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Abstract—In this paper we investigate how to topologically and 

geometrically characterize the intersection relations between a 
movable convex polygon A and a set Ξ of possibly overlapping 
polygons fixed in the plane. More specifically, a subset Φ⊂Ξ is 
called an intersection relation if there exists a placement of A that 
intersects and only intersects Φ. The objective of this paper is to 
design an efficient algorithm that finds a finite and discrete 
representation of all the intersection relations between A and Ξ. 
Past related research only focuses on the complexity of the free 
space of the configuration space between A and Ξ and how to 
move or place an object in this free space. However, there are 
many applications that require the knowledge of not only the free 
space but also the intersection relations. Examples are presented 
to demonstrate the rich applications of the formulated problem on 
intersection relations. 
 

Index Terms—Configuration space, intersection relation, 
geometric and algebraic structure, critical curves and points. 
 

I. INTRODUCTION 
N this paper, we study a general geometric problem 
concerning intersection relations between a movable convex 

polygon and a set of planar polygons. Specifically, let A be a 
convex polygon and Ξ = {P1, P2, …, Pn} be a set of n convex 
polygons fixed in the plane that can overlap each other. Note 
that if Ξ contains a concave polygon P, we first decompose it 
into several convex components. Bearing in mind that there 
exist infinite possible placements of A in the plane, we present 
a geometric method to find a finite and discrete representation 
that encapsulates all the possible intersection relations between 
A and Ξ. Given such a representation, a number of important 
geometric queries can be readily answered, among them some 
are: 
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1) Given a subset of polygons in Ξ, is there a placement of A 
that intersects all of them? 

2) What is the maximal number of polygons that can be 
intersected by any placement of A? 

3) When restricted within a required region D in the plane, 
what is the minimal or maximal number of polygons that can be 
intersected by a placement of A? 

A. Formulation of the Problem 
Consider the general case that the placement of A is subject 

to both translations and rotations. Let g and vg be a designated 
reference point and reference vector on A. Any placement of A 
is thus completely determined by three parameters (X,Y,θ), 
where (X,Y) is the position of the reference point g and θ is the 
slope angle of vector vg in a global coordinate system. Point 
(X,Y,θ)∈ R2×[0,2π)1 is called a configuration point of A and 
the space X-Y-  is referred to as the  configuration space C. 
To distinguish the configuration space from the object space, 
we will use capital case X-Y to refer to the configuration plane 
of the reference point g but small case x-y to represent the 
object plane in which A and Ξ lie.  

A placement of A and a polygon P∈Ξ are said to (1) intersect 
each other if their interiors intersect, and (2) semi-intersect each 
other if they only touch each other on their boundaries, and (3) 
disjoint if they don’t share a common point. An intersection 
relation is a subset Φ⊂Ξ such that there exists a placement of A, 
called its realizing placement, that intersects and only intersects 
Φ. The intersection relation introduces an equivalence relation 
on the configuration points in C: two points are said to be 
equivalent to each other if their corresponding placements of A 
realize the same intersection relation with Ξ. The induced 
equivalence relation partitions C into a set of equivalent classes 
which form a quotient space of C.  

The set of configuration points of A whose placements 
intersect P is known to be a volume, called C-primitive in this 
paper, bounded by patches of ruled surfaces [14]. The 
C-primitive and its boundary surfaces are denoted by A(P) and 
f(P) respectively. The union n

i 1=U f(Pi) subdivides the 
configuration space into a number of subspaces. These 
subspaces will be called kernels (cf. Figure 1). Each kernel is 
 

1  Alternatively we may use the stereographic projection to express the 
orientation θ of A in algebraic form. 
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represented by its boundary elements, i.e., the boundary faces, 
edges and vertices. Algebraically, each vertex is an intersection 
point of two edges and each edge is an intersection curve of two 
ruled surfaces trimmed by its two vertices and each face is a 
ruled surface trimmed by its boundary edges. We use π(A, Ξ) to 
represent the union of all the faces on the kernels.  

