
LineUp: Computing Chain-based Physical Transformation

MINJING YU∗, ZIPENG YE, and YONG-JIN LIU†, Tsinghua University, China
YING HE, Nanyang Technological University, Singapore
CHARLIE C. L. WANG, The Chinese University of Hong Kong, China

In this paper, we introduce a novel method that can generate a sequence

of physical transformations between 3D models with different shape and

topology. Feasible transformations are realized on a chain structure with

connected components that are 3D printed. Collision-free motions are com-

puted to transform between different configurations of the 3D printed chain

structure. To realize the transformation between different 3Dmodels, we first

voxelize these input models into similar number of voxels. The challenging

part of our approach is to generate a simple path — as a chain configuration to

connect most voxels. A layer-based algorithm is developed with theoretical

guarantee of the existence and the path length. We find that collision-free

motion sequence can always be generated when using a straight line as

the intermediate configuration of transformation. The effectiveness of our

method is demonstrated by both the simulation and the experimental tests

taken on 3D printed chains.
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1 INTRODUCTION
With the advancement of 3D printing technology, how to design

printed models with transformable shapes has caught more and

more attention in computer graphics community (e.g., [Duncan

et al. 2016; Garg et al. 2016; Guseinov et al. 2017; Konaković et al.

2016; Li et al. 2015; Pérez et al. 2017]). Existing works can be mainly

classified into two groups depending on whether disassembly (and

re-assembly) is allowed. Objects that allows to disassemble, such

as Lego bricks [Luo et al. 2015], Mix-and-Match toys [Team 2010],

interlocking puzzles [Xin et al. 2011] and free-form interchangeable

components [Duncan et al. 2016], are in general flexible to construct
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a variety of shapes. This group of approaches have been extensively

studied.

Recently effort has shifted to a more challenging problem — trans-

forming the configurations of a model by only shifting, folding

and twisting its components (e.g., [Garg et al. 2016; Li et al. 2015;

Song et al. 2017b; Sun and Zheng 2015; Zhou et al. 2014]). These

approaches do not require disassembly, and all components are con-

nected. As a result, they allow users to transform the shape of a

model more easily. Yu et al. [2018] provide a user study based on

behavioral and EEG data analysis, showing that via transforming

3D shape without disassembly, tangible interaction can significantly

improve users’ performance related to spatial ability. However, there

is no existing approach can compute n-ary (n ≥ 3) physical trans-

formation among general 3D shapes. In this paper, we propose a

method that can generate such transformation between example

models with different shape and topology; e.g., as shown in Figures

1 and 15, five 3D models with different geometries and topologies

can be physically transformed into each other via a common line

configuration.

In our approach, models with different shapes are formed via

folding and twisting a 3D printed chain. Models are represented

by voxels in our computation and each component on a chain is

corresponding to two neighboring voxels. The problem to realize

physical transformations by folding and twisting is converted to

compute a line configuration to link up most voxels inside a 3D

model and then convert the line configuration into a chain of pairs

of voxels. Two major challenges are 1) how to compute such a line-

based configuration inside the volume of each 3D model and 2) how

to generate the collision-free motions to physically transform from

one configuration into another. Several applications of the proposed

line-based physical transformations, such as spatial ability training,

self-reconfigurable modular robots and transforming structures, are

discussed in Section 8.

Given a 3D model represented by a set of voxels, we develop

a layer-based approximation algorithm to compute the sequence

of voxels on the line. First of all, a high-genus model will be de-

composed into regions with simple topology. Each planar layer of

voxels in a simple region can then be covered by a linear sequence

of connected voxels, and the neighboring layers are connected by a

pair of neighboring voxels. With the help of this layer-based strat-

egy, we prove that this algorithm can generally compute such a

line configuration of connected voxels for 3D models as long as a

model can provide enough bandwidth of voxels to connect different

layers. Collision-free motions are computed by stretching the con-

nected pairs of voxels on a chain into a straight line. As a result, the

straightened shape can be used as an intermediate configuration

to physically transform a 3D printed chain from one shape into

another. Here the inverse motion of stretching is employed to fold

a straight chain into a new shape.
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Fig. 1. Models with different shape and topology can be physically formed and transformed between each other by a 3D printed chain. Employing the straight
line as an intermediate configuration, our algorithm generates collision-free motion for folding based shape transformation. Here all models consist of 754
connected building-blocks, and each building-block is corresponding to two neighboring voxels. Colors are used in this figure to indicate the same portion of a
chain in different shapes. For visualization, unfolded models in each row are scaled down to fit the space. The procedural transformations can be found in the
supplementary video.

Our technical contributions include:

• A layer-based algorithm to compute a line configuration that

connects most voxels inside a general 3D model while pre-

serving its appearance
1
; and

• An algorithm for planning collision-free motions between a

folded line configuration and a straight configuration.

Experimental tests are conducted on a variety of 3D models in differ-

ent shape and topology. Physical transformation are demonstrated

to realize the shape variation on 3D printed chains (see Section 7

and also the supplementary video).

2 RELATED WORK
Special effects of computer animation such as warping and mor-

phing on images and 3D digital models have been widely studied.

With the era of computational fabrication, researchers recently start

to pay more attention to physical transformation of 3D models. In

this section, we only review the research approaches that focus on

physically forming the shapes of 3D models.

1
To preserve the appearance of an input model, no surface voxel will be sacrificed.

2.1 Computational Fabrication
Generally speaking, design for physical transformation is a sub-

problem of computational fabrication, which has garnered much

attention in computer graphics recently (e.g., [Bickel et al. 2018]).

Many geometric modeling techniques have been proposed to take

fabrication into consideration simultaneously. Mechanical strength

was considered and improved in [Stava et al. 2012]. A worst-case

structural analysis was proposed in [Zhou et al. 2013], based on

which possible structural unstability (e.g., high stress or large defor-

mation) for 3D printed models can be identified. By further consid-

ering loading conditions in real-world, a context-aware design and

fabrication technique with stochastic structural analysis has been

recently proposed in [Langlois et al. 2016].

To increase the fabrication stability or satisfy other physical prop-

erties such as spinnability or aerodynamics, the geometry of an

existing shape can be deformed or optimized for fabrication (e.g.,

[Bächer et al. 2014; Hu et al. 2015; Musialski et al. 2015; Umetani

et al. 2014]). Not only static but also articulated models are able to be

fabricated by using the ability of assembly-in-fabrication provided
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by 3D printing [Bächer et al. 2012; Calì et al. 2012]. To generate char-

acters that can be fabricated, mechanical friction joints that satisfy

joint types, ranges and inter-joint non-penetration constraints are

designed from skinned input meshes [Bächer et al. 2012]. Joints that

have internal friction to withstand gravity are considered in [Calì

et al. 2012] to ease the fabrication of articulated models. However,

the shape variation that can be performed on an articulated model

is limited.

Starting from the work of [Bickel et al. 2010], effort has been

made to design the deformation behavior of 3D printed models

with specified target shapes under actuation (e.g., the approach

presented in [Skouras et al. 2013] by multi-material printing and

[Zhang et al. 2016] by changing the thickness of shells). The behav-

ior of deformation is also designed and optimized by using different

microstructures in [Panetta et al. 2015; Schumacher et al. 2015].

Again the deformations produced by these approaches are also lim-

ited. Unlike our work presented in this paper, they cannot conduct

physical transformations between models with completely different

shapes and topology (i.e., changing genus-number).

