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Abstract Rapid development of artificial intelligence
motivates researchers to expand the capabilities of
intelligent and autonomous robots. In many robotic
applications, robots are required to make planning
decisions based on perceptual information to achieve
diverse goals in an efficient and effective way. The
planning problem has been investigated in active robot
vision, in which a robot analyzes its environment and its
own state in order to move sensors to obtain more useful
information under certain constraints. View planning,
which aims to find the best view sequence for a sensor,
is one of the most challenging issues in active robot
vision. The quality and efficiency of view planning are
critical for many robot systems and are influenced by
the nature of their tasks, hardware conditions, scanning
states, and planning strategies. In this paper, we
first summarize some basic concepts of active robot
vision, and then review representative work on systems,
algorithms and applications from four perspectives:
object reconstruction, scene reconstruction, object
recognition, and pose estimation. Finally, some
potential directions are outlined for future work.

Keywords robotic; view planning; active vision; next-
best view; sensor planning

1 Introduction
Active robot vision [1] refers to the capability of
a robot that can actively adjust its visual sensors
to obtain useful information for various tasks. The
related ideas of view planning [2–4], sensor planning
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[5–7], or next-best view (NBV) determination [8–10],
play an important role in active vision. They enable
robot vision systems to process and analyze current
information to progressively cover or detect target
objects (Fig. 1).
View planning can significantly improve the

efficiency of robot systems [11–13]. Robots can
perceive useful information from a single view.
However, the information contained in a single view
is limited due to the working range and field-of-
view of each sensor. Furthermore, noise and errors
are inevitable when converting analogue signals to
digital data. Multiple views can provide additional
information, and they can also filter information
by averaging noise, resulting in more accurate data
capture. Motivated by the idea of using multiple
views, optimally planning a sequence of viewpoints
for robots has been widely studied [11, 14, 15].
Due to the importance of view planning in active

vision, many novel algorithms and applications have
been proposed. This research has significantly
advanced the perceptual ability of robot systems,
and changed the behavior of robots in many areas
[1, 16, 17], including services, medicine, industry, and
agriculture. Vision-based tasks (object recognition
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Fig. 1 Next-best view (NBV). Compared to new view A on the left,
new view B on the right can collect more unknown information. It is
thus more useful as the NBV.
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and reconstruction, scene exploration, target tracking,
object manipulation in rescue), where robots mainly
rely on sequential visual information from sensors,
benefit greatly from state-of-the-art view planning
algorithms [17–19].
Although the view planning problem has been

widely studied, there are still many unsolved
challenges. For instance, inter-object occlusion
increases the difficulty of data collection. Different
settings of environmental lighting, surface materials,
and textures also significantly affect data capture.
Uncertainty about the environment surrounding the
robot, variability of task requirements, imprecision
of motion, and unreliability of visual perception are
four key factors that hinder accurate perception for
view planning [20, 21].
Despite these challenges, the development of

active robot vision continues. There are many
popular applications of active robot vision, including
object reconstruction, scene reconstruction, object
recognition, and pose estimation. In this paper,
in addition to common characteristics shared by
different view planning algorithms, we also summarize
specific view planning algorithms designed for each
of the above four applications.
This paper is organized as follows. First, we describe

view planning systems and algorithms in Sections 2
and 3, respectively. Then, four applications of view
planning in active robot vision: object reconstruction,
scene reconstruction, object recognition, and pose
estimation, are studied in Section 4. Finally, we
suggest some directions for future work in Section
5 and offer concluding remarks in Section 6.

2 View planning system
The hardware system used in active vision tasks
generally includes two kinds of components: robots
and sensors�. The position and orientation of each
robot determine the range of view of its sensors. The
sensors themselves determine the type and quality of
the collected data.

2.1 Robot
There are many kinds of robots [1, 21, 22], some of
which are designed for specific purposes. This section
introduces those kinds of robots commonly used in

� As this paper focuses on visual sensors, by “sensor” we mean “visual
sensor” if not otherwise qualified.

active vision tasks.
Robotic arms [14, 17] are used to move sensors

to chosen positions within reach; the sensors take
views in an environment containing one or more static
objects that are generally close together. In some
cases (e.g., as in Fig. 2), the base of the robotic arm
is fixed. A sensor is attached to the end-effector of
the robotic arm, whose cascade of joints determines
the view of the sensor. Although the robotic arm
has several degrees-of-freedom (DOFs) for collecting
visual data, the fixed base limits the range of sensor
movements. Such a robotic arm is applicable for tasks
that do not require large movement of the robot.
Mobile robots are also widely used to move sensors.

Compared to static robots, they are more flexible and
suitable for active vision tasks in a large workspace,
e.g., for reconstructing large objects or scenes (e.g.,
as in Fig. 3). As the sensors are generally mounted on
the mobile robot, the problem of view planning for the
robot becomes a problem of path planning. However,
long-distance movement of mobile robots usually
suffers from cumulative errors, and a large scene
to be investigated generally has more uncertainties
to be considered. As a result, researchers pay more
attention to the flexibility, robustness, and accuracy
of mobile robots.

2.2 Sensors
Different visual sensors have different characteristics
suited to different scenarios. It is important to choose
an appropriate sensor to cope with a specific vision
problem. Various depth sensors (also called range
sensors, range cameras, depth cameras, or RGB-D
cameras) have been used in active vision systems to
acquire 2.5D information about the observed target
[2, 17, 20]. Depth sensors can be classified as passive
or active, the latter using their own light sources for
distance measurement.
Stereo vision, also called binocular stereo vision,

is the most widely used measurement technology
for passive sensors [2]. It obtains object depth
information by imitating the human visual system
[23]. In the passive measurement process, computing
depth information relies on algorithms and is
independent of the hardware. The disadvantages of
passive measurements are twofold: they rely strongly
on the target object or scene having texture, and they
can suffer from degraded performance in the presence
of lighting changes.
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Fig. 2 Construction of a model of a plant using three robotic arms equipped with sensors. Reproduced with permission from Ref. [17], c©
IEEE 2019.

Fig. 3 A mobile robot equipped with a robotic arm, with a Kinect
sensor mounted on the end-effector of the robotic arm. Reproduced
with permission from Ref. [20], c© Springer Nature 2015.

Time-of-Flight (ToF) and structured light are two
commonly used measurement techniques for active
sensors [2]. ToF sensors obtain distance information
by measuring light travel time. The high-intensity
and low-attenuation characteristics of lasers make
ToF sensors suitable for long-to-medium distance
measurements. A structured light sensor projects
light with a specific structural pattern onto an object,
and the result is then captured by another detector in
the sensor. The computing unit calculates the depth
value based on the reflected light. The advantages
of structured light sensors are high quality and high
frame rate. Thus, they are popular for measuring
object surfaces in laboratories. Table 1 compares the
three different types of depth sensor.

