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Abstract Finding a sequence of workpiece orientations
such that the number of setups is minimized is an im-
portant optimization problem in manufacturing industry. In
this paper we present some interesting notes on this opti-
mal workpiece setup problem. These notes show that (1)
The greedy algorithm proposed in Comput. Aided Des. 35
(2003), pp. 1269–1285 for the optimal workpiece setup
problem has the performance ratio bounded by O(lnn −
ln lnn + 0.78), where n is the number of spherical polygons
in the ground set; (2) In addition to greedy heuristic, linear
programming can also be used as a near-optimal approxima-
tion solution; (3) The performance ratio by linear program-
ming is shown to be tighter than that of greedy heuristic in
some cases.

Keywords Spherical polygons intersection · NC
machining · N P -hard problem · Approximation algorithms

1 Introduction

In industrial mass-production systems, the time to mount,
calibrate and dismount the workpieces could take consider-
able time in comparison to the actual machining time. More
critically, different mounting of a workpiece always intro-
duces precision errors in machining. Accordingly finding a
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sequence of workpiece orientations such that the number of
setups is minimized is an important optimization problem in
CAD/CAM.

In 1992 Tang et al. [19] proposed a computational model
with a greedy heuristic to solve the optimal workpiece setup
problem for 4- and 5-axis numerically-controlled (NC) ma-
chining. Since the underlying geometric model is the same
for both 4- and 5-axis machining, in the following discus-
sion we focus on the geometric model of 4-axis machining.

As illustrated in Fig. 1, in a 4-axis NC machine, the cutter
can move up and down in the y direction, while the work-
table can be translated back and forth in the x and z direc-
tions, together with an additional rotation about the x direc-
tion. Assume a ball-end cutter is used. The range of a cutter
to access a workpiece surface can be characterized by its
visibility map on a Gauss sphere [7, 18]. With the consider-
ations of global accessibility and interference, the visibility
maps can be any general spherical polygons (not only con-
vex as assumed in [4]). By representing a mechanical part
by a group of machinable surfaces, the workpiece accessi-
bility can be characterized by a set of (possibly overlapped)
spherical polygons on a Gauss sphere S

2 (ref. Fig. 2).
In a single setup with a 4-axis NC machine, the directions

along which the cutter can access the workpiece can be rep-
resented by an arc θ ≤ 2π on S

2 (ref. Fig. 2). Tang et al.
[19, 20] formulated the optimal workpiece setup problem as
the following geometric optimization problem:

Problem 1 Given a set P of spherical polygons, each of
which corresponds to accessible orientations for the cutter
to a subset of grouped surfaces in workpiece, find a set A

of arcs of a given length θ ≤ 2π with a minimal cardinality
such that every spherical polygon intersects at least one of
the arcs in A.
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Fig. 1 4-axis milling machine

Fig. 2 A snapshot of implementation of the approximation algorithm
[16] to solve Problem 2

Tang et al. [19] also first proposed to solve Problem 1 by
a greedy heuristic with an algorithmic solution to the fol-
lowing problem:

Problem 2 Given a set P of spherical polygons, find an arc
of length θ ≤ 2π that intersects a maximal number of poly-
gons in P .

In other words, the greedy approach is that at each step,
a maximal cutting arc is computed and the spherical poly-
gons intersected by it are removed from the input set of poly-
gons. This process is repeated until the polygon set becomes
empty.

In the last decade, a number of optimization algorithms
[4, 9, 19, 20] have been proposed to solve some special cases
(with increased generality) of Problem 2. Recently, the most
general case of Problem 2 has been solved in [16]. Two sim-
ilar cases in a much broader ground are also discussed in
[1, 17]. Despite its solvability of Problem 1 via Problem 2,
one may ask, “Can Problem 1 be solved directly by any op-
timization algorithm?” or “Is there any better approximation
algorithm than the greedy one?”

In this paper we present in Sect. 3 that Problem 1 is N P -
hard. Although this result is fairly known in theoretic com-
puter science, we believe that explicit proof of this result
gives some guidelines in CAD/CAM community: by know-
ing this result, we can answer the first question since the
N P -hardness of a problem offers good evidence for its in-
tractability. We answer the second question in Sect. 4 by
showing that linear programming can also be used as an al-
ternative approximation solution and its performance ratio
is better than that of the greedy algorithm in some cases.

2 Notations

The following classic problems are cited in this paper.

