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In this paper, a simple and efficient algorithm
is proposed for manifold-guaranteed out-of-
core simplification of large meshes with con-
trolled topological type. By dual-sampling
the input large mesh model, the proposed
algorithm utilizes a set of Hermite data (sam-
ple points with normals) as an intermediate
model representation, which allows the topo-
logical structure of the mesh model to be
encoded implicitly and thus makes it partic-
ularly suitable for out-of-core mesh simpli-
fication. Benefiting from the construction of
an in-core signed distance field, the proposed
algorithm possesses a set of features includ-
ing manifoldness of the simplified meshes,
toleration of nonmanifold mesh data input,
topological noise removal, topological type
control and, sharp features and boundary
preservation. A novel, detailed implementa-
tion of the proposed algorithm is presented,
and experimental results demonstrate that
very large meshes can be simplified quickly
on a low-cost off-the-shelf PC with tightly
bounded approximation errors and with time
and space efficiency.
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Recent advances in laser rangefinder technology
have contributed to creating and presenting digital
models of cultural heritage artifacts with fine details
via the technology of virtual reality and multime-
dia: we refer to the outstanding work of, e.g., the
Digital Michelangelo project at Stanford University
(Levoy et al. 2000), the Pieta project at the IBM T.J.
Watson Research Center (Bernardini et al. 2002),
the Minerva project in the Visual Computing Group
(Rocchini et al. 2001), and the acquisition of archae-
ological relics by the Museum of Terra Cotta War-
riors and Horses, China (Zheng and Zhong 1999).
Aimed at creating a 3D archive of highly detailed
digital models of cultural artifacts, most high-end
3D scanners sample artworks at a very high resolu-
tion and thus lead to huge datasets, For example, as
shown in Fig. 1, the original digital David model that
stands 5 m tall without its pedestal has 28 184 526
vertices and 56 230 343 triangles and needs 565 MB
capacity to store the compressed binary file. Al-
though representing models at their full resolution
in high-end workstations suits certain applications,
such huge datasets introduce severe problems in any
real-time mesh modeling and virtual heritage sys-
tems, especially at the steps of data retrieval, editing,
and interactive presentation through networks.
To create and manage a virtual heritage system in
an inexpensive server, accessing and editing it us-
ing a standard PC and taking into account the limited
bandwidth of the network, it is necessary to reduce
the model complexity to a manageable size using
a low-cost PC; an out-of-core mesh simplification is
the only solution to this task.
Currently few approaches exist for high-quality out-
of-core simplification; most promising schemes uti-
lize the vertex clustering method (Rossignac and
Borrel 1992; Lindstrom 2000; Lindstrom and Silva
2001) and its variations (Shaffer and Garland 2001;
Garland and Shaffer 2002). A serious disadvantage
of these vertex-clustering-based methods is that the
simplified output meshes are in general nonmani-
fold. Numerous model-processing operators, how-
ever, require a manifold-guaranteed model as input.
An example of dressed David is illustrated in Fig. 2;
in this case the mesh-processing operators used such
techniques as cut and paste, smoothing, editing, pa-
rameterization, texture mapping, and collision detec-
tion, which are all based on the manifold meshes.
If a vertex clustering method is adopted for large
mesh simplification, for downstream mesh process-
ing either a specially designed operator (Gueziec et
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Fig. 1. A simplified digital Michelangelo’s David model processed by an off-the-shelf PC. The model is bounded in a cube
2150 mm × 1234 mm × 5424 mm. The original mesh data have 28 184 526 vertices and 56 230 343 triangles and need
565 MB capacity to store the compressed binary file. The simplified mesh data have 56 523 vertices and 111 431 triangles
and need 0.99 MB capacity to store the compressed file. Due to the topological noise removal and the manifoldness, the
modest-sized model presents high-resolution details

al. 2001) converting the model from nonmanifold
to manifold or a set of operators based on a non-
manifold data structure has to be applied (Hubeli
and Gross 2001; Popovic and Hoppe 1997; Ying
and Zorin 2001); due to the nature of nonmani-
fold data structures, these operators need to be de-
signed and used with great care and thus introduce
additional complexity to the chosen mesh modeling
system.
In this paper, a rather different approach is pro-
posed for high-quality out-of-core mesh simplifica-
tion (OoCS). In addition to providing comparable
time and space complexity with other OoCS meth-
ods, the proposed approach possesses two distinct