2.2 Shaping by Assembly
Different shapes can be produced by assembling basic building-

blocks (e.g., the well known Lego Bricks [Luo et al. 2015] and Mix-

and-Match toys [Team 2010]). Early research targets on fast con-

struction of new digital 3D models by finding and compositing parts

of interest searched from a database of 3D models, including the

methods of intelligent scissoring [Funkhouser et al. 2004], automatic

recommendation [Chaudhuri and Koltun 2010], and probabilistic

reasoning for semantic and stylistic compatibility [Chaudhuri et al.

2011] and underlying causes of structural variability in the shape

[Kalogerakis et al. 2012]. Nevertheless, none of these modeling tools

considers the physical transformation between different shapes.

Recently, an interesting work was presented in [Duncan et al.

2016] to realize the physical variation of shapes by hands-on dis-

assembly and re-assembly. A set of interchangeable components

can be fabricated and are capable of being assembled into several

possible shapes. In order to make physical transformation feasible,

target models should be co-segmented into meaningful multi-pieces.

Early methods of shape co-segmentation (such as [Huang et al. 2011;

Sidi et al. 2011]) cannot be directly applied here as the constraint

of exchangeable is hard to be incorporated. Differently, Duncan et

al. [2016] jointly deform and partition multiple models together to

guarantee that the segmented parts (called interchangeable com-

ponents) from different shapes can be smoothly assembled into

different new shapes. However, the possible shapes obtained from

interchange are limited.

2.3 Designing Foldable Structures
Different from the structures and shapes constructed by assembly,

a foldable structure can be transformed from a compact shape into

another complex shape without disassembly and re-assembly in

two ways. The first class of approaches (e.g., [Guseinov et al. 2017;

Pérez et al. 2017]) use pre-stretched/auxetic materials. In particular,

3D complex shape can be fabricated on flat sheets, which are pre-

stretched. After fabrication, the restoring forces drive the flat sheets

back into designed 3D shapes. The second class (e.g., [Garg et al.

2016; Li et al. 2015; Sun and Zheng 2015; Zhou et al. 2014]) mainly

base on shifting, folding and twisting joints. 3D models with fold-

able structures are easier to operate but much more difficult to be

obtained. An interface is developed in [Garg et al. 2016] to interac-

tively design a feasible folding sequence without collision. Infeasible

configurations are resolved with the help of user interaction.

Foldable design has been well studied for some special man-made

objects, such as furniture [Li et al. 2015], umbrellas and bike [Garg

et al. 2016] which can be folded to save space. Another recent work,

Boxelization [Zhou et al. 2014], generates a foldable structure that

can transform a 3D printed shape into a box. The method is based

on segmenting a given 3D model into voxels at a very coarse level

and searching a tree structure of connected voxels for installing

hinge joints. A folding sequence can be computed at the same time.

As a type of foldable structures, paper folding (a.k.a Origami) and

pop-up design have been well studied in computational geometry

[O’Rourke 2011]. Specifically, paper folding is to find a crease pattern

on a piece of paper, along with which the paper can be folded into

a 3D shape. Both straight line segments [McArthur and Lang 2012]

and curved folds [Kilian et al. 2008] are studied in the crease pattern.

In a pop-up design, a complex 3D shape can be closed down to a flat

surface. Both folding and cutting are allowed in multi-style pop-up

designs [Jr. et al. 2014; Li et al. 2011]. Again, a target shape that can

be transformed into is fixed — i.e., a planar layout.

2.4 Reconfigurable Structures
Foldable structures usually have two states: a folded (compact) and

an unfolded (non-compact) states. By contrast, reconfigurable struc-

tures can transform between complex shapes and thus are much

more difficult to design. Reconfigurable assemblies were proposed

in [Song et al. 2017a] such that a common set of parts can be as-

sembled into different forms of furniture. However, disassembly

and re-assembly are required in this method. A group-theoretic ap-

proach was proposed in [Sun and Zheng 2015] to effectively create

complex twisty joints in the shape and represent the shape by a

twisty puzzle that generalizes the mechanism of Rubik’s Cube. The

method can effectively obtain contorted poses of a complex and

free-form shape. To transform between two arbitrary shapes only by

rotating or translating their component parts, a morphological em-

bedding method was proposed in [Huang et al. 2016]. This method

was further improved in an elegant computational framework [Yuan

et al. 2018], which includes a user-controllable shape segmentation

for allowing users to incorporate their personal preferences into

design process.

How to compute a feasibly physical transformation among mul-

tiple (i.e., more than two) models with any 3D shapes is still an

open problem to be solved. We simply denote all the operations

on the joints (e,g, shifting, folding and twisting) by transforming
and refer to configurations as a model’s shapes in different trans-

formed statuses. In our approach, voxel representation is used to

reduce the difficulty of such computation. However, different from

the tree structure of voxels used in [Zhou et al. 2014], we compute a

line configuration of connected voxels in the form of a chain of 3D

printed and connected components as our physical implementation
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An input set {Si}i=1 of 

voxelized solids, m > 2

(Steps 1 and 2)

…
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Compute the initial layered paths 

and put them into a set {Pi}i=1

(Steps 3-7)

Two highlighted 

layers are zoomed in

…

Trim the paths {Pi}i=1 into {Pi}i=1 so that 

all paths have the same number of voxels 

(Step 8)

…
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Fig. 3. An overview of the proposed method, where the corresponding steps of the pseudo-code given in Algorithm 1 are also indicated.
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(a) A building-block
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z2

Semi-cylindrical
box w2

Block Bi

Block Bj

x2

Bi(w1)
Bi(w2)

Bj(w1)
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(b) Connected building-blocks

Fig. 2. The building-block. (a) Each building block consists of two cylinders
with hemispherical end ω1 and ω2, connected by a hinge. Each cylinder
represents a voxel of the input solid. Both cylinders can rotate around the
axes x1 (coincident to x2),y1, z1,y2 and z2. (b) Two adjacent building-blocks
Bi and Bj are connected by fabricating Bi (ω2) and Bj (ω1) as a whole piece.
For any cylinder (e.g., Bi (ω2)) in a chain, both of the relative orientations
between this cylinder and its two neighbors can be changed. Specifically,
one can change the orientation (Bi (ω2), Bi (ω1)) by rotating Bi (ω2) around
the axes of Bi (ω1), and adjust the orientation (Bi (ω2), Bj (ω1)) by rotating
Bi (ω2) around its own axes.

(see Figure 15 for an illustration). Collision-free motions between

different configurations of a chain can also be generated by our

approach; therefore, physical transformation between general 3D

shapes is realized.

3 OVERVIEW
We deal with void-free 3D solids, which are represented by voxels.

One can easily convert other formats such as polygonal meshes,

implicit and parametric surfaces into voxels using the standard

voxelization methods (e.g., [Yngve and Turk 2002; Zhou et al. 2014]).

We assign an upright orientation to every input model so that the

voxels can be organized in a layered structure. Note that each layer

can be either simply or multiply connected.

Table 1. Main notations.

{S̃i }
m
i=1 Input solids

{Si }
m
i=1 3D printed objects

Gi Reeb graph of S̃i
p(Gi ) a traversing path of Gi
P̃i a layered path in all voxels of S̃i

{Pi }
m
i=1 trimmed paths with the same number of voxels

oi a horizonal layer of voxels in S

Ωi a set of connected voxels in a layer oi
∂Ω the boundary of Ω

Ω◦
the interior of Ω

p(o) a long planar path in the layer o

vs (o) the starting voxel of layer o

ve (o) the ending voxel of layer o

Ci a maximal sub-cycle in p(G)

(a,b) directed edge from a to b

Problem Statement:Given a set of 3D void-free solids Θ̃ = {S̃i }
m
i=1

(m ≥ 2), compute another set of voxel-based solids Θ = {Si }
m
i=1

such that

(1) ∀i ∈ [1,m], Si preserves the appearance of S̃i ;
(2) All solids S ∈ Θ can be physically formed by the same number

of building-blocks connected in a linear chain, where each

building-block (as shown in Figure 2) is corresponding to two

voxels; and

(3) For any two solids Si , Sj ∈ Θ (i , j), they can be physically

folded into each other (without disassembly and re-assembly).

