 3D indoor scene may
contain hundreds of parts), the entire search space of our problem
is too large to be enumerated. In order to quickly obtain a suitable
solution, we use a classic heuristic search algorithm, simulated an-
nealing [Kirkpatrick et al. 1983], which has been used previously
for furniture arrangement [Yu et al. 2011] and building layout plan-
ning [Merrell et al. 2010](Sec. 5.2).

5.1 Cost Function

Given an input scene P = {pi, 1 ≤ i ≤ n}, where pi denotes the
i-th object part in the scene and n denotes the total number of object
parts, we denote a material configuration of P as M = {mi, 1 ≤
i ≤ n}, where mi denotes the material of the i-th object part. As
shown below, our cost function for a material configuration consists
of three terms: a unary term F1, a binary term F2, a global aesthetic
term F3:

F (M) = λ1F1(P,M) + λ2F2(P,M) + λ3F3(P,M), (6)

where λ1, λ2 and λ3 are balancing weights for the three terms.
In our experiments, we assign λ1 = λ2 = λ3 = 1/3. We will
evaluate the importance of each term in Section 6.

Unary Term The unary term considers how suitable the material
of each part is, i.e. how well the unary relationship in Sec. 4.2 is sat-
isfied. It is defined according to the unary likelihoods (Equation 2)
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(a) λ1 = 0 versus λ1 6= 0

Pairwise Rules

(b) λ2 = 0 versus λ2 6= 0

    Global Rules

(c) λ3 = 0 versus λ3 6= 0

Figure 9: Effects of the unary, binary and global aesthetic terms.

of all parts:

F1(P,M) = − 1

n

∑
1≤i≤n

log(f1(pi,mi) + ε), (7)

where ε = 1e− 5 is included to avoid a zero value.

Binary Term Similarly, the binary term considers how compati-
ble the material of one part is with other nearby parts. It is defined
according to the binary likelihood (Equation 3) of all pairs:

F2(P,M) = − 2

n · (n− 1)

∑
1≤i<j≤n

log(f2(pi,mi, pj ,mj) + ε), (8)

Global Aesthetic Term The global aesthetic term considers
global color compatibility of a material configuration.

F3(P,M) = D(P,M). (9)

where D(P,M) denotes the aesthetic score of the scene P deco-
rated with material configuration M described in Section 4.3.

5.2 Simulated Annealing

The goal of simulated annealing is to find the best material con-
figuration M that minimizes the cost function in Equation 6. In a
typical simulated annealing process, the initial configuration M0 is
generated by randomly assigning a material to each object or part
in the scene. Then in the k-th iteration, we find a new configuration
M ′k in the neighbourhood of Mk. M ′k is accepted as Mk+1 with
probability

PM′
k
→Mk+1

= min[1, exp(−F (M ′k)− F (Mk)

T0 − δT ∗ k
)], (10)

where T0 is the initial temperature, δT is the temperature drop at
each iteration and k is the number of the current iteration. Note that
Φ′k can be accepted even if F (M ′k) > F (Mk). As the temperature
drops, the probability of accepting a worse solution becomes lower.
In our system, we set T0 = − log ε which is an upper bound of
F (M) and δT = T0/20n2.

Neighborhood The neighborhood of a configuration indicates
the potential moves at each iteration. In each iteration, we randomly
choose one part, and change its currently assigned material to an-
other with a similar diffuse color. Specifically, the new material is
randomly chosen from a set of N materials closest to the current
material in terms of the hue value of the diffuse color. We set the
neighborhood size N = 20 in our experiments. To avoid meaning-
less moves, we filter out materials whose unary score f1(pi,mi) is
zero. Figure 8 gives two examples of the simulated annealing pro-
cess. As the number of iterations increases, the cost function pro-
gressively decreases while the overall material suggestion becomes
better.