3 Data structures and algorithms for
view planning

3.1 Data representations
View planning in an active vision system is based
on detected information about an environment. The

environment or workspace refers to the entire three-
dimensional space which contains target objects (to
be measured by sensors) and free space (for planning
views) [2, 18, 24]. The active vision system updates
its model of the environment using newly acquired
information, which in turn guides view planning.
Therefore, choice of data structure strongly affects
the strategy of view planning [8, 24, 25]. In this
subsection, we introduce some commonly used data
representations (see Fig. 4).
3.1.1 Voxels
Voxel representation is popular in view planning
because of its simplicity [24, 25]. It discretizes
the environment using either an occupancy grid
[2] or an octree [26]. Voxels can not precisely
characterize fine details on the surface of a 3D
object. However, the voxels can still represent the
surface of complex objects to some extent, and the
computational complexity of light/ray transmissions
for view planning is acceptable in the discretized
space. So, the voxel representation provides a good
balance between quality and efficiency.

Fig. 4 Data representations. Left to right: triangle mesh, point
cloud, voxel.

Table 1 Comparison of three types of depth sensor

Sensor type Active Distance Accuracy Affected by lighting Depth measurements Resolution Cost
Stereo Vision No Short High Strongly Sparse High Low
Time of Fight Yes Long Low Little Dense Low High
Structured Light Yes Short High Little Dense Low High
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The principal disadvantage of the voxel
representation is its wastefulness of storage.
In a standard environment, the object to be
measured only takes up a small portion of the
whole environment, and the surface of the object
occupies an even smaller portion of the voxelized
space. Thus, voxel representation is more suitable
for solid modeling than for surface modeling.
3.1.2 Triangle meshes
Triangle mesh representation is a common form of
3D model [27, 28]. Some view planning works [8, 29]
use a triangle mesh to represent the intermediate
state of the environment. A triangle mesh can
well capture fine details on the surfaces of scanned
objects. However, richer details may lead to higher
computational costs. Furthermore, a triangle mesh
only describes the scanned object’s surface without
considering space where no object exists. Therefore,
applications of triangle mesh representation are less
frequent than those using a voxel representation for
view planning.
3.1.3 Point clouds
Point cloud is used for representing data collected by
most of the existing depth sensors [30, 31]. Each point
in the cloud contains not only spatial information
(i.e., x, y, and z coordinates), but also reflection
intensity and colour information. Compared to voxel
representations, the point cloud data can restore more
surface details of an object. In addition, the data
is more straightforward and simple than triangle
meshes. However, the point cloud data is similar
to the triangle mesh representation in a way that is
incapable of describing unknown and empty spaces.
The point cloud and related representations (e.g.,
surfel representation [24]) have drawn lots of attention
in the active vision.

3.2 Workflow
Fiugre 5 summarizes a typical active vision workflow,
which includes view planning, motion planning, sensor
scanning, and map updating. These four components
are connected sequentially to form a closed loop. The
actuator of a robot performs this closed-loop until
a prescribed termination condition is satisfied. In
this loop, the robot is initialized to a valid view by
selecting a random view. The termination condition
is based on objectives such as the scan range of
the surface of the object, the uncertainty of object

Motion 
planning

View

planning

Sensor

scanning

Map

updating

Fig. 5 Active vision workflow.

category recognition, the change of entropy in the
workspace, etc.
View planning is at the core of this workflow

loop. After each round of information collection
and updating, the view planner updates the NBV
according to the current status and task goal.

3.3 Basic view planning algorithm
View planning aims to find a sequence of sensor views
{vi | i = 1, . . . , n} ⊂ V for an active vision task. V =
R

3 × SO(3) is the sensor view space. Researchers
evaluate merit of a sequence of views in terms of
running time and planning quality.
In fact, it is impractical to find the globally

optimal solution V ∗ ⊂ V for most active vision tasks.
For example, in object reconstruction, using prior
geometric knowledge about an object to find the
smallest set of views to fully cover its surface has been
proven to be an NP-complete problem [32]. Therefore,
a view planning algorithm should find a near optimal
sequence of views within an acceptable time.
Different vision tasks require different view

planning algorithms, which can be broadly classified
as search-based and synthesis-based approaches [33].
Most active vision work follows a search-based
approach, also known as a generate-and-test approach
[16, 17, 20, 27, 33–38]. These approaches generally
sample a large number of candidate views, and then
make view selections under specific constraints. The
steps in a search-based approach may be summarized
as follows:
• Sample a certain number of candidate views in
the view space under some specific constraints
(see Fig. 6).

• Perform a visual information simulation on each
candidate view and estimate the amount of new
information that can be gained from it. As well
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Fig. 6 Candidate views by sphere sampling. Reproduced with
permission from Ref. [17], c© IEEE 2019.

as information gain [25, 39], other factors can
be considered such as the quality of the results
[38, 40] and the cost of robot movement [14, 29].

• Choose the best viewpoint or set of viewpoints
from these candidates.
The fundamental differences between view planning

algorithms lie in the second and third steps. For
example, in object reconstruction tasks, the main
goal is added as much information as possible
from each view [17, 25, 33, 41]. This criterion
is used to select the candidate view. In object
recognition tasks, algorithms typically select a view
that minimizes uncertainty of which object is being
viewed [16, 36, 37]. The system has to evaluate the
critical information acquired.
Synthesis approaches use different approach to plan

sensor views [6, 10, 41, 42]. With an analysis of task
requirements, task constraints, system constraints,
and sensor models, synthesis approaches calculate
the NBV directly. As there is a process of
simulating and evaluating a large number of views,
the computational cost of the synthesis approach is
much lower than that of the search-based approach.
However, its performance in terms of accuracy and
reliability is worse than for a search-based approach
in the presence of complex occlusion and spatial
uncertainty [41].

4 View planning by application
View planning algorithms use different data
structures and strategies for different applications;
different robots and sensors may also be involved.
In this section, we summarize the characteristics of
view planning algorithms targeting four applications:
object reconstruction, scene reconstruction, object
recognition, and pose estimation, and discuss some
representative works to explain how view planning
algorithms are applied to these specific tasks.
Object reconstruction aims to reconstruct the

surface of a target object. It requires a robot-
controlled sensor to scan the whole surface to build a
three-dimensional (3D) model. Therefore, the view
planner needs to enable the robot to capture as
much information as possible in each view. Scene
reconstruction requires mobile robots with sensors
to traverse a scene, and comprehensively collect
information about the entire scene. The purpose
of object recognition is to use the sensor data from
robots to identify the types of objects present. Unlike
the above tasks, pose estimation may be regarded as
an extension of object recognition. It attempts to
accurately infer the poses of objects based on collected
information by robots.