 

(a)  

(b)             

(c)    
Fig. 1. Configuration space decomposition and the kernel representation. (a) 
C-primitive A(P). The set of configuration points of A whose placements 
intersect P is known to be a volume bounded by patched of ruled surfaces in 
configuration space X – Y − θ. (b) Object space of A and Ξ = {P1, P2}. (c) 
Configuration space decomposition and the kernel representation of the A and 
Ξ in (b). 

 
The key observation is that, given the induced equivalence 

relation, the interior of each kernel represents a subset 2 of an 
equivalence class. If we pick up one or more representative 
points from the interior of each kernel, the finite union of these 
representative points, denoted as Σ 3 , is an intersection 
representative set which satisfies that every intersection 
relation between A and Ξ has at least one realizing placement in 
Σ and every point in Σ is a realizing placement of an 
intersection relation. For a clear description, the necessary 
notations used in this paper are summarized in Table I. 

The objective of this paper is to find such an intersection 
representative set Σ. Rather than directly computing the 
 

2 Since C-primitives are in general concave, an equivalence class may be a 
union of several kernels. 

3 We refer to a configuration point q and its placement A(q) interchangeably, 
unless specially noted in the text. 

topological structure of the intersection of C-primitives and 
building the explicit algebraic structures of kernels, i.e., the 
algebraic representation of its boundary vertices, edges and 
faces, we propose a geometric method to obtain an intersection 
representative set. 

B. Related Work and Results of This Paper 
The optimal polygon placement and covering problem [1], [2] 

has been studied intensively both in robotics research such as 
motion planning [14], [17], and in manufacturing industries 
such as material layout [11], facility location decision [4], 
polygon placement [3], and layer manufacturing [18], [19]. 
Among them closely related to our work are those concerning 
the combinatorial complexity of the intersection of 
C-primitives in the configuration space. 

Regarding the configuration space C, previous work focuses 
on the analysis of a 2-manifold structure, i.e., a topological 
graph with vertices, edges and faces, on the boundary ∂FC of 
the free configuration space FC. Initial results consider only 
special cases [6]. Often referred to as the Piano Mover’s 
problem I-V [24], Leven and Sharir [16] analyze the 
combinatorial complexity of ∂FC using Davenport-Schinzel 
sequences [22] ⎯ the complexity of FC is shown to be 
O(bEλ6(bE)) and to be Ω(b2E2) in the worse case, where b and 
E are the total edge numbers of a convex polygon A and a 
polygonal environment, respectively. Later a serial work was 
proposed to compute FC in a worst-case running time that is 
near-quadratic in bE [12], [13], [23]. Some most recent 
significant progresses are proposed in [1], [7]: in [1], a 
randomized divided-and-conquer algorithm is proposed to 
compute FC with expected running time 
O(bEλ6(bE)log(bE)logE); in [7], the maximum complexity of 
the free space of a bounded-reach robot with f degrees of 
freedom, moving in a R3 uncluttered environment, is shown to 
be Θ(n2f/3+n), where n is the disjoint polygonal obstacles in the 
scene. 

Although a number of algorithms are proposed in the 
aforementioned work, they are all targeted to solve certain 
special geometric problems; none of them can answer all the 
geometric queries posted in the beginning of this paper. For 
instance, the optimal convex hull covering problem [2] 
concerns with finding a specially shaped polygon (e.g., 

TABLE I 
SOME NOTATIONS USED IN THIS PAPER 

Symbol Defintion 

π(A, Ξ) The union of all the faces on the kernels 
Σ An intersection representative set 