6 Evaluation and Results

Effects of energy terms Figure 9 evaluates the effects of the
unary, binary and global aesthetic terms in our cost function (Equa-
tion 6). As shown in Figure 9(a) left, without the unary term, the
resulting material configuration of the living room includes metal
cabinets, a leather rug and a marble chair, and the material con-
figuration of the bedroom includes marble walls, a wooden quilt,
metal night tables, dresser and bed frame, all of which are unlikely
to appear in the real world. As shown in Figure 9(b) left, with-
out the binary term, there exists obvious color inconsistency among
the refrigerator, oven and microwave oven, and also among the bed
frame, night table and dresser. Figure 9(b) right looks better be-
cause the binary term is included. As shown in Figure 9(c) left,
without the global aesthetic term, the color combination of the en-
tire scene no longer looks harmonious. Thus, the three terms are all
important in obtaining a reasonable material configuration.



th
em

e
ca

se
1

ca
se

2
ca

se
3

Figure 10: Stylized decoration results. Color themes of user-provided styles are shown in the top row.

Constraints from image Constraints from color

Figure 11: Constrained decoration results.

Constrained Decoration Our system also allows users to spec-
ify constraints. A material constraint for one part can be specified
as a value constraint by directly supplying desired material type,
parameters, and diffuse color, or an image constraint by providing
a reference region from an image. In the latter case, we obtain the
material parameters of the reference region by applying the ma-
terial annotation process described in Sec. 4.1. We enforce such
constraints by modifying the unary score (Equation 2) in the cost
function as follows,

f1(p,m) = (t ≡ td) · exp(−λd(c− cd)2), (11)

where td and cd are the type and diffuse color of the desired ma-
terial specified by the user. λd is set to 1 in our experiments. The

first term t ≡ td ensures that the chosen material has the same tag
as the desired material tag. Figure 11 shows two constrained deco-
ration results, one with image constraints (left) and one with value
(color) constraints (right). We can see that our system is capable
of producing reasonable decoration results satisfying user-provided
constraints.

Stylized Decoration To better reflect user preferences and pro-
duce customized results, our system can also generate decorations
guided by a user-specified style. To be consistent with the color
compatibility model we use, we encode a decoration style into a
5-color palette. Specifically, given a target 5-color palette tg , we
modify the global aesthetic score in Equation 9 as follows,

D(P,M) = e−d(tg,t(P,M)), (12)

where t(P,M) denotes the extracted 5-color palette of the scene,
d(·) is the squared distance between two palettes defined in Equa-
tion 5. In practice, the user-specified style can be provided in the
form of a reference image or a previous decoration result, and our
system can extract its corresponding color theme in both cases. Op-
tionally, users can also directly provide five colors as a style, which
is quite useful for experienced designers. Figure 10 shows sample
results of stylized decoration.

Performance We implemented our system on a desktop com-
puter with a Core i3 3.30GHz CPU and 8GB RAM. It takes about
8 hours for precomputation, including material annotation of rep-
resentative regions in the database (Sec. 4.1), extracting unary and
pairwise rules (Sec. 4.2), extracting color themes from images and
training the final color compatibility model (Sec. 4.3). Note that the
precomputation process is only needed once when our database is
built. At run-time, for a typical scene containing about 150 parts,
our system takes about 1-2 seconds to obtain a good decoration af-
ter the default number of 100, 000 iterations.



Experiments on Material Memex Our method is quite dif-
ferent and sometimes advantageous in comparison to Material
Memex [Jain et al. 2012] in the context of material assignment for
complete scenes. First, our method considers semantic information
(i.e. object part categories) when defining contexts, while Material
Memex primarily considers low-level geometric features; second,
we include an extra global aesthetic term to ensure color compati-
bility within an entire scene; third, since we adopt OpenSurfaces as
our material database, our assigned materials are more realistic, and
have textures. Most importantly, our method only uses images as
training data, which are much easier to obtain than a database of 3D
scenes with high-quality materials, required by Material Memex.
We have tested our method on a kitchen scene, which is also used
by Material Memex. As shown in Figure 14, decoration results gen-
erated by our system are comparable to that produced by Material
Memex. This test demonstrates the feasibility of our pure image-
based approach.