4.1 Object reconstruction
4.1.1 Overview
The aim of object reconstruction is to generate a
3D model of a physical object by sensing its surface
from different viewpoints. Obtaining accurate 3D
object models is required by many applications in
industry, entertainment, culture, and architecture [2].
In these applications, a variety of physical objects
such as cultural relics, houseware, or mechanical
parts are scanned into digital counterparts and
stored in the computer. The reconstruction process
for an unknown object is generally performed in
four subsequent steps: sensor positioning, sensing,
registration, and view planning [2]. One of the
challenging steps during reconstruction is view
planning.
Traditional methods for object reconstruction

manually operate sensors to scan objects from
different views, so are slow and labour-intensive [43].
The rapid development of robotics and RGB-D (RGB
and depth) sensors has led to more effective solutions
for object reconstruction [30, 31]. A robot equipped
with depth sensors can autonomously accomplish
object reconstruction without manual control. After
each image acquisition step, a view planner chooses
the next-best view automatically using the current
information. Then, the robot moves the sensors to
the target view in a fully automated way [14, 17, 20].
Using active scanning, digital 3D geometric models
can be reconstructed in the computer, as shown in
Fig. 7. Compared to traditional manual approaches,
scanning objects by autonomous robot systems with
view planners achieves better reconstruction efficiency
and accuracy.
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Fig. 7 Simulated active reconstruction. Left: camera and object model. Other images show the process of reconstruction.

4.1.2 Representative work
In the early stage of object reconstruction, view
selection methods proposed by Connolly [41] and
Wong et al. [42] followed the classic generate-and-
test approach [6]. Both methods suggest sampling
a set of candidate views using a voxel space. The
number of unseen voxels revealed in each candidate
view can be estimated and used as a criterion
to find the NBV. Apart from such generate-and-
test approaches, synthesis view planning methods
have also been proposed [41, 42]. In these, the
sensor viewpoints are directly determined from
specific constraints modeled by analytical functions
[6]. First, the observation direction of the NBV
is calculated by accumulating the best observation
direction of each unknown voxel. Then the exact
position of the view is determined by spherical
constraints. Both papers compare their synthesis
approach with generate-and-test approaches, and
show that, although fast in operation, the synthesis
approach cannot handle occlusion problems and
ensure availability of information in chosen views.
Instead of using a voxel representation [41, 42],

active vision systems can also search for the NBV
using a triangle mesh representation. In the algorithm
proposed by Pito [8], the scanned surface of the
object is recorded as the visible surface, and the
core idea is to explore unknown parts connected to
the visible surface to choose the NBV. The view
planning algorithm can improve the efficiency of
object reconstruction with registration constraints.
As object reconstruction proceeds, more and more

object information is acquired. Using this observation,
Banta et al. [10] presented three different view
planning algorithms for use during different stages
of scanning. The algorithms range from simple to
complicated, and from coarse to fine, providing view
planning that meets the requirements of different
stages.
It is important to ensure not only the efficiency

but also the quality of view planning for object
reconstruction. Massios et al. [38] took the quality
of reconstruction into account by defining the utility
function as

ftotal(v) = ωvfvisibility(v) + ωqfquality(v) (1)
where fvisibility denotes the amount of information
gain, which is calculated by counting the unknown
boundary voxels of a view. fquality denotes the
reconstruction quality associated with voxels occupied
by an object. It is defined as n̂ · v̂, where n̂ is the
local surface normal and v̂ is the view direction.
By defining the utility function in this way, the
view planner tends to choose candidate views by
considering both the amount of information and its
quality.
Wu et al. [40] proposed a novel view planning

algorithm intended for high-quality object reconstruc-
tion. After obtaining a local point cloud of the
object, an approximate Poisson surface of the
object is obtained using a weighted locally optimal
projection operator [44] and screened Poisson surface
reconstruction method [45, 46]. Poisson sampling [12]
is then used to discretize the Poisson surface into a
set of point clouds with associated directions. For
each point in the point cloud, its confidence score is
calculated according to completeness and smoothness
to obtain a confidence heat map. Using it, visual
evaluation is performed on each voxel in the voxel
space to obtain the viewing vector field (VVF). This
is used to select the best view for the next scan.
Performance of the method is evaluated through
physical experiments. Compared to a method based
on exploration of boundaries delimiting unknown
parts of the object’s surface [11] and a method based
on visual information [13], the proposed method is
able to reconstruct a complete physical model faster,
with fuller physical detail. Figure 8 shows the robot
and reconstruction results from Ref. [40].
The idea of projecting rays in a simulation to

assess has been applied in many works [11, 38, 40–42].
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Fig. 8 Robot and modeling results. Reproduced with permission
from Ref. [40], c© ACM 2014.

Information gain metrics in these works can be
classified as counting metrics, and probabilistic
metrics [25]. Recently, Delmerico et al. [25] have
suggested that candidate views can be ranked by
information gain. In a voxel representation, the gain
is defined as the volumetric information I contained
in each voxel that is visible in a particular view. View
planning is thus converted into a problem of choosing
a view to maximize information gain.
Given a view v from a set of candidate views

V , information gain is quantitatively evaluated by
simulating projection lights Rv at the viewpoints
according to the camera perspective model. Each ray
r ∈ Rv passes through many unknown voxels until
known voxels or spatial boundaries block it, thereby
forming a detected voxel set X. The information gain
can be expressed as

Gv =
∑

∀r∈Rv

∑

∀x∈X

I (2)

where I is defined by the Shannon entropy
formulation:

I = −Po(x) lnPo(x)− P̄o(x) ln P̄o(x) (3)
Here, Po(x) is the probability of existence of the
object in the voxel, while P̄o(x) = 1 − Po(x) is
the probability that no object exists in the voxel.
Equation (3) uses uncertainty about the voxel to
measure the amount of unknown information. Five
different volumetric information (VI) formulations
can be derived from Eq. (3): occlusion aware VI,
unobserved voxel VI, rear side voxel VI, rear side
entropy VI, and proximity count VI (see Fig. 9),
by introducing a Markov chain model or assigning
different weights according to the spatial position of a
voxel. These five VI formulations have been evaluated
along with area factor VI [47] and average entropy
VI [11] through simulation experiments. Results show
that proximity count VI and area factor VI [47] are
the best choices.
In most object reconstruction works, the object

to be measured is placed on a desktop platform,

(b) Unobserved voxel VI(a) Occlusion aware total VI

(c) Rear side voxel VI  (d) Rear side entropy VI

Fig. 9 Four VI formulations. Voxels colours are: black: occupied,
grey: unknown, green: free, striped: frontier. Other markings
are: yellow lines: object sides, red arrows: ray sets, dashed blue
circle: maximal ray length blue triangles: VI weights. Proximity
count VI behaves like rear side voxel VI (bottom left), but with a
weight dependent on distance from previously observed surface voxels.
Reproduced with permission from Ref. [25], c© Springer Nature 2017.