ω A contact pair between A and a Pi∈Ξ 
Σ*(ω) A set of points in C that represent the faces in π(ω) 
Σ* A semi-intersection representative set of π(A, Ξ) 
Ei<v,e>(ti, ti+1) An eigen set of interval (ti, ti+1) on e(t) of a Pi∈Ξ 
Cs(<v,e>)  The characteristic set of contact pair <v, e> 
Ei<e,v>(ti, ti+1) An eigen set of interval (ti, ti+1) on e(t) of A 
Cs(<e,v>) The characteristic set of contact pair <e, v>  
b The number of edges (or vertices) in A 
n The number of polygons in B 
E The total number of edges (or vertices) in Ξ 
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monotone or star shaped) with a minimal area that covers a 
given set of polygons; however, it does not provide any 
information about the intersection relations. Similarly, the 
polygonal placement problem [3] tries to find a feasible (and 
scaleable) placement of a polygon amid a polygonal 
environment, which again is incapable of answering any 
queries related with intersection relations. These intersection 
relations turn out to be very important in diverse applications 
concerning geometric optimization, e.g., when combined with 
the area-of-overlap function [21], the solutions to a number of 
computer vision problems, such as fuzzy variations of packing 
[20] and model-based object recognition by probing [9], are 
readily provided. Another example in the application section of 
this paper utilizing geographical information is provided to 
demonstrate the rich applications of intersection relations. 

In this paper, by taking an innovative idea based on intrinsic 
geometric observations, we present an algorithm that finds a 
representative set Σ of the intersection relations between A and 
Ξ. It is shown that the cardinality of Σ, i.e., the number of points 
in it, is bounded by O(nM), where n is the number of polygons 
in Ξ, and M is the number of critical points that is 
output-sensitive and has an upper bound O(b3E3), with b and E 
being the numbers of vertices (or edges) in A and Ξ 
respectively. The running time required by the proposed 
algorithm is bounded by O(b3E3+MlogM+M(blogb+bE+nlogn)). 

 

II. OUTLINE OF THE PROPOSED GEOMETRIC METHOD 
Traditionally the model structure in configuration space C is 

established via algebraic formulation of C-primitives followed 
by tedious intersection testing and trimming [10], [27]. To 
avoid the computationally expensive requirement of algebraic 
representation, we propose a geometric method to obtain an 
intersection representative set based on the following 
geometric observations. 

A. Dimension Reduction by Projection Method 
The proposed method partitions C into a finite collection of 

algebraic kernels. The 3D kernel can be obtained by computing 
their projection in lower-dimensional spaces, i.e., its 2D 
boundary surfaces. Again, the 2D boundary surfaces can be 
computed by its projection in 1D subspaces, i.e., its boundary 
curved edges. Geometrically, in object space, the projection 
can be achieved by enumerating the contact types between A 
and a polygon P∈Ξ. 

Definition 1: A point (X, Y, θ) in the configuration space is 
a contact configuration point (CC for brevity) between A and a 
P∈Ξ, if in the object space there exists a point p∈∂A(X, Y, 
θ)∩∂P, called a contact point, such that there exists a disk Ω 
centering at p satisfying Ω∩int(A(X, Y, θ))∩int(P) = ∅. In 
addition, a contact (or touch) between A(X, Y, θ) and P is said 
to be of one of the following four contact types: 

1) V-E type if a vertex of A(X, Y, θ) lies on an edge of P, 
2) E-V type if a vertex of P lies on an edge of A(X, Y, θ), 
3) V-V type if a vertex of A(X, Y, θ) and a vertex of P 

coincide, and 
4) E-E type if the interior of an edge of A(X, Y, θ) and the 

interior of an edge of P overlap. 
The geometric entities of A(X, Y, θ) and P that contribute to 

a contact will be called a contact pair <entity1,entity2>, with 
the convention that entity1 and entity2 belong to A and P 
respectively. For example, if a vertex v of a placement of A and 
an edge e of P contribute to a V-E contact, then <v,e> is the 
contact pair of that contact. Figure 2 illustrates the 
above-defined types of contact. We further classify a contact 
pair by its degree. 

Definition 2:  The degree of a contact pair is the number of 
degrees of freedom of the placement of A when it moves in 
object space while maintaining the same contact pair. 

We note without proof that contact pairs of V-E and E-V 
contact types are both of degree two, which form the 2D 
projection subspaces for the boundary surfaces of kernels in the 
configuration space, and the degrees of V-V and E-E type 
contact pairs are both one, which form the 1D projection 
subspaces in the configuration space. 
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Fig. 2. Contact types. 
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Fig. 3. Perturbation method. 