To solve the problem of n-ary transformation between shapes in Θ,
a 3D-printed chain consists of connected building-blocks is used

(see Figure 2). Then, the problem is converted to how to use such

a chain to form different voxel-based solids. The key idea of our

method is to find a simple path P̃i that links as-many-as-possible
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Layer oi

Node oi

Node oi+1

Layer oj

Layer oj+1

Node oj+1

Node oj

Layer oi+1

(a) 3D shape S (b) Reeb graph G (c) Spanning tree and its traversal                                    (d) Merging paths between layers
~

(d2) Handle MSC

(d1) Handle MSP

Ending 
voxel

Starting 
voxel

Starting 
voxel

Ending 
voxel

Fig. 4. Overview of the layer-based approximation algorithm for the longest path problem. Given an input 3D solid S̃ represented by voxels (a), we take each
connected component of a horizontal layer as a node and construct a Reeb graph G which encodes the topological structure of S̃ (b). Applying depth-first
search to G, we obtain a spanning tree, which is a traversing path p(G) (c). Then we compute a long planar path p(o) for each layer o. Finally, we merge the
planar paths into a single 3D path by considering two cases (MSP or MSC), depending on whether a node is visited once or twice during the spanning tree
traversal (see (d)).

voxels in each input shape S̃i ∈ Θ̃. The simple path traverses the

voxels in a layer-by-layer manner (detailed in Section 4). We call the

resulting path a layered path. Then, we trim all the paths {P̃i }
m
i=1

into {Pi }
m
i=1 so that all the paths have the same number of voxels

(see Section 5). By this way, we can represent each solid Si ∈ Θ by

a sequence of voxels lying on the layered path Pi .
Thanks to the layered path {Pi }

m
i=1, all the solids in Θ can be

unfolded into a common line configuration, implying that all shapes

in Θ can be physically transformed into each other by folding (see

Section 6 for more details). As all shapes can be physically formed by

a 3D-printed chain for a line configuration, we name this algorithm

as LineUp. The overall process is illustrated in Figure 3 and the

corresponding pseudo-code is given in Algorithm 1.

4 GENERATING LAYERED PATHS
Let S̃ ∈ Θ̃ be a void-free solid consisting of n voxels. We denote

the connectivity graph by Gc (S̃) = (Vc ,Ec ) of S̃ , where each node

in Vc corresponds to a voxel in S̃ and each edge in Ec links two

neighboring voxels.

Our algorithm aims at finding the longest path in Gc (S̃). Note
that (1) the Hamiltonian path problem — determining whether there

exists a path that visits each vertex exactly once — is NP-complete

[Korte and Vygen 2006], and (2) the longest path problem — finding

a simple path of maximum length in a given graph — is NP-hard

[Korte and Vygen 2006]. Karger et al. [1997] showed that for an

arbitrary graph of n nodes, unless P = NP , the problem of finding a

path of length n − nε , ∀ε < 1, is NP-hard.

In this section, we propose a novel heuristic method with poly-

nomial time complexity to solve the longest path problem for the

connectivity graph Gc (S̃). Under mild assumptions, our algorithm

can find a path of length at least
5

6
n + 2. Furthermore, the gener-

ated path is guaranteed to be physically unfoldable, i.e., it can be

unfolded into a straight line configuration without self-intersection.

Algorithm 1 LineUp algorithm

input: A set ofm(≥ 2) solids represented by closed 3D surfaces

output: A chain model consisting of nonseparable building-blocks

that can be fabricated by 3D printing

1: Voxelize each surfacewith similar number of voxels using [Zhou

et al. 2014]

2: Storem voxelized solids into a set Θ̃ = {S̃i }
m
i=1

3: for each solid S̃i ∈ Θ̃ do
4: Choose an upright orientation and compute the Reeb graph

G (Section 4)

5: Compute a traversing path p(G) from G (Section 4)

6: Find a layered path P̃i from (S̃i ,p(G)) using Algorithm 3

7: end for
8: Trim the paths {P̃i }

m
i=1 into {Pi }

m
i=1 so that all paths have the

same number of voxels (Section 5)

9: for each path Pi do
10: Compute the collision-free motion to unfold Pi into a line

configuration and the inverse motion for folding (Section 6)

11: end for
12: return

The algorithm consists of the following steps, which are also

illustrated in Figure 4:

• First, given a shape S̃ with upright orientation, we build a Reeb
graph G [Fomenko and Kunii 1997] to encode the topology

of S̃ as follows: a node in G represents a horizontal layer and

two nodes are connected by an edge if their corresponding

layers are adjacent vertically (Figure 4b).

• Second, by applying depth-first search to G, we find a span-

ning tree of the Reeb graph that provides a path p(G) travers-
ing all the nodes (Figure 4c right).
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o

W

Voxels in W Boundary voxels W 

o

A dangling voxel has 
only one 4-connected 
neighbors in W 

Fig. 5. Voxel types. Left: Ω is a set of connected voxels (shown in yellow)
in a horizontal layer o. Right: the set of boundary voxels in Ω (shown in
blue) is denoted by ∂Ω. A dangling voxel is a boundary voxel with only one
4-connected neighbor.

C1 C2

v j
2vi

1

vi+1
1 v j+1

2

Fig. 6. The merge operation connects two mergeable adjacent cycles c1 and
c2 (left) into one big cycle (right).

• Third, for each node oi in G, we build an approximate longest

path called long planar path p(oi ) in the corresponding layer

of connected voxels (Section 4.1).

• Finally, we merge the long planar paths between adjacent

nodes in G according to the number of visits in the traversal

(Section 4.2).

4.1 Computing Approximate Longest Path for Each Layer
Each node o in the Reeb graph G corresponds to a set of voxels Ω
that are connected at a horizontal layer. Whenever there is no risk

of confusion, we denote the corresponding horizontal layer also by

o. We compute an approximate longest path in Ω that links most of

the voxels meanwhile preserving its shape.

We can simply view Ω as a 2D domain. Borrowing the termi-

nology of image processing, we define that the 4-connected (resp.

8-connected) voxels are the neighbors in the same layer to every

voxel that touches one of their faces (resp. one of their faces or

corners). To ease the presentation of our method, below we assume
2

that there are no holes in Ω.
A voxel v ∈ Ω is called boundary voxel if at least one of its 8-

connected neighbors is not in Ω (see Figure 5). We denote the set

of boundary voxels by ∂Ω. A boundary voxel v ∈ ∂Ω is dangling if
it has only one 4-connected neighbor in ∂Ω. Algorithm 2 aims at

finding a path passing through all the boundary voxels in ∂Ω. After
removing all the dangling voxels, one can adopt a linear marching

scheme to generate a simple cycle passing all remaining voxels in

∂Ω. We denote by Ω◦ , Ω \ ∂Ω the interior of Ω.

2
Actually our method can easily adapted to handle holes in Ω, by simply replacing the

boundary voxels by the voxels of outmost boundary.

o

W

Voxels in W

o

Boundary circle

o o

         A planar 
long path in W 

        An approximate 
longest path in W/W  

(a) Input                   (b) Boundary cycle             (c) Inner path                     (d) Output

Fig. 7. Given a horizonal layer o (a), Algorithm 2 finds a long planar path
(d) by connecting the boundary cycle ∂Ω (b) and an approximate longest
path in Ω◦ (c). See the text for details.