features: (1) it is manifold property guaranteed for
the simplified meshes with toleration of nonmanifold
mesh data input and (2) it explicitly controls topo-
logical type and thus is attractive when taking down-
stream applications into consideration.
The paper is organized as follows. The related
work is presented in Sect. 2. Our new out-of-core
large mesh simplification algorithm is presented in
Sect. 3, and a novel implementation of this algo-
rithm is presented in Sect. 4. A detailed discussion,
including time and space complexity, approxima-
tion error analysis, and key features, is presented in
Sect. 5. Finally, concluding remarks are presented
in Sect. 6.
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Fig. 2. Manifold mesh processing for a dressed David: the tools used, including cut and paste, smoothing, editing, param-
eterization, texture mapping, and collision detection, are all working on the manifold mesh generated by our proposed
algorithm

2 Related work

A mesh simplification operation is designed to re-
duce the model complexity with faithful approxima-
tions. Over the last decade, in-core mesh simplifi-
cation has been well studied (Cignoni et al. 1998a;
Garland 1999a). Any in-core method reads the whole
original mesh into the main memory with a certain
data structure from which the complete topological
information can be inferred. Given a mesh model
with a very large size, the in-core method confronts
the limited core memory as the bottleneck.
Out-of-core methods utilizing external memory of-
fer possible solutions to the large mesh simplifi-
cation task. Hierarchical methods can be adapted

to partition the mesh into blocks stored in external
memory and simplify the model by fitting in turn
each block of the model either into the main mem-
ory (Bernardini et al. 1999; Cignoni et al. 2003) or
in a view-dependent manner (El-Sana and Chiang
2000; Hoppe 1998). These hierarchical methods can
support levels-of-detail processing and also preserve
manifoldness if the input is a manifold.
Another class of out-of-core simplification is based
on the vertex clustering method (Rossignac and Bor-
rel 1993). Compared with the hierarchical methods,
the clustering algorithm is easy to implement in the
external memory and can achieve high time effi-
ciency. Lindstrom (2000) first introduced a uniform
vertex-clustering-based OoCS method and further
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improved it using constant main memory indepen-
dent of both the input and output mesh complexity
(Lindstrom and Silva 2001). Observing that the uni-
form clustering algorithm produced models that are
not optimal in areas of low curvature variation, Shaf-
fer and Garland (2001) proposed an adaptive vertex
clustering technique based on BSP trees. Most re-
cent adaptive techniques (Fei et al. 2002; Garland
and Shaffer 2002) can produce high-quality simpli-
fied models to fit in-core. While vertex clustering
schemes can offer great time and space efficiency,
the output meshes often tend to be nonmanifold ob-
jects that are not suitable for a great diversity of exist-
ing mesh-processing tools that take manifold meshes
as input. If a nonmanifold-to-manifold converting
algorithm is used (Gueziec et al. 2001), due to its
difficult implementation, which requires significant
effort to enumerate all possible topological cases, the
complexity of the whole mesh-processing system is
increased dramatically.
A radically different approach to out-of-core mesh
simplification is proposed in this paper. The pro-
posed algorithm is based on the idea of downsam-
pling Hermite data and contouring the zero set of
an in-core signed distance field. Experimental re-
sults show that the proposed algorithm can produce
high-quality simplified meshes with time and space
efficiency.

3 Manifold-guaranteed simplification
algorithm

The proposed algorithm is based on a simple and nat-
ural observation: a very large model with high reso-
lution is usually greatly oversampled. By implicitly
encoding the topological information, the proposed
simplification algorithm downsamples the original
model into an appropriate size suitable for process-
ing on a client machine.
It is important to note that the given mesh model M is
a set of structured sample points S, i.e., M = (S, T ),
where T encodes the model’s structure information
serving as the topological realization of M, and S ∈
R3 is the set of point positions used to determine the
geometric realization of M.
For a huge model, the data structure from which
the complete topological information can be inferred
cannot be built in the main memory, which is why
in-core methods are difficult to adapt to perform out-

of-core simplification. For an efficient out-of-core
performance, two key constraints should be assured:

1. No topological information should be explicitly
maintained in the main memory, and the in-core
data structure should be independent of the input
model size.