 

B. The Perturbation Method 
Consider a contact pair ω between A and a Pi∈Ξ. We define 

three items on ω. The first, to be denoted by R(ω), is the region 
in f(Pi) restricted to the contact specified by ω. The second, 
with a notation of π(ω), is the set of faces in R(ω) whose edges 
are intersection curves between f(Pi) and other f(Pj), i≠j, as well 
as the boundary of R(ω). The final one is a set Σ*(ω) of points 
that represent the faces in π(ω), that is, for every face φ in π(ω), 
there is at least one point ξ∈Σ*(ω) such that ξ∈φ, and for every 
point ξ∈Σ*(ω) there is a face φ in π(ω) such that ξ∈φ. The 
union Σ*(A, Ξ)= iU Σ*(ωi), Σ* for brevity, over all the possible 
contact pairs ωi between A and Ξ, is obviously a 
semi-intersection representative set of π(A, Ξ), i.e., ∀ξ∈Σ*, 
the placement A(ξ) semi-intersects a single polygon in Ξ and 
intersects some polygons in Ξ, and vice versa.  
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As illustrated in Figure 3, given a placement A(X0,Y0,θ0): 
(X0,Y0,θ0)∈Σ*, if we perturb it by translation along the normal 
between the contact pair by an arbitrarily (±) small distance, the 
resulting configuration point (X’,Y’,θ0) is an interior point in 
each of the two kernels sharing the face containing (X0,Y0,θ0). 
By perturbing each element in Σ* in such a way, a superset of 
intersection representatives with a finite length can be readily 
obtained. To give a better view of the close relationship 
between the semi-intersection and intersection representative 
sets, i.e., Σ* and Σ, Figure 4 depicts an example of a rectangle A 
and three polygons P1, P2, and P3. Set {A1, A2, A3} is an 
intersection representative set, whereas {B1, B2, …, B6} is a 
semi-intersection representative set. (For clarity, placements 
corresponding to a single polygon intersection are not shown.) 
If we move placement B5, which lies on f(P1),  toward P1 by an 
arbitrarily small distance, it will be an interior point in the 
kernel represented by placement A3. On the other hand, if we 
move B5 in the opposite direction away from P1, it falls into 
another kernel represented A2. Now the problem is boiled down 
to how to find a set Σ*(ω) for a given type of a contact pair ω. 
As V-V and E-E type are special cases of V-E or E-V type, only 
V-E and E-V type need to be considered. 

 

 
Fig. 4. Relationship between a semi-intersection representative set Σ* and an 
intersection representative set Σ (placements corresponding to a single polygon 
intersection are not shown). 
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Fig. 5. Algebraic structure of the V-E contact type. (a) Object space. (b) 
Configuration space. 

III. ANALYSIS OF CONTACT TYPES AND CRITICAL POINTS 

In this section we analyze the algebraic structure of π(A, Ξ) 
and its geometric relation with the critical placements of A in 
object space. We use A to refer to the original description of the 
movable polygon while use A(X, Y, θ) to represent a particular 
placement of A. 

A. Vertex-Edge Contact Type and Re-parameterization 
Let v be a vertex on A and e be an edge on a P∈Ξ. Consider 

the region R(<v,e>) on f(P) attributed to the contact between v 
and e. Let e(t) be a linear parameterization of edge e, t∈[0,1], 
and vertex v be the reference point g of A. Since g is now 
restricted to be on e(t) for maintaining the v-e contact, region 
R(<v,e>) then lies on a “vertical” plane in the X-Y-θ space 
whose normal is parallel to the X-Y plane. Up to an Euclidean 
transformation, this plane can be parameterized in 
configuration space by assigning local coordinates t-θ and 
hence region R(<v,e>) is a continuous region within the 
rectangle of [0,1]×[0,2π) in the t-θ coordinates system (cf. 
Figure 5). More accurately, region R(<v,e>) is itself a rectangle 
bounded by vertical lines t=0 and t=1, and two horizontal lines 
θ = α1 and θ = α2, where 0< α1< α2<2π, are determined by the 
geometry of A and P. Note that the boundary edges t = 0 and t = 
1 correspond respectively to a V-V contact with degree one and 
the boundary edges θ = α1 and θ = α2 each corresponds to an 
E-E contact also with degree one.  