Algorithm 2 Computing a long planar path in Ω

input: A set of connected voxels Ω in a horizontal layer (corre-

sponding to a node o in the Reeb graph G), a starting voxel vs
and an ending voxel ve in Ω◦

output: A long planar path p(o) in Ω connecting vs and ve
1: Find boundary voxels ∂Ω and remove all dangling voxels.

2: Generate a cycle Cbndy passing through all voxels in ∂Ω by a

linear marching scheme (Figure 7b).

3: Use vs and ve as staring and ending nodes respectively to gen-

erate an approximate longest path pinter in Ω◦
(ref. [Zhang

and Liu 2011]) (Figure 7c).

4: Merge Cbndy and pinter into a long planar path p(o) (Figure
7d).

5: return p(o)

Given two disjoint cycles c1 and c2 in the same layer o, we say c1
and c2 are mergeable if there exist two adjacent voxels v1i and v

1

i+1
in c1 and two adjacent voxels v2j and v

2

j+1 in c2, such that v2j is a

4-connectivity neighbor of v1i and v
2

j+1 is a 4-connectivity neighbor

of v1i+1 (Figure 6 left).
We define the merge operation to join adjacent cycles c1 and c2

into one big cycle as illustrated in Figure 6 right. Note that if one

of the two cycles is a path, a merge operation will join a cycle and

a mergeable path into a longer path. We assume Ω◦
is connected

3
.

Then the graph defined by 4-connectivity on voxels is also con-

nected. We apply the algorithm in [Zhang and Liu 2011] to find an

approximate longest path in voxels Ω◦
. Then we merge the interior

path and the boundary cycle into a single path, which is called a

long planar path p(o), where o is the layer in which Ω lies. We show

a toy example in Figure 7 and present the pseudo-code in Algorithm

2.

After voxelizing the shape, we remove all dangling voxels so

that all boundary voxels have two 4-connected neighbors. Denote

the number of voxels in Ω and Ω◦
by nΩ and nΩ◦ respectively. We

adopt Zhang and Liu’s algorithm [2011] which is able to find a path

of length at least
5

6
nΩ◦ + 2 in O(n2Ω◦ ) time. Since all the boundary

voxels lie on the boundary cycle, we have

Lemma 4.1. Algorithm 2 takes O(n2Ω) time to find a path p(o) of
length at least 5

6
nΩ + 2.

3
All mild assumptions that 3D models need to be satisfied are summarized in Sec. 4.4.
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Algorithm 3 Generating layered path

input: A void-free 3D solid S̃ , a Reeb graph G and a traversing

path p(G)

output: A layer-based long path P̃ which links as many as possible

voxels in S̃
1: Decompose p(G) into a set of MSCs {Ci }

K
i=1 and a MSP.

2: for each node oi in the MSP do
3: Find vs (oi ) and ve (oi ) using the method in Section 4.3.1;

4: Build a long planar path p(oi ) with two endpoints vs (oi ) and
ve (oi ) using Algorithm 2

5: end for
6: Merge all p(oi ), oi ∈ MSP , into a long path P̃
7: for each MSC in {Ci }

K
i=1 do

8: for each node oj in Ci do
9: Find vs (oj ) and ve (oj ) using the method in Section 4.3.2;

10: Build a long planar path p(oj ) with two endpoints vs (oj )
and ve (oj ) using Algorithm 2

11: end for
12: Update P̃ by merging all p(oj ), oj ∈ Ci , and merge them with

P̃
13: end for
14: return P̃

Algorithm 2 takes a starting voxel and an ending voxel in Ω◦
as

input, which are used to control the merging of paths in adjacent

layers; See Section 4.3 for details.

4.2 Merging Paths between Layers
After determining a long planar path at each node oi ∈ G, we merge

paths between adjacent nodes according to directed edge (oa ,ob )
in the traversing path p(G) of the Reeb graph G. We consider two

cases (see Figures 4d):

• Case 1: there is only one directed edge (oi ,oj ) between nodes

oi and oj in p(G);
• Case 2: there are two directed edges (op ,oq ) and (oq ,op ) in
p(G).

We denote by vs (o) and ve (o) the starting and ending voxels of a

long planar path p(o) at a node o. The position of each voxel is

represented by its center’s integer coordinate (x ,y, z). We adopt

two strategies to merge the paths for the two different cases.

For Case 1, we require that ve (oi ) and vs (oj ) have the same hori-

zonal coordinate (x ,y) (Figure 4(d1)). Then we simply add a link

(ve (oi ),vs (oj )) to connect paths p(oi ) and p(oj ).
For Case 2, we require that (i)vs (oq ) andve (oq ) are face-adjacent;

(ii) each ofvs (oq ) andve (oq ) has a face-adjacent voxel in the layerop ,
denoted by v1 and v2 respectively; and (iii) there is an edge linking

v1 and v2 in the path p(op ). Without loss of generality, we assume

the linking direction is (v1,v2). We merge paths p(op ) and p(oq ) by
removing the link (v1,v2) from p(op ) and adding two directed edges
(v1,vs (oq )) and (ve (oq ),v2) (Figure 4(d2)).

Pseudo-code is summarized in Algorithm 3. Note that the above

merging strategies put some constraints on the position of starting

and ending voxels in the path at each layer. In Section 4.3, we present

a solution that satisfies these constraints.
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(a) A traversing path p(G) of
the Reeb graph G
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MSP l1

(b) Decompose p(G) into maximal

sub-cycles and a sub-path

Fig. 8. (a) A traversing path p(G) = (o1, o2, o3, o4, o5, o4, o3, o2, o6,
o7, o8, o9, o10, o11, o12, o13, o12, o11, o10, o14, o15, o16, o17, o18). (b) Decom-
pose p(G) into two MSCs C1 and C2, and one MSP l1. C1 =

(o2, o3, o4, o5, o4, o3, o2), C2 = (o10, o11, o12, o13, o12, o11, o10), and l1 =
(o1, o2, o6, o7, o8, o9, o10, o14, o15, o16, o17, o18).

4.3 Feasible Starting and Ending Voxels
We decompose the traversing path p(G) of the Reeb graph G into

maximal sub-cycles and a maximal sub-path, such that feasible

starting and ending voxels at the nodes of each maximal sub-cycle

or sub-path can be found separately.

Amaximal sub-cycle (MSC), denoted byC , is a closed walk (along
directed edges) of p(G) consisting of a maximal sequence of nodes

starting and ending at the same node o(C), with the constraint that

o(C) is visited exactly twice inC . Figures 8 and 9 shows two examples

of MSC.

We denote the set of all nodes in an MSC Ci by O(Ci ) and define

Õ(Ci ) = O(Ci ) \ {o(Ci )}. Let {Ci }
m
i=1 be all MSCs in p(G). Removing

all the nodes in {Õ(Ci )}
m
i=1 and related edges from p(G), we call the

remaining path the maximal sub-path (MSP) in p(G). See Figures 8

and 9 for examples.

Our key observation is that finding feasible starting and ending

voxels at each node can be realized in two steps (Algorithm 3):

• Step 1. Finding feasible starting and ending voxels at all nodes

in the MSP (step 3 in Algorithm 3);

• Step 2. Finding feasible starting and ending voxels at all nodes

in each MSC one by one (step 9 in Algorithm 3).

To describe Steps 1 and 2 in Sections 4.3.1 and 4.3.2, we define

an orthogonal projection of a voxel’s position v = (x ,y, z) onto a

layer oi (i.e., a horizonal plane z = zi ) as π (v, zi ) = (x ,y, zi ). For
each layer, we assign a color to each voxel by mapping a two-color

checkerboard based on voxels’ contacted relations (Figure 10 left).