2. To minimize random access to data stored in the
external memory and to minimize the needed
capacity of external memory, minimum (local)
topological information should be kept in the ex-
ternal memory.

The vertex clustering solutions (Lindstrom 2000;
Lindstrom and Silva 2001; Shaffer and Garland
2001) receive high time and space efficiency by eas-
ily satisfying the above constraints: (1) the model
space partition with respect to vertex clustering can
be carried out efficiently, e.g., by constructing a hash
table (Lindstrom 2000) or a BSP tree (Shaffer and
Garland 2001), and the mesh topological structure
neednot be kept explicitly in the core memory; (2)
by operating on a triangle soup (Lindstrom 2000),
minimum local topological information is kept in the
external memory by means of representing each tri-
angle as a triplet of vertex coordinates.
With a view toward satisfying the above two con-
straints, a new out-of-core algorithm is proposed for
downsampling a very large model to a manifold-
guaranteed simplified model. Note that a mesh M is
a set of structured sample points S with T . For over-
sampling data S, as with the vertex clustering solu-
tions, we regularly downsample the point data in the
model space by clustering to satisfy constraint 1. The
key difference between the proposed solution and the
vertex clustering ones is how we represent the min-
imum local topological information in the external
memory to satisfy constraint 2.
Due to the slow speed of the I/O performance, ob-
viously only a small portion of topological informa-
tion T of M should be obtained from the external
memory via random access. Lindstrom (2000) used
a triangle soup representation to minimize random
access to the external memory. Observing that each
triangle is represented as a triplet of vertex posi-
tions in an ordered (clockwise or counterclockwise)
sequence, from a geometric point of view it actu-
ally offers the normal and orientation information of
model M. Then we propose to represent the original
model M = (S, T ) in a more compact form than the
triangle soup, using a set of Hermite data, i.e., a set of
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sample points with their normals,

H = (S′, N ) = {(xi, yi, zi, nxi, nyi, nzi)|i ∈ #S′},
where S′ is an adequate sampling of M. In this rep-
resentation, the structure information T in M is re-
placed by the oriented normal information N in H.
A major part of the information in T is lost in H;
this loss is, however, reasonable since for an efficient
out-of-core simplification only a small portion of the
complete information in T can be used and others
must be abandoned. The key advantages of our new
model representation are the following:

1. This Hermite data model is rather easily down-
sampled by model space partition, as well as by
any scheme used in the vertex clustering meth-
ods.

2. The complete structural information of any down-
sampled Hermite dataset H ′ can be explicitly re-
built either by (a) first building a signed distance
field F from H ′ (Hoppe et al. 1992) and (b) sec-
ondly from F extracting an optimized mesh M′
interpolating H ′ (Liu and Yuen 2003). The out-
put simplified mesh M′ is strictly manifold-
guaranteed and is optimized in areas of low cur-
vature variation with controllable face number
and controllable triangle shape.

Since the isosurface and its polygonization are guar-
anteed to be manifold, we can further take the model
topological type, characterized by its genus, into
consideration. If the genus-reducing simplification
is performed directly on the existing meshes, addi-
tional attention has to be paid to avoid a nonmanifold
structure. Recently, Wood et al. (2002) demonstrated
that controlled genus simplification can be achieved
efficiently and robustly by volumetric modification
rather than by mesh surgery. By taking full advantage
of the signed distance field, our proposed approach
can efficiently incorporate the function of volumetric
modification to achieve out-of-core simplification of
large meshes with controlled topological type.
Like the algorithmic structure in Garland and Shaf-
fer (2002), our proposed algorithm can be regarded
as a two-phase approach outlined as follows (Fig. 3):
Phase I. Out-of-core Hermite data downsampling.

1. Vertex binary data generation and model bound-
ing box parameter calculation.

2. Model space partition based on bounding box pa-
rameters and the specified RAM capacity.

3. Dual Hermite data generation and downsampling
by random access to vertex binary data.

Phase II. In-core optimized mesh generation and
simplification.

4. Fast signed distance field generation based on
prior knowledge from the input mesh data.

5. (Optional) Interactive volumetric modification to
achieve controlled model topological type.