so the sensor cannot see the bottom of the object.
Krainin et al. [14] changed the view by lifting the
object with a robotic arm. The view space can help
to scan the object from all directions. In addition
to selecting views based on information entropy,
the method also considers the cost of movement of
the robotic arm. Because of occlusion caused by
the robotic arm, the grabbing posture must also
be considered in the planning strategy. Candidate
grabbing postures are generated using OpenRAVE
[48] and evaluated to select the best posture. In
addition to gripping objects with a robotic arm to
extend the view space, there are also works that
apply multiple types of sensors in a system, thereby
collecting object information more flexibly. For
example, tactile sensors and laser profilers can also
be used to capture geometry and physical properties
of objects. Cui et al. [29] proposed a multi-sensor
based NBV framework. In each stage, the framework
selects the next-best view from all executable views
for all sensors. A geometric model is incrementally
constructed by the framework through consecutive
sensing actions. To obtain a high-quality detailed
model, the terminatation criterion is that the largest
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triangle area in the mesh is below a threshold.
Deep learning approaches provide state-of-the-art

performance in several areas, e.g., image classification
[49]. However, studies on using learning methods for
NBV prediction are rare [33]. Mendoza et al. [33]
proposed a 3D convolutional neural network called
NBV-Net which can effectively predict the NBV.
Unlike the aforementioned works that perform a
search to find the NBV [11, 25, 38, 40–42], NBV-
Net directly predicts the NBV using a classification
approach. Ground-truth NBV data are required to
train the NBV-Net. The training data are collected
based on the criterion that the NBV must maximize
the scanned surface and also overlap the accumulated
point cloud. The trained NBV-Net is capable of
predicting the NBV to reconstruct several unknown
objects. Furthermore, the NBV can be determined
in a very short computation time because it avoids
search.
View planning algorithms for object reconstruction

may or may not be model-based [2]. Model-based
algorithms use prior geometric knowledge about
objects, while non-model-based algorithms can plan
a sequence of views without considering the geometry
of the object in advance. In practical applications,
it is difficult to acquire prior knowledge before
reconstructing 3D objects, so most existing view
planning algorithms for object reconstruction are non-
model based. However, in some applications, prior
knowledge about objects may be used to improve
the effectiveness of view planning algorithms. For
example, prior knowledge of plant structures are have
been utilized in a plant phenotyping task [17]. To help
with NBV planning, a deep neural network is trained
to predict plant-specific information in the form of
a set of voxels. The environment is represented by
two sets of voxels M and M . M is the occupancy
map built from information obtained by sensors. A
point completion network [50] is used to predict the
completion of the plant Yp. Information from M

and Yp is combined to obtain M , whose voxel set
is currently unoccupied in M but is predicted to
be occupied by Yp. The NBV is determined as the
candidate viewpoint that covers the most voxels inM .
Specifically, the approach casts rays from voxels in M

to viewpoints to achieve more efficient view planning
instead of the ray-casting strategy in traditional NBV
planning.

Reinforcement learning (RL) has also been adopted
to tackle the view planning problem, regarding it
as a set covering optimization problem [51] with
prior knowledge. Previous studies [52, 53] show that
a greedy algorithm provides the best polynomial-
time approximation algorithm to the NP-hard set-
covering problem. A sequence of viewpoints for
object reconstruction can be generated by solving
a finite Markov decision process with reinforcement
learning, which achieves better performance than
greedy algorithms in almost all experimental cases.
Specifically, each viewpoint is evaluated as following:

fλ(X) = A(X)/L(X) (4)
where X denotes the submesh obtained from selected
viewpoints, and A(X) denotes its total surface area,
and L(X) denotes the total boundary length of
the area covered by X. λ ∈ R�0 is determined
by reinforcement learning; the viewpoint which
maximizes fλ(X) is utilized. Subtle choice of λ

by reinforcement learning is the key to making this
algorithm’s superiority to a greedy algorithm. When
λ = 0, the algorithm is reduced to a greedy algorithm
that uses area as the evaluation metric. When λ > 0,
the algorithm also considers the shape of the submesh
obtained. In some cases, selecting a viewpoint with
a smaller area but a smoother surface will be more
conducive to the overall reconstruction efficiency.
To summarize this section, view planning is widely

used in object reconstruction, and typically works by
ray casting in voxel space to evaluate the information
gain of a view [11, 20, 25, 38, 41, 42]. Deep learning
and reinforcement learning methods are beneficial for
view planning [33, 51], but studies on these methods
for reconstructing objects are rare. Machine learning
methods offer a promising future direction for view
planning for object reconstruction.

4.2 Scene reconstruction
4.2.1 Overview
3D scene models with fine details are vital in many
fields [1, 54]: assisting engineers in analyzing building
stability, preserving historical building information,
planning pedestrian map navigation, etc. Manual
sampling and modelling require a huge amount of time
and effort for scene reconstruction, because of the
large number of models in the scene. Entirely handing
over the reconstruction task to an automatic mobile
robot with sensors can greatly save manpower as well
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as help to improve the quality of the reconstructed
scene model.
Unlike object reconstruction, which observes one

or more objects inside a limited volume, scene
reconstruction requires obtaining a model of the
entire 3D scene inside a target volume. Therefore,
a robot used in scene reconstruction must be able
to drive autonomously to each location in the scene.
During the scanning process, the robot has to know
its own position [55, 56]. The robot can then
further plan its path and sensor views based on
its position and an existing partial model of the
scene, to allow it to scan the scene efficiently. The
robot system chooses views to reconstruct the scene
based on criteria such as information gain, robot
movement cost, reconstruction quality, etc. [18, 35].
Compared with object reconstruction, a robot system
for reconstructing a scene model must pay more
attention to the cost of robot movement, which is a
key factor in the efficiency of scene reconstruction.
4.2.2 Representative work
Among various types of scene reconstruction
scenarios, indoor scene exploration and reconstruction
have the most popular demand. With prior knowledge
of scene geometry, i.e., a map of the building, indoor
scene exploration becomes a classical 2D art gallery
problem [57] (deciding how to arrange guards to
watch an entire building, as shown in Fig. 10).
The art gallery problem can be reduced to a set-

covering problem whose solution can be approximated
by a greedy algorithm for 2D view planning with
a robot [58]. The set-covering problem can be
formulated as follows: for a finite set X, F is a
subset of X’s power set (F ⊂ P (X)), and X =
∪s∈F S. The set C with the fewest elements that
satisfies C ⊂ F and X = ∪s∈CS is the best-view
set choosen by view planning. Nüchter et al. [34]
modeled the art gallery as a horizontal plane, and
extended the existing approach [58] to address view