It is worth noting that if we initially choose a general 
reference point g and a general reference vector vg of A, the 
region R(<v, e>) is then part of a general (developable) ruled 
surface; by re-designating the reference point g from an 
arbitrary point to vertex v that is in contact with P, we just 
re-parameterize the kernel representation in configuration 
space; in particular, one ruled patch in a kernel boundary is 
re-parameterized (or equivalently developed) into a planar 
patch as illustrated in Figure 5(b). This re-parameterization, 
however, does not change the intersection structure of the 
C-primitives. 

Let {χ1, χ2, …, χk} be the intersection curves between 
R(<v,e>) and all the f(Pi), Pi∈B\P; they will be called critical 
curves. The arrangement of these curves, i.e., π(<v,e>), 
partitions R(<v,e>) into cells that are themselves or parts of 
faces of kernels. To avoid explicitly constructing this π(<v,e>) 
which requires calculating the intersection curves χi as well as 
their intersection points, we instead look for a “super” 
partitioning of this arrangement by super-imposing a 
trapezoidal decomposition. Let {τ1, τ2, …, τm} be the set of the 
following three types of points (cf. Figure 5(b)): 

I) the intersection points between χi and the boundary edge θ 
= α1 or θ = α2, and 

II) the local extreme points of χi in the t direction, and 
III) the intersection points among {χi}. 
In the following, we first describe how to detect the above 

three types of points. Then we present how to build up a super 
partition of π(<v,e>) with these detected points and their 
associated eigen and characteristic sets. 
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(a)                         

(b)                      
Fig. 6. Type I critical points. 
 
 

 
Fig. 7. Type II critical points. 
 
 

 
Fig. 8. Triple-contact placements. 

 
 

1) Type I Critical Points 
This type pertains to the case when a point τi results from the 

intersection between a curve in {χ1, χ2, …, χk} and a boundary 
line θ=α1 or θ=α2. Geometrically, this means that one of the 
two edges incident to vertex v on placement A(τi) overlaps with 

edge e of P to form a E-E contact and at the same time A(τi) also 
touches another polygon P’∈Ξ\P. As revealed in Figure 6, 
disregarding degenerate cases, the contact between A(τi) and P’ 
can be either a V-E contact (cf. Figure 6(a)) or an E-V contact 
(cf. Figure 6(b)). Figure 6 also demonstrates how a Type I point 
should be identified. Depending on which boundary line of 
θ=α1 or θ=α2 to check, A is placed by overlapping one of its 
two edges incident to v with edge e(t).  We then draw lines 
parallel to e(t) through each vertex of the this placement. For 
example, as shown in Figure 6(b), to check if vertex v’ on P’ 
contributes to a Type I critical point together with the 
prescribed E-E contact, parallel lines l1, l2, and l3 are drawn; if 
one of the stripes between l1, l2, and l3 encloses v’, v’ may then 
contribute to a Type I critical point and further test utilizing 
distance measure is applied. Similar arguments can be made for 
calculating a Type I critical point with V-E and E-E contact 
type, as shown in Figure 6(a). 
2) Type II Critical Points 