6. Simplified mesh generation by optimized isosur-
face polygonization.

By adopting the scheme in Garland and Shaffer
(2002) to pass quadric error information between
the two phases, the proposed algorithm can produce
high-quality approximation. Given the two distinct
features of manifoldness and controlled topologi-
cal type, further in-core simplification can produce
even better quality approximations than those from
other OoCS methods, in which many triangles may
be wasted by suffering from topological noises and
nonmanifold structure. A novel, detailed implemen-
tation of the proposed algorithm is presented in the
next section, followed by a detailed comparison with
other methods in Sect. 5.

4 Algorithm implementation

The proposed algorithm takes the huge mesh data
with the widely used indexed mesh representation as
input, even without model bounding box parameters:
the mesh data are formatted by a vertex position list
followed by a face list consisting of triplets of ver-
tex indices. The input mesh data are stored in the
external memory and accessed via standard disk I/O
managed by the operating system.
It is worth noting that in addition to indexed mesh
representation, another representation for mesh mod-
els exists. Lindstrom (2000) proposed to use a com-
pressed triangle soup representation by which ran-
dom access to the external memory is avoided and
the simplification speed thus potentially increased by
a factor of more than ten.

4.1 Vertex binary data generation

The proposed algorithm performs a single pass over
the original input mesh data. When the vertex po-
sition list is read in main memory line by line,
vertex binary data with a fixed length record for
each vertex are synchronously generated on the fly.



570 Y.-J. Liu et al.: Manifold-guaranteed out-of-core simplification of large meshes with controlled topological type

a b
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Fig. 3. The proposed manifold-guaranteed out-of-core simplification. a The input polygonal curve data; b the non-manifold
structure generation by vertex clustering; c dual Hermite data generation and downsampling; d Curve generation by march-
ing squares; e optimal polygonal curve generation by interpolating Hermite data; f further polygonal curve optimization
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By generating such vertex binary data in external
memory, the operation to look up the vertex co-
ordinates corresponding to the indices in a face
record can be efficiently performed by reposition-
ing the file pointer based on the byte offset. Our
current implementation on the Visual C++ plat-
form utilizes the class CFile in the Microsoft Foun-
dation Class Library to handle normal file I/O
operations.

4.2 Model space partition

The model bounding box parameters can be recov-
ered immediately after vertex position list scanning.
These bounding parameters are used in uniformly
decomposing the model space into a user-specified
number of rectilinear grid cells that are hashed
into a table stored in core memory. It is in general
not known in advance how much RAM is avail-
able in the client machine, and thus any promising
algorithm should be capable of (at least roughly)
estimating, based on the specified RAM capac-
ity, to what extent the model space needs to be
decomposed.
Note that the proposed algorithm is designed to sim-
plify the model to a manageable size suitable for
real-time processing on the client machine; that is,
the whole simplified model should be read in the
main memory with any compact data structure from
which the complete topological information can be
inferred. Consider the medium-sized directed-edge
data structure (Campagna et al. 1998): given a tri-
angle mesh with n vertices and m triangles, a total
of 16n + 36m ≈ 44m bytes is required. Therefore,
around 4–6 million triangles can be processed on
a system with 256 MB RAM.
The proposed algorithm simplifies the mesh data by
downsampling the Hermite data followed by zero
set contouring to guarantee the manifold property.
Note that statistically there are Θ(N2/3) active cells
in an N-cell volume dataset (Chiang et al. 1998),
and each active cell may contain a representative
Hermite sample. Therefore, to output a modest-size
simplified mesh model, say, 3 million triangles inter-
polating the downsampled Hermite data, the model
space should be partitioned into about 1840 million
cells.
The majority of the core memory is used in the con-
struction of the cluster cells. Since relatively few
cells will be occupied by representative samples,

a hash table is adopted in our current implementation
for the model space partition.