Scene Decoration Results We have tested our system on a va-
riety of indoor scenes, including bedrooms, living rooms, kitchens
and a banquet hall. These scenes were assembled from a collection
of 3D models, which were downloaded from Trimble 3D Ware-
house. Most of these 3D models already included texture coordi-
nates and had associated materials and textures at the time of down-
loading. Figure 15 shows a collection of results. The first column
shows results manually chosen by artists, and the other columns are
results automatically generated by our system using 100, 000 iter-
ations. The original materials and textures of all the scenes can be
found in the supplemental document.
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Figure 12: Average user ratings of the initial decorations, deco-
rations designed by an artist, and decorations automatically gen-
erated by our system. Confidence intervals are shown on top of
average ratings.

User Study We invited 30 users to participate in the following
user study. For each scene, each participant was given 7 rendered
images of the scene: one with the initial decoration of the scene, one
with a decoration designed by an artist, and five different material
assignment results generated by our system. The initial decoration
of a 3D scene refers to the original material properties possessed by
the 3D models in the scene when these models were downloaded.
These 7 images were rendered under the same viewing and light-
ing conditions, and presented to the participants in a random or-
der. The participants were asked to rate each rendered image be-
tween 0 (worst) and 5 (best), indicating the degree of visual quality.
Figure 12 plots the average score along with the associated 95%
confidence interval for each case. A t-test shows that our results
outperform the initial scene decorations by more than 78% (one-
tail p = 0.039) while results designed by the artist outperform ours

by no more than 17% (one-tail p = 0.029), which demonstrates the
effectiveness of our system. Furthermore, our system can produce
results in a variety of styles, and it only takes 1-2 seconds per scene,
which is much faster than a manual approach. It typically takes an
artist 20-30 minutes to decorate a scene manually.

Figure 13: At present, our system does not take spatial information
into consideration, and thus is unable to make material suggestions
for spatially related material patterns, e.g. the interleaved colors
of the cabinet doors (left) and the black and white chairs (right).

Limitations Since we use images as training data and robustly
recovering 3D spatial relations from 2D images is still an unsolved
problem, our cost function does not take spatial information into
consideration. Figure 13 shows two examples of spatially related
material patterns, the interleaving colors of the cabinet doors in the
left image and the white and black chairs in the right. Currently,
our system is unable to make material suggestions for such cases.

7 Conclusions

This paper has presented a novel system that automatically gener-
ates material suggestions for 3D scenes. We cast this problem as
a combinatorial optimization that finds suitable material configura-
tions under the guidance of both local material rules and global aes-
thetic rules. Both types of rules are learned from a database of anno-
tated images of objects and complex indoor scenes for scene-level
material suggestion. Our system is able to generate material sug-
gestions efficiently with a quality most often comparable to those
manually produced by artists, as demonstrated by a user study.

Our work still has much room for improvement. One promising di-
rection is to incorporate geometric features into our material rules.
Integrating our work with [Liu et al. 2015] to obtain product im-
ages with better material decoration would be another interesting
possibility.
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JAIN, A., THORMÄHLEN, T., RITSCHEL, T., AND SEIDEL, H.-P.
2012. Material memex: Automatic material suggestions for 3d
objects. ACM Trans. Graph. 31, 6 (Nov.), 143:1–143:8.

KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P. 1983.
Optimization by simulated annealing. SCIENCE 220, 4598,
671–680.

LEIFMAN, G., AND TAL, A. 2012. Mesh colorization. Computer
Graphics Forum 31, 2pt2, 421–430.

LEVIN, A., LISCHINSKI, D., AND WEISS, Y. 2004. Colorization
using optimization. ACM Trans. Graph. 23, 3, 689–694.

LIN, S., RITCHIE, D., FISHER, M., AND HANRAHAN, P. 2013.
Probabilistic color-by-numbers: Suggesting pattern coloriza-
tions using factor graphs. ACM Trans. Graph. 32, 4 (July), 37:1–
37:12.