4.3.1 Handling MSP. We re-index all nodes in the MSP and sort

them along the path as {oj }
nMSP
j=1 . There is only one directed edge

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2018.
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(b) p(G) = {C1, C2, l1 }

Fig. 9. The cycle (o2, o3, o4, o5, o4, o3, o2, o6, o7, o8, o7, o6, o2) in p(G) is
not a maximal sub-cycle, because o2 is visited more than twice. The proper
decomposition of p(G) contains two MSCs C1 and C2, and one MSP l1.

{oi ,oi+1} between two sequential nodes oi and oi+1 in the MSP. As

mentioned in Section 4.2, we require that ve (oi ) and vs (oi+1) have
the same horizonal coordinates (x ,y); see also Figure 4(d1).

Starting from the first node o1, we sequentially determine the

starting and ending voxels at each node in the following way. For

each layer oi , i = 1, 2, · · · ,nMSP , we determine its starting voxel

by the ending voxel at oi−1, i.e., π (vs (oi ), zi−1) = ve (oi−1) = (xi−1,
yi−1, zi−1). For i = 1, we randomly pick up a voxel in Ω◦(o1) as the
starting voxel. We denote the set of voxels at the node o as Ω(o). Let
Ii = π (Ω◦(oi+1), zi )

⋂
Ω◦(oi ) be the overlap between the projected

interior π (Ω◦(oi+1), zi ) and the interior Ω◦(oi ). We assume Ii \
{vs (oi )} , ∅ for all i . Then we randomly pick up a voxel in Ii \
{vs (oi )} with a different color as vs (oi ) as the ending voxel.

Since two voxels form a building block for 3D printing (Figure 2),

there must be an even number of voxels for each path.

Theorem 4.2 (Even number of voxels in MSP). For each node
in the MSP, the long planar path generated with the above specified
starting and ending voxels, has even number of voxels.

Proof. Since the adjacent voxels in the boundary cycle are 4-

connected neighbors, the boundary cycle has even number of voxels

(thanks to the property of the 2-color checkerboard; see Figure 10).

Also note that the starting and ending voxels have different colors,

therefore, any path connecting them has even number of voxels. �

4.3.2 Handling MSCs. We can determine the starting and ending

voxels in layers for each MSC C separately. Starting from the node

o(C), we traverse the cycleC and re-index the nodes in Õ(C)\{o(C)}
into {oj }

nMSC
j=1 . As mentioned in Section 4.2, for each pair of nodes

oj and oj+1 in C which are connected by two directed edges, we

require that (1) vs (oj+1) and ve (oj+1) are contacted, and (2) each

of vs (oj+1) and ve (oj+1) has a face-adjacent voxel in the layer oj ,
which we denote as c1 and c2, and there is an edge linking c1 and c2
in the path p(oj ); see also Figure 4(d2).

For each layer oi , i = 1, 2, · · · ,nMSC , we sequentially project two

adjacent planar paths p(oi−1) and p(oi ) into a common plane and

find the starting and ending voxels at oi−1 inside the overlapped
segments of the two paths. In more details:

• π (p(oi−1), zi ) projects the long planar pathp(oi−1) at the node

oi−1 onto the layer oi . When i = 1, we set o0 = o(C). Let Ĩi =
(π (p(oi−1), zi )

⋂
Ω◦(oi ))\{π (vs (oi−1), zi ),π (ve (oi−1), zi )}.We

Fig. 10. Left: the 2-color checkerboard. Right: any boundary cycle (blue
lines) has even number of voxels (red dots), since any two adjacent boundary
voxels are 4-connected neighbors and thus must be assigned to different
colors.

assume Ĩi , ∅ for all i . Then we randomly pick up two neigh-

boring voxels in Ĩi which has a directed edge in π (p(oi−1), zi )
as the starting and ending voxels.

Theorem 4.3 (Even number of voxels in each MSC). For each
node in the MSC, the long planar path generated with the above
specified starting and ending voxels, has even number of voxels.

Observe that the starting and ending voxels are 4-connected and

they are of different colors. So the proof is almost identical to that

of Theorem 4.2.

4.4 Theoretical Guarantees & Complexity Analysis
Algorithm 3 works under a few mild assumptions stated as follows:

• in each node o of the Reeb graph, the set of interior voxels

Ω◦
are connected (Section 4.1);

• the dangling voxels have been removed (Section 4.1);

• Ii \ {vs (oi )} , ∅ for all i (Section 4.3.1); and

• Ĩi , ∅ for all i (Section 4.3.2).

In practice, all the assumptions are easily met if the input S̃ is a high

resolution solid.

Theorem 4.4. For a void-free solid S̃ with nS voxels satisfying
the above assumptions, Algorithm 3 finds a long path P̃ of length
l(P̃) ≥ 5

6
nS + 2 in O(n2S ) time. Moreover, the path P̃ has an even

number of voxels.

Proof. The approximation ratio and the even number of voxels

are the direct consequences of Lemma 4.1, and Theorems 4.2 and

4.3.

To analyze the time complexity, we note that building the Reeb

graph takes O(nS ) time and depth-first search takes O(nS ) time

to find the traversing path. It also takes O(nS ) time to decompose

the Reeb graph into MSCs and MSP. By Lemma 4.1, finding the

starting and ending voxels and merging the paths into a layered

path take O(n2S ) time. Putting it all together, Algorithm 3 runs in

O(n2S ) time. �

5 PATH TRIMMING
To transform shape S̃1 to S̃2 and vice versa, we trim their corre-

sponding layered paths P̃1 and P̃2 into the same number of voxels.

Let nP̃1
and nP̃2

be the number of voxels in P̃1 and P̃2 respectively.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2018.
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(a) 3D path P (b) 2D path Pxz = (x,z)(P)                                   (c) Non-colliding straightening of Pxz in xz plane                              (d) (x,z)(Pxz) 
-1

Fig. 12. Unfolding a layered path to a straight line. Projecting the 3D layered path P (a) to the xz plane, we obtain a 2D path Pxz = Π(x,z)(P ), in which each
voxel v = (x, y, z) becomes a unit square (x, z) (b). Due to composite squares (colored in red in (b), (c) and circled in (d)), some rigid bars (inside the dashed
circles) are overlapping. We apply the energy-driven approach [Cantarella et al. 2004] to straighten the 2D path Pxz in the xz plane (c). The 3D path by
inversely mapping Π−1

(x,z)(Pxz ) is shown in (d), which again is a planar polygonal linkages on the yz plane. All transformations are rigid motions and they are
physically feasible. In (c) and (d), we scale down the linkages in order to fit the space.

Contraction pair

(a) Before contraction

Contracted path

(b) After contraction

Fig. 11. Path contraction. (a) A contraction pair of index 2. (b) The contracted
path with the path length reduced by 2.

Without loss of generality, assume nP̃1
> nP̃2

. Our strategy is to

shorten the longer path by removing “unnecessary” voxels. Here,

the meaning of “unnecessary” is of course application-dependent.

As our application aims at preserving appearance, removing interior

voxels is acceptable.

To reduce the number of voxels in P̃ , we define contraction pair
of voxels in P̃ , which satisfy the following conditions (see also the

illustration in Figure 11(a)):

• the two voxels lie in the same layer o and are 4-connected;

and

• the segment of the path inside o between them consists of all

unnecessary voxels.

We define the index of a contraction pair as the number of voxels in

the segment of the path inside o between the two voxels. Due to the

property of two-color checkerboard, all indices are even numbers.

Given a contraction pair, we can contract the path by directly

linking the voxels in pair and removing the segment of path between

the pair (Figure 11b). After contraction, the length of the path is

reduced by the index of the contraction pair.