4.3 Dual Hermite data generation
and downsampling

The algorithm performs a single pass over the input
mesh data by scanning the vertex position list and
the face list in tandem. When each face element is
scanned, by looking up the corresponding vertex co-
ordinates in the vertex binary data the barycenter p
and the normal n of the face are calculated and serve
as the dual Hermite sample h = (p, n) of the face
element; this is equivalent to applying a barycenter
dual mesh operator to the input mesh model (Taubin
2001) and taking the samples as the vertices of the
barycenter dual mesh with their normals.
Each face element contributes to a dual Hermite sam-
ple h. For each sample h, a hash key from the cell
that s falls in is constructed, and by looking up the
hash table, the representative sample h ′ in the cell is
updated.
The huge input mesh model may be represented with
highly varying triangle size, and thus there may ex-
ist large triangles each of which spans a number of
cells. In this case, we perform an adaptive 1–4 split
to subdivide the large triangle, as illustrated in Fig. 4.
The recursive split is terminated if the largest edge
length of the current triangle is smaller than the one
and a half cell sizes. This uniformly dual Hermite
sampling scheme can offer better approximation of
the downstream simplified meshes.
Note that each Hermite sample h = (p, n) corre-
sponds to a tangent plane on the mesh model, i.e.,
a face in the original mesh. By dual sampling, the
mesh (piecewise linear surface) can be considered as
a local combination of the tangent planes associated
with the Hermite data. For sample point clustering
in a cell using a representative sample, it is equiva-
lent to approximating a set of tangent planes using
a single tangent plane. We adopt the quadratic error
metric (Garland 1999b) as a measure of approxima-
tion error to find an optimal representative Hermite
sample in each working cell.1
Given a working cell, every Hermite sample h =
(p, n) falling in it contributes to a quadric Q =
(nnT ,−nnT p, (nT p)2). Given a triangle t =
1 We use the term “working cell” to identify a cell that con-
tains Hermite samples, and the term “active cell” is preserved
for isosurface contouring.
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Fig. 4. Adaptive 1–4 split of large triangles for uniform Hermite data generation

(p1, p2, p3), the unit normal vector of t is n = u ×
v/(2∆), where u = p2 − p1, v = p3 − p2, ∆ = ‖u×
v‖/2 is the area of t. Rather than using the unit nor-
mal vector n in Q, we prefer to use an area-weighted
normal 2∆ ·n = u×v in a weighted quadric wQ =
4∆2 Q, which leads to better error measures (by
square area weighting) and less computational com-
plexity (without explicitly calculating ∆). By sum-
ming the quadrics of all the Hermite samples inside
a working cell,

∑
wQ = (A, b, c), the position p′ of

the representative Hermite sample h ′ is readily ob-
tained by solving Ap′ = −b. For robust inversion of
A, we adopt the approach in Lindstrom (2000) by
performing a singular value decomposition of A.
The normal n′ of the representative sample h ′ de-
termines the orientation of the tangent plane asso-
ciated with h ′. For each working cell, we deter-
mine the n′ by averaging the area-weighted normals
of all the Hermite samples falling in the cell: n′ =∑

i 2∆ini/#n = ∑
i ui ×vi/#n, where #n is the num-

ber of samples. After accumulating all the Hermite
samples, the normal n′ is finally normalized. Exper-
iments show that this simple scheme works well,
while attention needs to be paid to some special cases
presented below.
The (nonnormalized) averaged normal in a working
cell may be close to null vector, e.g., in CAD mod-
els thin shell structures contributing to opposite nor-
mals can be contained in a cell. For such working
cells, we identify them by setting a small thresh-
old for the magnitude of the nonnormalized averaged
normal and mark them by undefined cells. The man-
ifold structure inside undefined cells can be recov-
ered in a subsequently zero set contouring process
(Figs. 3c–f and 7); we refer to this function as topol-
ogy auto-repair.

4.4 Fast in-core signed distance field
generation

Given a set of downsampled Hermite data H ′ linked
with the grid, we first build a discrete signed dis-
tance field F using the grid and then generate
an in-core optimized mesh from F that interpo-
lates the data H ′. In traditional volumetric meth-
ods, usually a signed distance field is built first
and then, for surface modeling purposes, the iso-
surface is extracted by tracking active cells. Both
steps are computationally expensive: the distance
field needs to be determined by evaluating every
cell in the grid and active cell selection needs to use
time-consuming search operators, even in an opti-
mal isosurface extraction algorithm (Cignoni et al.
1997).
In the proposed algorithm, a particular method that is
fast and simple is carried out based on a priori knowl-
edge from the input mesh data: the active cells are
tracked first and then the local discrete signed dis-
tance fields around the active cells are determined.
More specifically, during face list scanning, every
face element is read into main memory in turn. It
is easy to determine the active cells associated with
each face: they are the cells interacting with that face.
In this way, the active cell selection can be achieved
with linear time complexity accompanied by face list
scanning. Due to uniform downsampling, the sign
distance field defined on the active cells can be deter-
mined in constant time by looking up the represen-
tative samples in the neighboring active cells using
the signed distance function proposed in Hoppe et
al. (1992), which assigns to each node v of the grid
a value f(v):
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Fig. 5. The shrinkage of reconstructed boundary ∂M′: the offset δ of this shrinkage is less than one cell size due to uniform
Hermite sampling