Fig. 10 Art gallery problem: for a polygonal gallery, how many
guards are needed to cover the whole area?

planning with a robot for 3D scene reconstruction
by considering several horizontal planes at different
heights. NBVs are chosen by calculating the amount
of 2D information that can be obtained in horizontal
planes at a viewpoint.
While this method uses 2D data for view planning

for 3D scene reconstruction [34], Blaer and Allen [35]
provided ideas for view planning in large-scale indoor
and outdoor sites with 3D data. The scanning process
has two stages. In the first stage, an initial set of views
is generated based on a 2D map. To take 3D scans at
each view in the initial set, a path planning module
[59] is combined with a robot. Then, an initialization
model is constructed from the 3D scans for the second
stage, in which a voxel-based occupancy procedure is
adopted to plan NBVs.
In addition to using mobile robots that walk on

the ground [34, 58, 59], an aerial robotic platform
based on a micro aerial vehicle (MAV) can also be
used for scene reconstruction [22]. Bircher et al. [22]
proposed a view planning approach for the MAV to
explore scene space. The approach samples views
as nodes in a random tree using a tree construction
algorithm such as RRT [60] or RRT-Star [61]. NBVs
are determined by evaluating each branch in the
tree for the amount of unknown information gain.
In each iteration of view planning, the first edge
of the best branch is executed to scan and update
the scene. The MAV repeats the iteration process
in a receding horizon fashion until exploration is
complete. Simulation and physical experiments have
been conducted to verify that sophisticated spaces can
be dealt with in real time by the view planner on the
MAV platform, which usually has limited computing
resources.
Traditional active vision systems acquire 2D

scene maps [34, 58] or 3D scanned data [59] to
expand knowledge of the scene. Detailed object
models in the scene are reconstructed from the
acquired data by performing offline analysis. Xu et
al. [62] proposed an autonomous system for scene
reconstruction with online object analysis. The
system is the first to integrate robot interaction
with proactive validation for object extraction and
scene segmentation, resulting in object-wise-quality
reconstruction. Based on this autonomous system,
Xu et al. [63] reconstructed the scene by online
identification of objects using a 3D shape database.
Object recognition is achieved by a novel recurrent
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network with subnetworks for input processing,
information aggregation, action generation, and next
view prediction. The retrieved 3D objects are
inserted into the scene to progressively replace the
corresponding object scans for scene reconstruction.
Unlike methods which realize object extraction with

the help of physical interaction [62], Liu et al. [19]
proposed a novel active vision system, which provides
object-aware guidance for on-the-fly scene exploration
and object recognition. In one navigation pass, the
proposed system first decides which object in the
scene should be regarded as a target. Globally, the
system uses multi-class graph cut minimization for
segmentation to find candidate objects; the target
object is selected based on database matching degree
and robot movement cost. The robot then moves
to the target object, and object-aware information
gain is used to plan the NBV for local scanning.
After the current target object has been recognized
and reconstructed, the robot continues navigation by
identifying and modeling the next target object. The
robot sequentially visits and scans all objects in the
scene to perform whole scene model reconstruction.
Experiments show that the method is more accurate
and efficient than most related work [19]. The
authors have conducted simulation experiments based
on the SUNCG [64] and ScanNet [65] scene data
sets. Physical experiments were also conducted with
a mobile robot carrying a Kinect sensor. Their
experimental results verify that the system performs
well in terms of reconstruction quality and efficiency;

see Fig. 11. With a similar purpose, Zheng et al. [66]
proposed a novel online reconstruction method with
semantic segmentation for active understanding of
unknown indoor scenes. The method adopts a
volumetric representation, which is suitable for voxel
labeling based on deep learning [27]. View planning is
a view scoring field based not only information gain,
but also safety, visibility, and movement cost. Then,
the robot path and camera trajectory are jointly
optimized for adjacent NBVs.
Recently, a multi-robot collaborative reconstruction

system was proposed by Dong et al. [18]. Using
multiple robots at the same time can greatly improve
the speed of scene reconstruction, by minimizing the
scanning effort of all robots while their collective
coverage and reconstruction quality are maximized.
In each iteration of view planning, the system selects
the set of best views, in which each views is assigned
to a robot. The planning procedure for assigning
views can be formulated as a multiple traveling
salesman problem (mTSP), which determines a path
for each robot such that each task view is visited
exactly once and the total traveling cost is minimized.
However, mTSP is NP-hard [67]. Therefore, the
authors propose a divide-and-conquer scheme to solve
the problem in two steps. The first step assigns views
to all robots by optimal mass transport (OMT), and
then an optimal path for each robot is determined by
a traveling salesman problem (TSP). OMT solves the
view planning problem by an optimization process
which takes movement cost and robot capacity into

Fig. 11 Global and local view planning results. Reproduced with permission from Ref. [19], c© ACM 2018.
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consideration. The second step has to compute a
TSP path, which is transformed into a smooth robot
movement path. Each robot has to traverse the
assigned views, as illustrated in Fig. 12.
With only a single depth image captured by

a depth sensor as input, view planning can be
used for high-quality scene reconstruction [68]. A
deep reinforcement learning network DQN [69] is
adopted for determining a sequence of viewpoints to
complete the occlusion space in the depth image. The
completion is done in an iterative fashion to make
up all missing information. Each iteration chooses
one viewpoint to render a new depth image, which is
in-painted to fill the produced holes and re-projected
into 3D space for the next iteration. In-painting
is done by utilizing a 2D in-painting network [70]
and SSCNet [64]. These steps are iterated until the
complete scene point cloud is established. Compared
with previous scene completion methods, SSCNet [64]
and ScanComplete [71], the proposed method shows
improved accuracy and completeness.

We end this section by illustrating the
characteristics of scene reconstruction by
a comparison with object reconstruction.
Representative works in Sections 4.1 and 4.2
are summarized in Table 2. From the aspect of
view planning algorithms, scene reconstruction and
object reconstruction share great similarity. Both
evaluate a view by the amount of information the
view can acquire during the process of choosing
NBVs. However, the main consideration in scene
reconstruction is how to build a complete scene
model efficiently with acceptable accuracy. Object
reconstruction has a higher requirement for accuracy,
needing greater object detail. On the other hand,
scene reconstruction is more complicated than
object reconstruction, as all object models in the
entire area must be acquired. To achieve scene
reconstruction, an active vision system has to process
a large amount of information for view planning,
during which uncertainties caused by collision and
occlusion must be taken into account. Using aerial

Fig. 12 Multi-robot collaborative scene reconstruction algorithm. Reproduced with permission from Ref. [18], c© ACM 2019.