Applying a linear scan on the paths, we find all possible contrac-

tion pairs in P̃1 and P̃2, and put their indices into two sets I1 and
I2, respectively. In most cases, there are enough contraction pairs

of index 2 in P̃1 (whose sum equals to nP̃1
− nP̃2

). Therefore, we

simply trim P̃1 into P1 such that nP1 = nP̃2
. If this simple trimming

scheme fails in rare cases, we find minimum subsets I ′
1
⊂ I1 and

I ′
2
⊂ I2, such that

∑
i ∈I ′

1

i −
∑
j ∈I ′

2

j = nP̃1
− nP̃2

. As a variant of the

subset sum problem, it can be solved in pseudo-polynomial time by

dynamic programming [Martello and Toth 1990].

6 COLLISION-FREE MOTION PLANNING
After trimming, all layered paths {Pi }

m
i=1 have the same number

of building blocks. Now we compute the collision-free unfolding

sequence for each shape so that all paths can be straightened into a

common line configuration. Since the unfolding sequence is collision-

free and reversible, it allows us to transform one layered path into

the other and vice versa.

Thanks to its layered structure, the output of Algorithm 3 can be

mapped to a planar linkage of rigid bars connected at flexible joints

[O’Rourke 2011]. It is known that any tangled but non-crossing pla-

nar polygonal linkages (i.e., polygonal chains) can be straightened

under a sequence of non-colliding motions [Connelly et al. 2003;

Streinu 2000]. Therefore, to lineup the layered path, we need to map

it to a planar domain. We present such a simple yet novel mapping

below.

Recall that each layer in the path P is horizontal, i.e., its z co-

ordinates are a constant. We refer to Figure 12. For each voxel

v = (x ,y, z) in P , we project it onto the xz plane to obtain a square

(x , z). We obtain a projected 2D path, denoted as Pxz = Π(x,z)(P), by
mapping the square centers as flexible joints and placing a rigid bar

between any two contiguous joints along the path P . The 2D path

Pxz of joints and bars corresponds to a planar polygonal linkage of

rigid bars. We call a joint of Pxz composite if it corresponds to two

or more voxels in P . Due to composite joints, some rigid bars may

overlap but they do not cross.
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(a) 3D path P (b) 2D path Pxz = (x,z)(P)
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Degenerate case
Remove degeneracy by an 

infinitesimal perturbation

Self-

intersection

Layer 1Layer 2Layer 3

Endpoint Endpoint

Fig. 13. Self-intersection of a projected 2D path. (a) A 3D path P consisting
of three layers. (b) The projected 2D path Pxz = Π(x,z)(P ), which can be
regarded as a degenerate open chain with some overlapping rigid bars due to
composite joints (shown in red square). By apply infinitesimal perturbations
on the joints of Pxz , the degeneracy can be removed and in this case a
self-intersection occurs inevitably in the projection plane.

Weapply the simple yet effective energy-driven approach [Cantarella

et al. 2004] to straighten planar polygonal linkages. The method

is based on the gradient flow of a repulsive energy function and

its output motion is free from self-intersection. Note that in the

original definition of linkage, rigid bars do not have a width, so they

can rotate with each other in any angle. However, the width of the

unit square requires that the angle between two joined bars must be

in [ π
2
,π ] for avoiding self-intersection. Fortunately, given a valid

initial configuration of Pxz , the energy-driven approach [Cantarella

et al. 2004] never increases the angle between joined bars and thus

can apply to our case.

It is worthy of pointing out that the energy-driven approach starts

with a valid polygonal linkage, i.e., a planar open chain without

self-intersection. Our projected 2D path Pxz = Π(x,z)(P) can be

regarded as a degenerate open chain, in which some rigid bars over-

lap due to composite joints. To remove degeneracy, we can apply

infinitesimal perturbations on the joints of Pxz [Edelsbrunner and

Mücke 1990]. If there exists such a perturbation to make Pxz a gen-

eral (i.e., non-degenerate) valid polygonal linkage (e.g., Figure 12b),

the energy-driven approach will successfully output a unfolding

motion free from self-intersection. However, in many cases such

a self-intersection-free perturbation does not exist; an example is

shown in Figure 13. Fortunately, the energy-driven approach still

works in our situation due to the following key observation. For

each joint in Pxz , we assign to it a depth attribute, which is the y
coordinate value of that joint in P . According to different attributes,

we can decompose Pxz into a set of subpaths: all joints in each

subpath have the same attribute. See Figure 14 for an example. A

subpath may have several disjoint components but they must be free

of self-intersection. Then the same proof in [Cantarella et al. 2004]

can be easily adapted to each subpath and show that the output

straightening motion is free of self-intersection.

After straightening Pxz , up to rigid body motion, we can assume

it is a line parallel to z axis in the xz plane. Then the mapping

Pyz = Π(y,z)(Π
−1
(x,z)(Pxz )) is again a planar polygonal linkages on

the yz plane (Figure 12d). Applying the approach of Cantarella at

el. [2004] again on Pyz , we can finally unfold the 3D path P into a

straight line configuration. In the non-colliding motion generated

by Cantarella at el. [2004], each step takes O(n2P ) time, and the

Subpath of Pxz at y = y1
Path Pxz Subpath of Pxz at y = y1+1

x

z

x

z

x

z

Step 20

Step 300

Step 500

Fig. 14. Straightening of 2D path Pxz shown in Figure 13 and their subpaths
at different depth values y by the approach of Cantarella at el. [2004].

Algorithm 4 Collision-free motion planning

input: A shape S with a layered path P , in which the z coordinates
of each layer are a constant

output: A collision-free motion sequence that unfolds S into a line

configuration

1: Project the path P into a 2D path Pxz = Π(x,z)(P)
2: Apply the energy-driven approach [Cantarella et al. 2004] to

unfold Pxz into a line configuration lxz ; denote the obtained
motion sequence as ϒxz

3: Apply the rigid body transformation to make lxz parallel to z
axis in the xz plane

4: Compute the projected 2D path Pyz = Π(y,z)(Π
−1
(x,z)(lxz ))

5: Apply the approach [Biedl et al. 2001] to unfold Pyz into a line

configuration; denote the obtained motion sequence as ϒyz
6: return ϒxz ∪ ϒyz

number of steps is a polynomial of nP , where nP is the number of

blocks in P . The pseudo-code is presented in Algorithm 4. In fact, we

can use a much faster method [Biedl et al. 2001] to straighten Pyz
(Step 5 in Algorithm 4), which takes O(nP ) rotations in O(nP ) time.

Note that the method [Biedl et al. 2001] requires that the 3D path P
has a simple orthogonal projection on a plane, e.g., Pyz on the yz
plane, which is only satisfied on Pyz but not Pxz (before applying

[Cantarella et al. 2004]).
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(a) Chain fabricated by iSLA-650 Pro 3D Printer                           (b) Cannon model                                                                         (c) Duck model

(d) Bunny model                                              (e) Decocube model                                                                       (f) 2-holed torus model

Fig. 15. Experimental tests to form the shapes of five models by a chain-structure, where models can be physically transformed into each other. See
supplementary video for transformation process of physical folding.

z

x

y

Top view

Fig. 16. For each hemispherical-end in a building block, four slots are used
to facilitate the end to rotate with respect to different orientations of the
hinge. The two sides of each slot are arcs with large radius, such that the
narrowest width between two sides is slightly smaller than the diameter of
the circular arcs at the end of the slot. Therefore, a certain force is needed
to drive the hinge to go through the slot by making elastic deformation of
the slot’s sides.

7 EXPERIMENTS AND DISCUSSION
We implemented the LineUp algorithm in C++ and evaluated it on

a workstation with 2 Intel Xeon E5-2698V3 CPUs and 128GB RAM

running Windows. The line configuration output from our method

can be directly used for 3D printing. Diverse 3D shapes with various

geometric features and topological complexity are tested.