1. Among the representative samples in adjacent ac-
tive cells of v, find the sample h = (p, n) nearest
to v.

2. Set f(v) = (v− p)T ·n, where n is normalized.

It is worth noting that identifying active cells by in-
put mesh data also helps preserve boundaries; we
will return to this point in the next section.

4.5 Simplified mesh generation
by optimized isosurface polygonization

Given the active cells, the Marching Cubes algorithm
(Lorensen and Cline 1987) is adopted to polygonal-
ize the isosurface, and afterwards an optimization
algorithm (Liu and Yuen 2003) is adopted to output
an optimized mesh that interpolates the downsam-
pled Hermite data. For Marching Cubes, the active
cell polygonization can be efficiently achieved by
looking up a case table that enumerates all possi-
ble topological states of a cell and by solving the
ambiguity problem with the complementary cases
(Montani et al. 1994; Van Gelder and Wilhelms
1994).
Given a set of downsampled Hermite samples
(Fig. 3c) and an initial mesh from Marching Cubes
(Fig. 3d), the algorithm proposed in Liu and Yuen
(2003) constructs an optimized mesh that interpo-
lates the Hermite samples (Fig. 3e) and can further
optimize the mesh in areas of low curvature variation
with controllable face number and controllable trian-
gle shape to a degree desired by the user (Fig. 3f).
With a linear time preprocessing accomplished in

the Marching Cubes process, Liu and Yuen’s algo-
rithm is designed in optimal O(n log n) complexity,
where n is the amount of downsampled Hermite
data.
The necessity of interpolating downsampled Her-
mite data is due to the following reasons. During the
Hermite data downsampling process, each represen-
tative Hermite sample is associated with a quadric as
the error metric. By interpolating Hermite samples,
the approximation error information accumulated in
the out-of-core downsampling phase can be passed
to the next in-core optimization phase to generate
high-quality simplified meshes.
Interpolating Hermite samples also helps preserve
sharp features and the boundary. The idea of preserv-
ing sharp features by interpolating Hermite samples
has been proposed and demonstrated in recent work
(Ju et al. 2002; Kobbelt et al. 2001; Liu and Yuen
2003). As illustrated in Fig. 5, since the Hermite
samples can only be generated near the boundary ∂M
but not on the boundary, the reconstructed boundary
∂M′ is shrunk from ∂M; by uniform Hermite sam-
pling and active cell identification using input mesh
data, the offset δ of this shrinkage is less than one cell
size. Two 3D examples of boundary and sharp fea-
ture preservation are illustrated in Fig. 6.

4.6 Explicit topological type control
by volumetric modification

Since the isosurface and its polygonization are guar-
anteed to be manifold, the model topological type
can be unambiguously determined by evaluating its
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Fig. 6. Boundary and sharp feature preservation by interpolating the Hermite samples and identifying the active cells using
input mesh data

genus.2 A model with genus n is homeomorphic

2 For manifold with boundary, we analyze its topological type
by capping all its connected boundaries.

to a sphere with n handles, which can be identi-
fied by cycles in a Reeb graph (Fomenko and Ku-
nii 1997): given a characteristic function f defined
on the manifold M, the Reeb graph is the quotient
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a b