Table 2 Representative reconstruction work

Task Method Representative
Object reconstruction Predict the amount of unknown voxel observed by a view for

evaluation.
Connoly [41]; Wong et al. [42]

Object reconstruction Calculate the NBV direction by accumulating unknown
information of voxel.

Connoly [41]; Wong et al. [42]

Object reconstruction Explore unknown parts connected to the visible surface. Pito [8]; Kriegel et al. [15]
Object reconstruction Consider the reconstruction quality for NBV. Massios and Fisher [38]; Wu et al. [40]
Object reconstruction Fix sensors and change the pose of the object by a robotic

arm to obtain new views.
Krainin et al. [14]

Object reconstruction Select NBV from multiple types of sensors. Cui et al. [29]
Object reconstruction Use different view planning strategies in different states of

scanning.
Banta et al. [10]

Scene reconstruction Transform the 3D view planning problem into the 2D
problem.

Nüchter et al. [34]

Scene reconstruction Use boundary voxels between known and unknown volumes
to select NBV.

Blaer and Allen [35]

Scene reconstruction Research the balance between NBV and NBO. Liu et al. [19]
Scene reconstruction View planning for MAV. Bircher et al. [22]
Scene reconstruction View planning for Multi-robot collaboration system. Dont et al. [18]
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robots to explore large areas [22], object-guided scene
reconstruction combined with object recognition [19],
and multi-robot collaborative reconstruction [18]
have all been proposed in recent studies, and are
valuable and challenging issues for research.

4.3 Object recognition
4.3.1 Overview
Object recognition refers to identifying an object
based on information provided by a sensor and a
database. Recognizing objects from a single-view
image has been well-studied, using e.g., template-based
[72] or matching-based approaches [73, 74]. However, a
number of practical issues (occlusion, lighting, texture)
make single-view object recognition difficult.
Reasonably priced and widely used RGB-D sensors

facilitate development of object recognition systems
[75]. However, the problem of insufficient single-
view information cannot be fully solved by improving
hardware. Furthermore, noise in the captured data
still has a great impact on the recognition accuracy
when using a single view [37]. It is useful for sensors
to acquire multiple features from different viewpoints.
View planning helps an object recognition system

to complete recognition tasks with fewer views.
While the reconstruction tasks mentioned in previous
sections need to scan all information, the goal of view
planning for object recognition is to locate critical
object features to improve recognition accuracy and
efficiency.
4.3.2 Representative work
In object recognition, information from the first view
is often insufficient for confirming object type [27, 76].
Several assumptions about the types of objects are
made based on a model database. Collecting further
key information from additional viewpoints helps to
eliminate ambiguity; this can be done until the object
type can be uniquely determined [36, 77].
Hutchinson et al. [77] constructed a multi-sensor

object recognition system based on the idea of
reducing ambiguity. Using information from one of
the sensors in the system, an initial set of hypotheses
is formed. Then, the next sensor with an appropriate
viewpoint is chosen to maximally disambiguate the
initial set of hypotheses for object recognition. View
planning in object recognition evaluates a candidate
view based on the amount of ambiguity that would
be resolved, as illustrated in Fig. 13.

Seleted view

View A View A

View B View B

Seleted view

Fig. 13 Reducing ambiguity. Given hypotheses (a) and (b), view
A cannot provide useful information, but view B can provide new
information to verify which hypothesis is correct. Reproduced with
permission from Ref. [77], c© IEEE 1988.

Dickinson et al. [78] proposed an aspect hierarchy
to assist in ambiguity judgement for view planning.
The aspect hierarchy consists of aspects, faces, and
boundary groups. The three levels of components
hierarchically represent volumetric parts (from which
each model in the database can be constructed),
components of the aspects, and all subsets of contours
bounding faces. With the help of the aspect hierarchy,
objects are divided into image regions for inferring
objects with more commonly used features such as
lines or corners. If the system cannot uniquely
determine the type of object, it will choose views
based on a Bayesian network to reduce ambiguity. For
recognizing objects composed of various basic shapes,
the proposed method has excellent performance.
However, the drawback of the system is that it cannot
identify irregular manufactured objects.
Object recognition is also an ability required by

a humanoid robot for its interaction with natural
environments. Browatzki et al. [36] proposed a
perception-driven multi-view recognition framework
for interactive applications of a humanoid robot.
An object is placed in the hands of the robot, and
probabilistic Monte Carlo localization methods [79]
are used to maintain multiple hypotheses about
the object simultaneously. The robot rotates the
object to select views that are beneficial for acquiring
more critical information to resolve ambiguities
and discriminate similar objects. Moreover, the
system uses proprioceptive information to enhance
the reliability of the hypotheses in addition to
visual information. Using the iCub humanoid robot,
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simulation experiments and physical experiments
were carried out to demonstrate that the system can
quickly and reliably confirm the type of the object.
In particular, the humanoid robot can plan views to
recognize objects with complex shape.
Kriegel et al. [75] constructed an active robot

system integrating multiple tasks: scene exploration,
object recognition, and reconstruction. Their robot
system is equipped with a 3D camera and a laser
stripe. The 3D camera is used to build an initial
depth image for the whole scene quickly, while
the high quality laser stripe scans and reconstructs
objects. Each time the robot moves to a new position,
it first uses the 3D camera to acquire a depth
image, from which clusters are extracted using plane
subtraction and Euclidean clustering. Then, the
clusters are tested one by one to match models in the
database. For a cluster that cannot be recognized, the
system will plan new views to get more information
for identifying or reconstructing it. If the system
fails after several attempts to recognize the cluster,
the recognition step is skipped, and the cluster is
considered to be a new type of object, whose model
is generated by the laser scanner and added to the
object database.
Object recognition often requires manually

designed features. Deep learning networks are
widely used in adaptive and automatic methods,
which can significantly overcome the shortcomings
of manually designed features. Many works have
introduced deep learning networks for automatically
extracting features to represent objects. Wu et al. [27]
established a convolutional deep belief network,
ShapeNet, to learn and extract object features for the
completion and recognition of objects. ShapeNet is
capable of view synthesis from unseen viewpoints
without manually labelling each image [80]. To
train ShapeNet, a synthetic ModelNet dataset of 3D
CAD meshes is constructed to provide sufficient data
with images covering the full sphere of viewpoints
around each object. If an object cannot be accurately
identified by the network, the system can select the
NBV actively to improve the recognition rate. The
entropy of the classification distribution is