Physical prototype. Figure 1 shows three example models (i.e.,

Bunny, Cannon and Decocube) generated by Algorithm 1, all of

which have 754 blocks (corresponding to 1,508 voxels) and can be

transformed into each other continuously. We fabricate the common

line configuration of these shapes on an iSLA-650 Pro Stereolithog-

raphy 3D Printer, as shown in Figure 15. To fix the positions of

building-blocks during physical shape transformation, the surface

of building-blocks are covered by thermosol and strong velcros —

this is motivated by a work of reconfigurable robot called YaMoR
[Moeckel et al. 2006]. The computer animation of collision-free

motion sequence for unfolding the shapes into the common line

configuration can be found in the supplementary video.

In any folded 3D model, the physical strength of the structure

depends on the maximal stresses which can be supported by all

building blocks. There are three different types of maximal stresses

in our application:

• The normal compressive stress: it depends on the 3D printing

material. We use photopolymer resin UV9400 whose com-

pressive strength is 38-56MPa.

• The normal tensile stress: it depends on the strength of ther-

mosol and strong velcros between the two building blocks.

• Critical buckling stress: when the building block with the ori-

entation as shown in Figure 17 (see critical buckling stress

test) is subjected to compressive stress, buckling may occur.

This is characterized by a sudden sideways deflection of the

hinge connecting two cylinders with hemispherical-end (Fig-

ure 2a). As shown in Figure 16, we design the slot’s width to

be slightly smaller than the diameter of the circular arcs at

the end of the slot, so that a certain force is needed to drive

the hinge to go through the slot. This force, together with the

thermosol, devotes to the critical buckling load.

To evaluate the normal tensile stress σmax and the critical buckling

force Fc , we test the fabricated build blocks on a Zwick/Roell Z020

universal testing system (Figure 17 left) with the results σmax =

206.7KPa and Fc = 2042N . We also evaluate the maximal stress

in each of the five folded 3D models designed by our method. The

finite element analysis software Abaqus (version 6.12) is used. The

evaluation results as shown in Figure 17 indicate that the folded

models generated by our method have enough physical strength.

Physical transformation. Thanks to the layered path, the motion

planing algorithm can guarantee the existence of a collision-free

motion sequence, which can be computed in polynomial time. In
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Max normal tensile stress test

Physical 

sample

Critical buckling stress test

Fixture 

handle

Physical 

sample

Virtual connected 

parts in building 

blocks

Zwick/Roell Z020 universal testing system

Thermosol and 

velcros inbetween

Max stress

4.333 KPa

Max stress

0.247 KPa

Max stress

9.888 KPa

Max stress

1.219 KPa

Max stress

3.314 KPa

Finite element analysis using Abaqus 6.12 software

Worktable replacement

Fig. 17. Physical strength test on building blocks and maximal stress estimation by finite element analysis. Left: Zwick/Roell Z020 universal testing system
was used in our tests. For building blocks, the maximal normal tensile stress is 206.7KPa and the critical buckling load is 2042N. Right: Abaqus 6.12 software
was used to analyze the stress distribution in five models, i.e., Bunny (σmax = 4.333KPa), Cannon (σmax = 9.888KPa), Decocube (σmax = 1.219KPa), Duck
(σmax = 3.314KPa) and 2-holed torus (σmax = 0.247KPa), with σmax denoting the maximal stress. All the stresses and force loads applied to each building
block in all five models are less than the affordable maximal normal tensile stress and the critical buckling load.

practice, one can further improve the performance by a simple

heuristic. For each path Pi representing a fabricated shape Si , we
set the starting and ending blocks of Pi at the top layer. Then the

shape Si can be straightened into a straight line configuration by

pulling the blocks upward and the pulled blocks are propagated

progressively from the starting and ending blocks to the remaining

blocks along the path Pi . Due to the internal support provided

by the hinges in each block (xy directions) and strong velcros (z
direction), this unfolding process is physically invertible, such that

each physical shape can be folded from a line configuration — see

the supplementary video for details.

We observe it is challenging for novice users, especially children,

to unfold a line configuration into desired 3D shape. To assist them,

we provide an operation manual for each 3D model. The user man-

ual documents the sequential indices of the building blocks in the

physical chain, (B0,B1, · · · ,Bi , · · · ,B754), and shows the global co-

ordinate system to the first cylinder with hemispherical-end B1(ω1)

(Figure 2b). We iteratively show the global orientation of Bi+1(ω1)

in the manual, i = 1, 2, · · · , 754, which is determined by the relative

orientation of Bi (ω2) and Bi+1(ω1) (they are printed as a whole)

with resect to Bi (ω1). It is worthy to note that this unfolding pro-

cess calls up children’ and teenagers’ distinct cognitive processes to

analyze a spatial representation to make a particular structure by

structured block building. This practice can improve their spatial

cognition that was associated with creative design processes [Stiles

and Stern 2001; Yu et al. 2018].

Incremental design. Algorithm 1 can be easily adapted to incre-

mental design. For example, for the line configuration L shown in

Figure 1 which can be folded into three shapes, we can incremen-

tally design the fourth and fifth shapes such that L can be folded

into them (see Figure 15). In this example, we incrementally add the

2-holed torus and Duck models into the shape pool by the following

steps:

(1) Voxelize the each model into the shape with nnew voxels,

nnew is slightly larger than 1,508;

(2) Generate a path P̃new which preserves the appearance of

S̃new and go through as many as possible interior voxels;

(3) Trim the path P̃new into the path Pnew which passes through

exactly 1,508 voxels;

(4) Plan a collision-free motion that unfolds Pnew into L.

Complex examples. Our method is automatic and efficient. More

complex transformable shapes can be easily generated. Figure 18

shows the transformations generated for other five models (i.e.,

Armadillo, Dinosaur, Aircraft, Elephant and Elk), each of which

have 2,945 connected components — corresponding to 5,890 voxels.

They all can be transformed into each other by folding. The details

of collision-free motion planning of these shapes for unfolding

into a line are shown in the supplementary video. The examples

shown in Figures 1, 15 and 18 demonstrate that when the number of

voxels increases, the appearance of models that can be transformed

into each other are more and more realistic. The statistic data of

generating these two sets of shapes are summarized in Table 2.

Comparison with Boxelization. Boxelization [Zhou et al. 2014]

is the state-of-the-art method that can physically fold 3D shapes

of complex geometry into a box. Compared to Boxelization, our

method has three unique advantages:

• Our method can transform one shape into multiple targets,

rather than a single box.
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Fig. 18. The physical world consisting of 3D models that can be transformed by folding a common line configuration, including Armadillo, Dinosaur, Aircraft,
Elephant and Deer, and some of their folded versions during the transformation process. See supplementary video for detailed transformation processes.

Table 2. Statistic data of generating two sets of physically achievable trans-
formation {Bunny, Decocube, Cannon, 2-holed torus, Duck} and {Armadillo,
Dinosaur, Aircraft, Elephant, Elk}. We report the numbers of voxels (#voxels),
the number of steps (#steps), time (seconds) for voxelization, the layer-based
path P̃ generation (Build P̃ ), the trimmed path P generation (Build P ) and
non-collision motion planning for path straightening.