LIU, T., MCCANN, J., LI, W., AND FUNKHOUSER, T. 2015.
Composition-aware scene optimization for product images.
Computer Graphics Forum 34, 2, 13–24.

MERRELL, P., SCHKUFZA, E., AND KOLTUN, V. 2010.
Computer-generated residential building layouts. ACM Trans.
Graph. 29, 6 (Dec.), 181:1–181:12.

MIAO, Y., HU, F., ZHANG, X., CHEN, J., AND PAJAROLA, R.
2015. Symmsketch: Creating symmetric 3D free-form shapes
from 2D sketches. Computational Visual Media 1, 1, 3–16.

NGUYEN, C. H., RITSCHEL, T., MYSZKOWSKI, K., EISEMANN,
E., AND SEIDEL, H.-P. 2012. 3D Material Style Transfer. Com-
puter Graphics Forum (Proc. EUROGRAPHICS 2012) 2, 31.

O’DONOVAN, P., AGARWALA, A., AND HERTZMANN, A. 2011.
Color compatibility from large datasets. ACM Trans. Graph. 30,
4 (July), 63:1–63:12.

OLIVA, A., AND TORRALBA, A. 2001. Modeling the shape of the
scene: A holistic representation of the spatial envelope. IJCV 42,
145–175.

QIN, X., AND YANG, Y.-H. 2005. Basic gray level aura matri-
ces: theory and its application to texture synthesis. In Computer
Vision, 2005. ICCV 2005. Tenth IEEE International Conference
on, vol. 1, 128–135 Vol. 1.

RUSSELL, B., TORRALBA, A., MURPHY, K., AND FREEMAN,
W. 2008. Labelme: A database and web-based tool for image
annotation. IJCV. 77, 1-3, 157–173.

TIBSHIRANI, R. 1996. Regression Shrinkage and Selection Via
the Lasso. J. Royal. Statist. Soc B. 58, 1, 267–288.

WANG, B., YU, Y., WONG, T.-T., CHEN, C., AND XU, Y.-Q.
2010. Data-driven image color theme enhancement. ACM Trans.
Graph. 29, 6 (Dec.), 146:1–146:10.

WELSH, T., ASHIKHMIN, M., AND MUELLER, K. 2002. Trans-
ferring color to greyscale images. ACM Trans. Graph. 21, 3,
277–280.

XU, K., LI, Y., JU, T., HU, S.-M., AND LIU, T.-Q. 2009. Effi-
cient affinity-based edit propagation using k-d tree. ACM Trans.
Graph. 28, 5, 118:1–118:6.

XU, K., ZHENG, H., ZHANG, H., COHEN-OR, D., LIU, L., AND
XIONG, Y. 2011. Photo-inspired model-driven 3d object mod-
eling. ACM Trans. Graph. 30, 4, 80:1–10.

XU, K., CHEN, K., FU, H., SUN, W.-L., AND HU, S.-M. 2013.
Sketch2Scene: Sketch-based co-retrieval and co-placement of
3D models. ACM Trans. Graph. 32, 4, 123:1–123:15.

YU, L.-F., YEUNG, S.-K., TANG, C.-K., TERZOPOULOS, D.,
CHAN, T. F., AND OSHER, S. J. 2011. Make it home: automatic
optimization of furniture arrangement. ACM Trans. Graph. 30,
4, 86:1–86:12.

YU, L.-F., YEUNG, S. K., TERZOPOULOS, D., AND CHAN, T. F.
2012. Dressup!: Outfit synthesis through automatic optimiza-
tion. ACM Trans. Graph. 31, 6, 134:1–134:14.



(a) Material Memex (b) Our result 1 (c) Our result 2

Figure 14: Experiments on a kitchen scene from Material Memex [Jain et al. 2012].
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Figure 15: Gallery of material suggestion results. Scene 7 used in the user study is shown in figure 1.