H = H(p(y|xo))

= −
K∑

k=1
p(y = k|xo) log p(y = k|xo) (5)

where k is the tag for the category. According to each

hypothesis of the network, given the new view V i,
xi

n = Render(xu, xo, V i), where xu is the unknown
voxel, xi

n is the newly observed voxel from V i. To
estimate the information entropy of a new view we
compute:

Hi = H(p(y|xi
n, xo))

=
∑

xi
n

p(xi
n|xo)H(y|xi

n, xo) (6)

The view Vi with the largest information entropy
change H −Hi is the best view for reducing ambiguity.
The authors tested ShapeNet on the NYU real object
dataset [81]. The results show that the proposed view
planner using two view information for ten household
objects outperforms other baseline methods with
strategies including random selection, max visibility
and furthest away.
In Ref. [27], a deep learning network is only

used to assist in view evaluation. Johns et al. [76]
proposed a method based on convolutional neural
networks to infer the NBV for object recognition
directly. The method proposed for recognition can
be done over arbitrary camera trajectories with a
classifier, which can be trained on image pairs in a
sequence by weighting the contribution of each image
pair. Thus, there is no need to train the networks
over a potentially infinite number of camera paths.
Conceptually, the method works on three levels. First,
the authors trained a convolutional neural network
(CNN-1); multiple images taken from different views
are adopted as paired input to the network. For each
pair of images, the network outputs a probability
distribution which implicitly exhibits a measure of
confidence based on entropy. The second level solves
an NBV problem which investigates how to find
the best-paired view. Finally, this work extends
the NBV problem to the best view path problem,
which is solved by constructing CNN-3 to evaluate
the information gain of each particular view path and
select the best view path accordingly. This method
was shown to have better recognition accuracy than
ModelNet [27] in an experimental comparison.
To summarize this section, the goal of object

recognition is inherently different from object
reconstruction. Object recognition focuses on key
features that help to identify object types quickly
and accurately, while more information has to be
collected for complete object reconstruction. Thus,
the planning strategies and evaluation criteria of
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views for the two tasks are quite different. Reducing
ambiguity is the key idea of view planning for
object recognition. The algorithm often predicts
a distribution of the object types by calculating
uncertainties based on information entropy. The
contribution of a new viewpoint is mainly determined
by the reduction in ambiguity of object type. The
most challenging problem in object reconstruction is
to improve recognition accuracy in complex scenarios
when objects occlude each other. Learning-based
methods for automatically extracting features to
match objects are worth considering [27, 76]. What’s
more, object recognition can be integrated with scene
exploration in many practical applications [19, 75]. In
future, more research will consider how to complete
view planning in a multi-task system, and design
strategies for missing models in databases.

4.4 Pose estimation
4.4.1 Overview
Pose estimation focuses on how to accurately locate
objects in a scene using visual information, to enable
further interaction with the objects. It is a popular
topic in both industrial and computer-based tasks,
including robot manipulation [82], augmented reality
[83], etc.
Multiple views supply more clues for pose

estimation; a single viewpoint is lacking in information.
View planning is used to provide more critical
information for matching objects in the scene with
models in a database. This usage of view planning in
pose estimation is similar to that in object recognition.
However, pose estimation requires the system to not
only match the object, but also to accurately recover
its position and pose. Thus, the amount of information
required in the pose estimation task is much more than
for object recognition. Specifically, object recognition
can use features from 2D images for matching without
depth information, while depth information is required
to accurately recover the pose of an object. Robot
systems typically find key feature points that are
helpful for calculating object pose with view planning
algorithms.
4.4.2 Representative work
The information estimation and decision-making
process in view planning is a typical Markov
chain, and every view decision is a state transition.
Eidenberg and Scharinger [16] proposed an effective

partially observable Markov decision process for
object recognition and pose estimation. The system
establishes a high-dimensional Gaussian model for the
object’s pose and derives its state transition process.
The system evaluates a view through entropy change
from the probability distribution.
Wu et al. [84] simultaneously performed object

recognition and pose estimation. In the initial stage,
their system obtains initial hypotheses of objects
and their relative poses for the scene model. The
input RGB-D point cloud is divided into multiple
clusters by the pre-processing method described in
Ref. [85], and filtered to obtain candidate clusters
that may contain objects. Then, feature descriptors
(e.g., SURF [86] and SIFT [87]) of the clusters are
extracted. With feature and consistency matching,
the correspondences between the clusters and the
database are determined. The system then uses the
correspondences to estimate the pose of the candidate
clusters by singular value decomposition (SVD) [88].
After generating candidate views of the current pose
of the robot, a ray-casting simulation is performed on
them to select the new view: that one that captures
the most matching features. The process is repeated
until the system can make a stable estimate.
Traditional machine learning methods play an

important role in addressing the problem of pose
estimation. Doumanoglou et al. [89] presented a
novel framework using active random forests [90].
The framework is applied to solve the problem of
view planning for classification, grab point detection,
and pose estimation for the task of unfolding clothes
by a robot. Other work proposed by Doumanoglou
et al. [39] discusses the application of a Hough forest
[91] to view planning for pose estimation. A Hough
forest uses features automatically generated by an
unsupervised auto-encoder, and then jointly performs
object classification and pose recognition. For a new
view, the information entropy is calculated based on
the information stored in leaf nodes of the Hough
forest. Reduction in entropy by a new view is used
to select the NBV.
In pose estimation, mutual occlusion of objects

brings obstacles to observation and feature extraction.
Determining object poses in heavily occluded scenes
is challenging. Sock et al. [37] established an active
vision system for estimating poses of objects stacked
in a highly crowded and cluttered environment. The
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system first generates hypotheses based on state-
of-the-art single object pose estimators. Then, the
object hypotheses are used to predict the NBV. Often,
the number of visible voxels is used for computing
information entropy, but this measure is not suitable
for 6D pose estimation for multiple objects in a
crowded environment since it only considers coverage.
Therefore, a viewpoint entropy that also considers
saliency which can potentially reduce pose estimation
uncertainty is proposed. In more detail, after each
image acquisition step, the system uses latent class
Hough forests (LHCF) [92] and a sparse autoencoder
[93] to generate object pose hypotheses for views.
The information obtained from every view is refined
and subjected to registration correction processing.
After the image acquisition and registration steps, the
system uses an accumulated point cloud and multiple
6D object hypotheses to render candidate views for
calculating information entropy. The view with the
minimum view entropy is chosen as the NBV.
To summarize this section, pose estimation can be

regarded as an extension of the object recognition
task. There are many works that perform the two
tasks in parallel [84]. However, because of different
goals, the view planning process is different in the two
tasks. In pose estimation, the system has multiple
hypotheses about the scene model, describing which
objects exist in the scene, and in what posture each
object appears [37]. The view planner evaluates
the reduction in uncertainty provided by new views
based on the current multiple model hypotheses, and
chooses the NBV [37, 39, 84]. In pose estimation,
the robot system infers the types of objects in the
scene and recovers their poses accurately at the same
time. General pose estimation includes extracting
object features, performing feature matching, and
determining object poses. View planning has to select
a suitable view to provide richer feature information,
thereby completing the pose estimation process
accurately and efficiently. In particular, machine
learning methods such as random forests [90] and
auto-encoders [93] are beneficial for view planning
in the pose estimation task [37, 39, 89]. Estimating
the poses of objects in a crowd is a challenging task
worthy of future study.