Model Voxelization Build P̃ Build P Motion planning

name #voxels time #voxels time #voxels time time/step #steps

Bunny 1643 0.19s 1536 1.40s

1,508

0.03s 0.72s 240K

Decocube 1868 0.43s 1504 0.68s 0.03s 0.12s 240K

Cannon 2105 0.59s 1508 0.74s 0.04s 0.15s 240K

2-hole torus 1520 0.42s 1512 0.38s 0.06s 0.09s 80K

Duck 1586 0.40s 1484 0.70s 0.02s 0.36s 240K

Armadillo 6,280 0.48s 5,898 11.86s

5,890

0.12s 1.80s 70K

Dinosaur 6,522 0.34s 5,966 11.50s 0.14s 1.10s 150K

Aircraft 7,088 0.99s 6,482 27.47s 0.19s 0.90s 180K

Elephant 6,478 0.55s 5,892 11.94s 0.01s 1.32s 180K

Elk 6,425 0.42s 5890 20.42s 0.13s 2.04s 180K

• Our method outperforms Boxlization in terms of running

time. Note that Boxelization represents a shape by a tree

structure of voxels and takes an exhaustive search on a graph

for finding a tree structure that fits two shapes. Since the

search is carried out by simulated annealing, which takes

theoretically exponential time with lower bound Ω(4 ⌊
n
16
⌋ )

[Sasaki 1987], Boxelization is time consuming. For solids with

48 to 125 voxels, it takes up to thousand hours to find a fea-

sible solution using a cloud computing service. In contrast,

our method represents shapes by a path, and with mild as-

sumptions. Our method is guaranteed to terminate in O(n2)
time. Therefore, we can efficiently handle shapes with higher

resolution.

• The interactive folding strategy with user interference in Box-

elization cannot guarantee to be always feasible, while thanks

to the layered path, our method is guaranteed to always has

a collision-free motion planning for straightening.

We would like to also point out that the reason that LineUp is much

more computationally efficient than Boxlization is due to the use of

building blocks that have full rotational degrees of freedom.

8 APPLICATIONS
This section discusses a few applications of LineUp.

Spatial ability training: Spatial ability (a.k.a. visuo-spatial ability)

is a category of human reasoning skills that plays an important role

in affecting a child’s or teenager’s development in science, tech-

nology, engineering and mathematics [Wai et al. 2009]. Manually

transforming a 3D physical model from one shape into the other

by using the 3D printed chain is a task related to mental rotation

and mental folding, which are widely used to evaluate spatial ability

[Harris et al. 2013]. LineUp provides a tangible interaction, through

which users can improve their spatial ability by performing the

reconfiguration task [Yu et al. 2018].

Self-reconfigurablemodular robots (SRMRs):Ourmethod sheds

light upon the reconfiguration planning of SRMRs [Stoy et al. 2010].

A SRMR is usually constructed bymodules and a widely studied type

is double-cube modules (e.g., M-TRAN III [Kurokawa et al. 2008],

SuperBot [Salemi et al. 2006], iMobot [Ryland and Cheng 2010] and

EasySRRobot [Yu et al. 2017]). Each module is equipped with actu-

ators, sensors, inter-module communication/power-transmission

devices and microprocessors. As a result, the rotation of a mod-

ule can be controlled by computer programs and any two modules

can be connected via electronic/magnetic connectors or strong vel-

cros. In particular, we can use a combination of the mechanical
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Fig. 20. Micro-robotic surgery using transforming structure generated by LineUp. A folded endoscopic device was placed into the mouth of a patient. One
can unfold the device into a line configuration and then deliver it passes through the esophagus. After reaching the stomach, it can be folded into another
endoscopic structure and is ready for operation. See also the accompanying video.
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y2

z1

z2

⑤
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Fig. 19. A SRMR module design for realizing the rotation mechanism in a
building-block. Following SuperBot [Salemi et al. 2006], a central rotation
part is used, which uses a motor 1○ to carry out the rotation around x
axis. Following EasySRRobot [Yu et al. 2017], two motors 2○ and 3○ are
used to carry out the rotation around y1- and y2-axes respectively, and
other two motors 4○ and 5○ are used to carry out the rotation around
z1- and z2-axes respectively. Following M-TRAN II [Kurokawa et al. 2003],
the electromagnetic connector is used. Overall, we can use the method
of [Yu et al. 2017] to design an optimal structure for assembling all these
components.

structure of SuperBot, the electromagnetic connector of M-TRAN

II [Kurokawa et al. 2003] and the optimal design methodology in

EasySRRobot to design a new SRMR module to realize all rotation

functions in a building-block (see Figure 19). The details of mechano-

electronics will be implemented in our future work. By replacing the

building-blocks of a 3D printed chain with the new SRMR modules,

the connected modules can automatically transforms the robot’s

shape into any other one in the shape pool, behaving akin to the

robots in the featured movies such as Transformers. The current
bottleneck of autonomous transformation taken on these SRMRs

is the small power-to-weight ratio on actuators. Nevertheless, this

problem does not exist in the environment with small or even no

gravity such as under water or in the outer space.

Transforming structures: Transforming structures (a.k.a. recon-

figurable or folding structures) have received considerable attention

in computational geometry [Demaine et al. 2002], computer graph-

ics (summarized in Section 2.3) and robotics field [Rubenstein et al.

2014; You 2014]. Common configurations include chains (i.e., tree

structures), lattices and hybrid [Stoy et al. 2010]. We develop an al-

gorithm that allows physical transformation among 3D models with

different geometry and topology by using line as the intermediate

configuration. Such a line configuration has two unique advantages

which are not available on other configurations in robotic appli-

cations: 1) A line configuration can be easily driven by a single

actuator placed at the head as a snake, and 2) It can pass through

narrow holes/channels for applications with limited spaces. We list

three application scenarios that can benefit from such transforming

structures as follows.

• Micro-robotic surgery (e.g., endoscopy): Tools in the config-

urations and motion computed by LineUp can be used in

the surgery with the help of an endoscopic-type device. For

example, through the channel placed in the patient’s mouth

and esophagus, the chain can be folded into a new struc-

ture/shape for operations in the stomach. An example has

been illustrated in Figure 20. This idea can be similarly applied

to other minimally invasive surgery.

• Archeology: One can form the probing device using LineUp

and send it inside the target (e.g., sealed tomb) through a tiny

hole. After that, it can be transformed into a probing device.

• Aerospace: To send equipment to a space station, it is highly

demanded to pack it in a compact form so that it can fit into

a small capsule of launch vehicle. LineUp can also help to

generate ideal forms.

More demonstrations can be found in the accompanying video.

9 CONCLUSIONS & FUTURE WORK
We propose the LineUp algorithm that can physically transform 3D

models into a chain structure, thereby allowing the n-ary transfor-

mation between 3D models with different shape and topology. Our

technical contributions include 1) a novel method to convert voxel-

based void-free solid into a simple path that goes through most

of the voxels and 2) a collision-free motion planning method that

can fold/unfold the model physically. Our methods are theoretically

sound and computationally efficient. We demonstrated the efficacy

of our method via both computer simulation and 3D printing.

Shape orientation plays a critical role in LineUp. This is mainly

because that the Reeb graph is sensitive to orientation. Obviously,

different orientations can lead to different traversing paths of Reeb

graph, which in turns produces different MSP and MSC decomposi-

tions. We experience that the fewer number of MSCs in a shape, the

easier the physical transformation can be achieved. In our current

implementation, the upright orientation is specified by the user. In

the future work, we will formulate an optimization framework to

find the optimal orientation. Our main objective of this work is to
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develop a general approach to enable transforming between a wide

range of 3D models via line configurations. Therefore, we adopt

the voxel-based representation, which sacrifices the visual appear-

ance of models. A naïve way to improve the visual appearance is to

increase the resolution with the additional cost of computing and

manufacturing. Another possibly improvement to balance the cost

and visual appealingness is to compute a shell of each object with

varying thickness [Musialski et al. 2015]. These alternatives will be

explored in our future work.
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