Problem 3 (Vertex cover problem) Given a graph G and an
integer k, is there a vertex cover1 of cardinality k?

Problem 4 (Set cover problem) Given a universe U of n

elements and a collection S of subsets of U , find a set cover
of the set system (U,S) with a minimal cardinality, i.e., a
collection of minimal sets ˜S ⊆ S such that

⋃

s∈˜S s = U .

It is well known [8] that Problem 3 is a decision prob-
lem and is N P -complete, and Problem 4 is an optimization
problem and is N P -hard.

Informally any language L ⊆ {0,1}∗ can be interpreted
as a decision problem like Problem 3. For an optimization
problem like Problem 4, to make it a decision problem,
we simply ask whether or not a set cover with cardinality
less than a given integer k exists. A language L1 is Karp-
reducible to a language L2, denoted by L1 � L2, if there
exists a function f such that

1. f maps every instance of L1 to an instance of L2, and
2. f satisfies x ∈ L1 if and only if f (x) ∈ L2 for all x.

If the reduction function can be computed in polynomial
time, L1 is polynomial-time reducible to L2, denoted by
L1 �P L2. In the rest of this paper, we prove that Problem 3
�P Problem 1 � Problem 4.

1A vertex cover of an undirected graph G = (V ,E) is a subset V ′ ⊆ V

such that if (u, v) ∈ E, then u ∈ V ′ or v ∈ V ′, or both.



Maximal arc intersection of spherical polygons 289

3 Problem 1 is NP-hard

We have the following result.

Note 1 Problem 1 is N P -hard.

Proof We prove this result by showing that Problem 3 �P

Problem 1. The method we use is to show that Problem 3 is
a special case of Problem 1.

The special case of Problem 1 can be constructed as fol-
lows. First if the arcs in Problem 1 have length θ = 0, then
the arcs degenerate to points. Now a set of spherical poly-
gons intersected by an arc means this set of polygons is shar-
ing a common point. Secondly, if the polygons in Problem 1
shrink into edges, then a set of polygons sharing a common
point means a set of edges is sharing a common intersec-
tion point. Finally if we restrict the edges in the universe P

of Problem 1 to only intersect each other at their endpoints,
then the edges in P together with their endpoints form a
graph G and now the Problem 1 is equivalent to the follow-
ing one: given a graph G = (V ,E), find a subset V ′ ⊆ V

with minimal cardinality such that every edge e ∈ E has at
least one endpoint in V ′. This is exactly the optimization
version of Problem 3. �

To the best knowledge of the authors, there is no explicit
statement of the above result that was published before.

Note 2 Problem 1 � Problem 4, i.e., every instance of Prob-
lem 1 can be mapped to a corresponding instance of Prob-
lem 4 such that every near-optimal solution output from the
greedy algorithm for an instance of Problem 1 is exactly
the same near-optimal solution output from the greedy al-
gorithm for the corresponding instance of Problem 4.

Proof Problem 1 can be re-casted as follows. Let U be a fi-
nite set of spherical polygons with the cardinality |U | = n.
The power set of U , denoted by P(U), is the collection of
all the subsets of U . Clearly |P(U)| = 2n. Given an arc of
length θ ≤ 2π , denote the subset of P(U) by S which satis-
fies S = {si | si ∈ P(U) and all polygons in si can be inter-
sected by an arc of a given length θ}. Let |S| = m. Obviously
S = {s1, . . . , sm} is a cover of U , i.e.,

⋃m
i=1 si = U . Note that

in this reduction the mapping function can take worst-case
super-polynomial time O(2n), since |P(U)| = 2n.

Now it is clear that solving an instance of Problem 1
is equivalent to solving the corresponding instance of Prob-
lem 4 and, the algorithm maximal-arc-intersection
to solve Problem 2 is equivalent to the operation 2.1 in the
greedy-set-cover algorithm (presented in Sect. 4.1).
Hence every near-optimal solution output from the greedy
algorithm for an instance of Problem 1 is exactly the same
near-optimal solution output from the greedy algorithm for
the corresponding instance of Problem 4. �

4 Near-optimal approximation algorithms

Showing that Problem 1 is N P -hard offers good evidence
for its intractability, i.e., it is unlikely to be able to find
efficient (polynomial-time) algorithms to solve it. Thus it
is worth seeking for polynomial-time approximation algo-
rithms that always output a feasible solution whose measure
is not far from the global optimum.