Fig. 7. Topological type control by grid value modification. a Curve generation by marching squares with one grid node value
modified, in comparison with Fig. 3d; b optimized polygonal curve generation with modified topological type

space of M with the equivalence relation ∼ defined
by x1 ∼ x2 iff f(x1) = f(x2) and x1, x2 are in the
same connected component of f −1( f(x1)). In the
case of volumetric representation, the Reeb graph
induced from a height function can be constructed
by making an axis-aligned sweep through the vol-
ume (Wood et al. 2002). After identification of all
topological handles with the Reeb graph, rather than
modifying the existing meshes with special atten-
tion paid to the nonmanifold structures that may have
occurred, the change of topological type can be ef-
ficiently achieved by modifying the grid node value
directly (Fig. 7).
Given a model with n handles, different handles
may have different geometric significance that can be
classified by defining a measure of handle size as the
length of the minimal essential loop of the handle on
the model surface (Wood et al. 2002). In our study,
we consider two classes of handles. We consider
small handles, e.g, less than the cell size, as topo-
logical noises that are eliminated by Hermite data
clustering. The remaining large handles we regard as
the topological features inherent in the model. The
choice of which feature handles to remove is sub-
jective, and user intervention is inevitable. We thus
implement our algorithm in an interactive way to lo-
cate and remove any feature handles; this function
offers an explicit control of model topological type
and works as an option to users. See Fig. 8 for an
example.

5 Discussion and comparison
with other methods

5.1 Time and space complexity

The proposed algorithm works in two phases. In the
first phase of out-of-core Hermite sample cluster-
ing, most main memory is used to construct the fine
grid, which is independent of the size of the input
mesh data. The grid is implemented as a hash table.
A hash key is held for each working cell that points
to a representative sample associated with a quadric.
By adopting the same clustering scheme, this phase
must run with exactly the same time and space com-
plexity as the vertex clustering algorithms proposed
in Lindstrom (2000), Lindstrom and Silva (2001),
and Shaffer and Garland (2001).
In the second phase of in-core optimized mesh gen-
eration, our algorithm needs additional memory for
zero set polygonization and optimization. Based
on a special design utilizing a priori knowledge
of the input data, the time complexities of isosur-
face polygonization and optimization are O(n) and
O(n log n), respectively, where n is the number of
downsampled Hermite samples. In terms of adaptive
optimization, the algorithm in Shaffer and Garland
(2001) also needs additional memory for BSP tree
construction, which is dependent on the size of the
simplified output model.
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Table 1. The performance of the proposed algorithm running on an off-the-shelf PC with a Pentium III 500-MHz processor, 512 MB
RAM, and 12 GB hard disk on Microsoft Windows 2000 operating system. The algorithm is implemented on the Visual C++
platform

Model Input mesh data Output mesh data RAM used (MB) Total time∗ (h:m:s)

Happy Buddha
Vertex number: 543 644 Vertex number: 74 219

142 6:51 (1:55‡)Triangle number: 1 085 634 Triangle number: 148 101

Blade
Vertex number: 882 954 Vertex number: 94 055

158 11:32Triangle number: 1 765 388 Triangle number: 188 338

St. Matthew_Face
Vertex number: 3 382 866 Vertex number: 14 074

146 26:47Triangle number: 6 755 412 Triangle number: 27 546

David
Vertex number: 28 184 526 Vertex number: 56 523

180 1:55:13Triangle number: 56 230 343 Triangle number: 111 431

∗ The running time includes all disk I/O operation time
‡ If we read the vertex position list into the RAM, instead of generating vertex binary data in external memory, the running time is
reduced to 1:55, most of which contributes to Marching Cubes and mesh optimization using Liu and Yuen’s algorithm (2003)

Happy Buddha
model with
1 085 634
triangles

Triangle number of
output meshes

RMS error (%)
Qslim 2.0 Our model

131 500 0.034 0.041
60 000 0.065 0.065
10 000 0.404 0.339

Table 2. Approximation error test on the Happy Bud-
dha model using the Metro v.3.1 (Cignoni et al. 1998).
Our algorithm is performed with a 184× 447× 184
grid to generate an optimized mesh with 131 500 tri-
angles, and then the mesh is further simplified to
60 000 and 10 000 triangles

Table 1 summarizes our experimental results. All
tests are performed on an off-the-shelf PC with
a Pentium III processor running at 500 MHz with
512 MB RAM and a 12 GB hard disk on Microsoft
Windows 2000. The proposed algorithm is fully im-
plemented on the Visual C++ platform.