5 Future trends
As view planning develops, the applications of

view planning are becoming more practical and
demanding. It is also noteworthy that more and
more popular modern technologies, such as machine
learning and deep neural networks, are combined into
view planning. We outline the following potential
directions for future works.
• With the rapid development of active vision,
view planning tasks are becoming more practical.
Research on this topic is not limited to
laboratories; it has many practical applications in
many industrial scenarios, such as manufacturing,
home robot service, autonomous driving, etc.

• The continuous development of robots and sensors
will have significant impact on view planning
algorithms. For example, robots can provide a
richer view space with more flexibility. In addition
to colour and depth, haptic, temperature, and
odour information provided by sensors may also
be helpful for view planning.

• The capability of active vision systems to process
multiple tasks at the same time deserves study
in its own right. Recent works have increasingly
tended to build more integrated robotic systems.
For example, robotic systems that work on scene
exploration often need to perform recognition and
reconstruction of objects in the scene. Object
recognition and pose estimation are inextricably
linked. It is foreseeable that a better robot system
will be able to process multiple tasks at the same
time, and effective collaboration should bring
benefits to every task.

• It is worth incorporating state-of-the-art
algorithms from other related research areas,
such as statistical mathematics, computer vision,
computer graphics, and artificial intelligence
into view planning. In particular, machine
learning and deep learning technologies have
attracted widespread attention. There are also
successful applications of the technologies for
feature extraction and analysis in view planning,
as shown in Table 3.

6 Conclusions
In this paper, we have reviewed recent progress of view
planning in active robot vision. The basic concepts
of active vision and view planning were introduced,
and then we thoroughly reviewed representative
works targeting four goals: object reconstruction,



240 R. Zeng, Y. Wen, W. Zhao, et al.

Table 3 View planning using traditional machine learning or deep learning

Ref. Task Technique Description
[33] Object reconstruction 3D Convolution Neural Network Choose the NBV through 3D-CNN.
[51] Object reconstruction Reinforcement Learning Use reinforcement learning to solve model-based view

planning problem.
[17] Object reconstruction Point Cloud Network Assist view evaluation by point cloud completion in

plant phenotyping.
[89] Pose estimation Random Forest Random forest assists the robot in unfolding clothes.
[39] Pose estimation Hough Forest, Sparse Autoencoder Calculate the information entropy according to the

distribution of leaf nodes in the Hough forest for
evaluating the views.

[37] Pose estimation LCHF, Sparse Autoencoder Pose estimation via LCHF or sparse Aatoencoder based
on single-view.

[76] Object recognition Convolution Neural Network Use CNN to evaluate the candidate views.
[27] Object recognition Convolutional Deep Belief Network Assist view evaluation by network completion prediction.
[63] Object recognition Recurrent Neural Network Simultaneously predict NBV and object category

through RNN.
[68] Scene reconstruction Reinforcement Learning Use DQN [69] to calculate NBV.

scene reconstruction, object recognition, and pose
estimation. Although they share similarities in
robotic active vision, many differences exist in
the design of hardware and software. We show
representative works by studying how to apply view
planning algorithms in each application scenario. In
summary, recent robotic view planning works have

the following characteristics:
• Most studies follow search-based approaches,
which generate candidate view sets based on
task setting, system configuration, and algorithm
constraints. Then, the next-best view is selected
from these candidates; Table 4 compares works
using search-based approaches.

Table 4 Work using search-based approaches

Ref. Task Data type Sampling method Utility function
[41] Object reconstruction Voxel Sphere sample Information gain
[42] Object reconstruction Voxel Sphere sample Information gain
[8] Object reconstruction Triangle mesh Cylinder sample Information gain
[38] Object reconstruction Voxel Sphere sample Information gain, quality
[40] Object reconstruction Voxel, point cloud All voxels Information gain, quality
[14] Object reconstruction Voxel Sphere sample Information gain, moving cost
[29] Object reconstruction Voxel, triangle mesh No sample Information gain, moving cost
[33] Object reconstruction Voxel Sphere sample Information gain
[51] Object reconstruction Triangle mesh Around object Information gain
[17] Object reconstruction Voxel Sphere sample Information gain
[34] Scene reconstruction Lines Random sample Information gain, moving cost
[35] Scene reconstruction Voxel Voxels on ground Information gain
[66] Scene reconstruction Voxel Voxels on ground Information gain, moving cost
[18] Scene reconstruction Voxel Voxels on ground Information gain, quality
[68] Scene reconstruction Voxel, point cloud Sphere sample Information gain
[19] Object recognition Voxel Uniformly sample Information gain
[77] Object recognition — Sphere sample Ambiguity
[78] Object recognition — Sphere sample Ambiguity
[36] Object recognition — Sphere sample Entropy
[75] Object recognition Voxel Boundary search [94] Information gain, quality
[27] Object recognition Voxel Sphere sample Entropy
[76] Object recognition — Sphere sample Entropy
[84] Pose estimation Point cloud, voxel Neighbour sample Information gain
[37] Pose estimation Point cloud Sphere sample Entropy
[16] Pose estimation — Circularly sample Entropy, moving cost
[89] Pose estimation — Circularly sample Entropy, moving cost
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• View evaluation methods are mostly based on
a greedy strategy, which prefers the maximum
information gain or entropy change.

• To represent the environment, most works use
voxels combined with a probabilistic statistical
model.

• In reconstruction tasks, active vision systems
usually explore unknown information in general.
However, in object recognition or pose estimation
tasks, systems tend to explore critical information
about the object.

• In addition to information gain, a view planner
also considers movement costs, the quality of
current results, and registration accuracy.
With the continuous development of both robots

and sensors, research on view planning in robot
active vision will undoubtedly receive more and more
attention. We have summarized potential trends that
might inspire more researchers to propose valuable
ideas and build more intelligent systems to better
serve the future of human life.
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