4.1 Greedy heuristic

In [16] Tang and Liu proposed an efficient polynomial-time
algorithm to solve Problem 2. Below we show that by ap-
plying the algorithm in [16] to Problem 2, the greedy algo-
rithm proposed in [19] has the performance ratio bounded
by O(lnn − ln lnn + 0.78), where n = |P |.

Let us denote the algorithm proposed in [16] to Prob-
lem 2 by maximal-arc-intersection. The greedy
algorithm for Problem 4 is as follows.

Algorithm: greedy-set-cover(U,S)

1. Set ˜S = ∅ and W = U ;
2. while W 	= ∅ do
2.1. Select a set R ∈ S that maximizes |R ∩ W |;
2.2. Set ˜S = ˜S ∪ {R} and W = W\R;
3. return ˜S.

Note that Problem 1 only considers the workpiece geom-
etry. We can further generalize it to be physically feasible.
For each element ai ∈ A, we assign a cost ci to it. More
precisely, for each workpiece setup determined by spher-
ical polygons intersecting with ai , to penalize physically
unreasonable cutter orientation, a cost dependent on mate-
rial removal rates, tolerances, workpiece stability, clamping
forces, etc. is calculated and assigned to ai . The weighted
version of Problem 1 is as follows.

Problem 5 Given (1) a weight function that assigns a non-
negative weight to any arc on S

2, and (2) a set P of spherical
polygons, find a set A of arcs of a given length θ ≤ 2π with a
minimal sum of weight costs such that every spherical poly-
gon intersects at least one of the arcs in A.

By Note 2, the corresponding weighted version of Prob-
lem 4 can be stated as follows.

Problem 6 Given a set system (U,S,w) with
⋃

s∈S s = U

and weights w : S → R+, find a minimum-weight set cover
of (U,S).

The greedy algorithm for Problem 6 is as follows.

Algorithm: weight-greedy-set-cover(U,S,w)

1. Set ˜S = ∅ and W = U ;
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2. while W 	= ∅ do
2.1. Select a set R ∈ S that minimizes w(R)

|R∩W | ;
2.2. Set ˜S = ˜S ∪ {R} and W = W\R;
3. return ˜S.

For the set cover problem (ref. Problem 4), Johnson [12]
and Lovász [13] showed that the performance ratio of the
greedy algorithm greedy-set-cover is no worse than
H(n), where H(n) = ∑n

i=1 i−1 is the nth harmonic number
which has a nice property

lnn < H(n) < lnn + 1.

Chvátal [5] showed that the same result is held for the
weighted version of the set cover problem (ref. Problem 6).
For the uniform-weighted case (ref. Problem 4), a remark-
ably tight analysis of the greedy-set-cover algorithm
is recently shown by Slavík [15] that its approximation ra-
dio is exactly lnn− ln lnn+Θ(1), n = |U |. A power of the
“greedy-like” algorithms for set covering problem in a pri-
ority algorithm framework introduced by Borodin et al. [3]
is presented in [2]. Since the greedy-set-cover al-
gorithm has the performance ratio bounded by O(lnn −
ln lnn + 3 + ln ln 32 − ln 32) (ref. Theorem 1 in [15]), by
Note 2 we have the following result.

Note 3 Given a set P of spherical polygons with cardinality
n and a length θ ≤ 2π , the greedy algorithm maximal-
arc-intersection proposed in [16] outputs a set of
arcs of a given length θ whose cardinality cgreedy satisfies

cgreedy

cmin
≤ lnn − ln lnn + 3 + ln ln 32 − ln 32

≈ lnn − ln lnn + 0.78,

where cmin is the cardinality of the minimal set of arcs of
a given length θ such that each polygon in P intersects at
least one of the arcs.

4.2 Linear programming

The greedy heuristic is intuitive to an approximation solu-
tion to Problem 1. It is invited to ask “Is greedy algorithm
the only approximation method for the Problem 1?” or “Is
there any better approximation algorithm?”

The answer to the first question is no. Below we con-
sider the general weighted case in Problem 5. Inspired by
Note 2, we can equivalently consider the approximation so-
lution to Problem 6, which can be reformulated as an integer
programming problem:

min
{

wT x|Cx ≥ e
}

, (1)

where w is the weight vector for sets in S, x is a charac-
teristic vector whose elements are only 0 or 1 and indicate

whether or not the corresponding set si is in the output set
cover, C is a characteristic matrix whose elements are also
0 or 1 and whose columns {cij }mi=1 are characteristic vec-
tors of set sj for all elements ui ∈ U , e is a vector of unit
elements.