5.2 Approximation error

The proposed algorithm uses Hermite data H dual-
sampled from the input mesh to represent the model.
The simplification is carried out by downsampling
the data H into a simplified version H ′ using a uni-
formly partitioned grid. Noting that polygonaliza-
tion is a sampling process, we can evaluate the
approximation error as the two-sided Hausdorff dis-
tance between H and H ′. Since the model space is
uniformly partitioned and the data uniformly dual
sampled, the approximation error by sample clus-
tering is strictly bounded by the diagonal length of
the cell. By passing the approximation error infor-
mation with the quadric between two phases, the
proposed algorithm can produce highly detailed sim-
plified meshes with comparable quality to the in-core
quadric error-metric-based algorithm (Garland and

Heckbert 1997). As a comparison with Qslim (Gar-
land 1999b), the numerical data of the RMS approx-
imation error is presented in Table 2 using the Metro
tool (Cignoni et al. 1998b), which adopts a more rig-
orous error metric based on surface sampling and
point-to-surface distance computation. Given the
properties of manifoldness and controlled topologi-
cal type, our proposed algorithm may generate even
better quality simplified meshes than the previously
reported OoCS algorithms (see the last row of Ta-
ble 2; their visual difference is illustrated in Fig. 9).
As a summary, the original OoCS algorithm (Lind-
strom 2000) runs fastest with a relatively large ap-
proximation error. The algorithm (Garland and Shaf-
fer 2002) offers an excellent balance of efficiency
and quality. Our proposed algorithm output simpli-
fied meshes with quality comparable to that of Gar-
land and Shaffer’s algorithm (2002) and with distinct
features of manifoldness and controlled topological
type.

5.3 Key features

To summarize, the proposed algorithm possesses the
following features:
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a b

c d
Fig. 8. Volumetric modification for explicit topological type control; the modified signed distance field is visualized indi-
rectly by on-the-fly isosurface contouring. a Genus-2 modeling; b another view of the model in a; c Genus-1 modeling;
d Genus-0 modeling

1. Manifoldness. Due to the topology consistency
by applying a modified lookup table (Montani et
al. 1994), the output mesh is guaranteed to be
strictly a manifold. Downstream mesh process-
ing operations, such as cut and paste, smoothing,
editing, parameterization, texture mapping, and
collision detection, will benefit from this property
(Fig. 2).

2. Toleration of nonmanifold mesh input. Since we
represent the mesh model concisely as Hermite
sample data, nonmanifold input meshes (i.e., with
dangling faces) are also tolerated by the proposed
algorithm.

3. Topological noise removal. The proposed algo-
rithm is volume based. By clustering all the sam-
ples falling into the same cell, the tiny topological

handles whose size is less than the cell size are
automatically removed.

4. Explicitly topological type control. With the help
of volumetric representation, explicitly topologi-
cal type control of feature handles can be simply
and robustly achieved by volumetric modification
(Fig. 8).

5. Sharp feature and boundary preservation. As
demonstrated by recent work (Ju et al. 2002;
Kobbelt et al. 2001; Liu and Yuen 2003), the
Hermite data, serving as the bridge between volu-
metric representation and surface representation,
can accurately identify and process sharp features
on the geometric model. By uniformly sampling
the Hermite data and identifying the active cells
using input mesh data, the proposed algorithm
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Fig. 9. The Happy Buddha model simplification. The left model is simplified by an in-core QSlim algorithm (Garland 1999b)
applied to the original Stanford mesh data; the simplified model is with 10 000 triangles of which many are wasted by the
nonmanifold structure. The right model is simplified by the proposed algorithm; the simplified model is with 10 000 triangles
and is manifold

also preserves the boundary on the model with
a controlled shrinkage (Fig. 6).

6 Conclusion

In this paper, a simple and efficient algorithm for out-
of-core mesh simplification with controlled topo-
logical type is proposed. The algorithm adopts
a Hermite data format to represent the geomet-
ric model, which serves as the basis for integrat-
ing various surface modeling techniques, i.e., dual

Hermite sampling, samples clustering, isosurface
generation, and mesh optimization, into a single
framework with time and space efficiency and with
a set of distinct features. The experimental results
have demonstrated that very large meshes can be
simplified with high quality on a low-cost off-the-
shelf PC.
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