The dual of linear programming relaxation of the opti-
mization problem (1) is:

max
{

yT e|Cy = w, y ≥ 0
}

. (2)

Hochbaum [10] showed that the solution is the same to
both problem (1) and its dual (2) if a maximal feasible so-
lution is used. A feasible solution to the dual y is said to be
maximal if there is no feasible solution y such that yi ≥ yi

and
∑n

i=1 yi >
∑n

i=1 yi .
Let Cmin be the unknown optimal cover for Problem 6

and CLP be a maximal feasible solution to (1) and (2). By
Lemma 3.2 in [11], w(CLP)

w(Cmin)
≤ maxi{∑j cij }, where w(C) =

∑

j∈C wj . We have the following result.

Note 4 Both greedy heuristic and linear programming can
be used for near-optimal approximate solutions to Prob-
lems 1 and 5. The performance ratio of greedy algorithm
is shown in Note 3 and the performance ratio of linear pro-
gramming is bounded by maxi{∑j cij }.

Now consider the second question raised at the beginning
of Sect. 4.2. If the m elements in U are uniformly distributed
in the n sets in S, then maxi{∑j cij } ≈ m

n
. If further m is in

the linear order of n, the bound maxi{∑j cij } is tighter than
lnn − ln lnn + 0.78 for the greedy approximation.

To the best knowledge of the authors, there is no previous
work that used linear programming to approximately solve
the weighted maximal-arc-intersection problem of spherical
polygons (ref. Problem 5).

4.3 Bound tightness of greedy heuristic

In the class of greedy approximation algorithms, the algo-
rithm greedy-set-cover is one of the best known ap-
proximation algorithms to Problem 4. Raz and Safra [14]
reveal that a constant c exists such that no approximation
ratio of c ln |U | can be achieved, unless P = N P . Feige [6]
further reveals that no approximation ratio of c ln |U | can be
achieved for any c < 1, unless N P problem can be solved
in O(nO(ln lnn)) time.

Akin to the greedy-set-cover algorithm whose ap-
proximation ratio is exactly lnn − ln lnn + Θ(1), n = |U |,
an interesting question is to ask whether or not the upper
bound presented in Note 3 is also tight for the greedy al-
gorithm maximal-arc-intersection to Problem 1.
Our answer to this question is yes, by giving the following
result.
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Note 5 Problems 1 and 4 are Karp-equivalent.

Proof Given Note 2, we can prove this result by showing
that Problem 4 � Problem 1. Below we show that each in-
stance of Problem 4 is reducible to a special case of Prob-
lem 1.

For Problem 1, we define a special case as follows. Let
the arcs degenerate into points {xi} and since the polygons
can be arbitrarily shaped, the polygons can be degenerated
into curved paths in a graph whose vertices are {xi}. Now
given an instance of Problem 4, let each element in U cor-
respond to a point on a sphere and let each element in S

correspond to a path in a graph G = (V ,E), where V , E

are mapped by U , S, respectively. To map this instance to
a special-case instance of Problem 1, the resulting graph G

needs to satisfy the following geometric constraints:

1. Each path represented by an element si ∈ S must pass
and only pass the vertices presented by {uj : uj ∈ si};

2. Each vertex xk represented by an element uk ∈ U must
lie on all the paths represented by {s ∈ S : uk ∈ s}.
To satisfy constraint 1, the edges in G may cross each

other at locations that are not necessarily endpoints of edges.
The so constructed G is readily seen to be a special case of
Problem 1. �

5 Conclusions

In this paper, some notes on an optimal workpiece setup
problem in CAD/CAM domain (Ref. Problem 1) are pre-
sented. By establishing some interesting relations between
Problem 1 and two classic N P problems, we reveal three
main results: (1) Problem 1 is N P -hard; (2) The greedy al-
gorithm proposed in [16, 19] to solve Problem 1 is shown
to have the performance ratio bounded by O(lnn− ln lnn+
0.78), n = |P |; (3) Linear programming can also be used
for a near-optimal approximation solution to Problem 1, and
in some cases its performance ratio maxi{∑j cij } is better
than that of greedy heuristic. We hope that these results may
provide some guidelines in CAD/CAM domain, especially
for the optimal workpiece setup problem.
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