A point τi on a curve χ∈{χ1, χ2, …, χk} is a t-extreme point if 
χ is locally supported by the vertical line t = ti that is tangent to 
χ at τi. Suppose χ is contributed by P and one other polygon 
P’∈Ξ\P. Being a t-extreme point means that there exist a ∆t>0 
such that for any t∈(ti−∆t, ti) there is a θ∈(α1, α2) such that the 
placement A(e(t),θ) intersects P’ whereas no such pair (t,θ) can 
be found in the interval t∈(ti, ti+∆t), or vice versa. To 
characterize this extremeness geometrically, as illustrated in 
Figure 7, let L be the largest distance between vertex v and any 
other vertices on A, say between v and v’, and CL(P’) be the 
offset of boundary of P’ with a radius of L. Let q = e(ti) be an 
intersection point between CL(P’) and edge e(t), if such an 
intersection exists. Without loss of generality, suppose edge e(t) 
goes “into” CL(P’) at ti; that is, there is a ∆t > 0 such that 
e(t):t∈(ti−∆t, ti) are outside CL(P’) whereas e(t):t∈(ti, ti+∆t) are 
inside CL(P’). Obviously, for any point t∈(ti−∆t, ti), A(e(t), θ) 
can not intersect P’ for any θ, but  for any t∈(ti, ti+∆t) there 
must exist a placement of A for some θ’ that intersects P’. To 
ensure that ti is not a “false” critical point, however, θ’ should 
be in the interval of (α1, α2). This condition can be easily 
examined by first locating the unique placement A(e(ti), θ’) that 
touches P’ at its vertex v’ and then verifying if the angle θ’ is in 
the range (α1, α2). Note that in the placement A(e(ti), θ’), the 
line segment vv’ is perpendicular to the edge e’ of P’ that is in 
contact with v’ of A. 
3) Type III Critical Points 

This third type refers to a point τi that is the intersection 
between two different curves in {χ1, χ2, …, χk}. Suppose χ’ 
and χ’’ are contributed by some P’ and P” from {P1, P2, …, Pn} 
respectively. Their intersection point τi is easily seen to be a 
“corner” on some kernels ⎯ it is the intersection between three 
surfaces f(P),  f(P’), and f(P”). Thus, the placement A(τi) 
touches P, P’ and P” simultaneously, with a constraint that the 
contact pair between A(τi) and P must be <v,e>. 

A placement of A that touches three different polygons in Ξ 
will be called a triple-contact placement. Figure 8 depicts all 
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the possible four cases of triple-contact placement based on the 
types of their contact pairs, namely {V-E,V-E,V-E}, 
{V-E,V-E,E-V}, {V-E,E-V,E-V}, and {E-V,E-V,E-V}, from 
which the first three cases may contribute to a Type III critical 
point with the constraint to maintain a V-E contact pair <v,e> 
between A and P. 

To calculate the configuration point for each triple-contact 
placement, from each two of three contact pairs one critical 
curve is formed and the configuration point is the intersection 
of any two such critical curves, if it exists. These critical curves, 
belonging to the general family of glissettes [15], are all 
algebraic and therefore smooth except at finite singular points. 
In particular, the critical curves resulted from {(V-E), (V-E)} 
and {(E-V), (E-V)} are portions of ellipses, and the critical 
curve resulted from {(V-E), (E-V)} is portion of a quadratic 
curve. We present a detailed description of these algebraic 
curves in parametric form in Appendix. 
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Fig. 9. Angular partitioning and eigen set of q ∈ (ti, ti+1) in configuration space. 
 

 
Fig. 10. Angular partitioning and eigen set of q ∈ (ti, ti+1) in object space. 
 
 
4) Angular Partitioning, Eigen and Characteristic Set 

With respect to a vertex v on A, once all the critical points on 
edge e(t) of P are detected, in terms of local parameter t, we 
collect and sort them into a list {t1, t2, …, tm}. Given the 
sequence {t0=0, t1, t2, …, tm, tm+1=1}, we pick up an arbitrary 
point q∈(ti, ti+1) for each interval, i = 0, 1, …, m.  As illustrated 
in Figure 9, the intersection between the vertical line t = q and 
critical curves {χ1, χ2, …, χk} in R(<v,e>) results in a list of 
collinear points in the X-Y-θ space {(q, θ1,), (q,θ2),…,(q,θh)}. 
Conceivably, any placement A(q, θi) has a contact pair <v,e> 
with P and at the same time touches some other polygon Pi∈Ξ\P. 
Assuming θ1, θ2,…,θh are already sorted in ascending order, the 

ordered list {θ0=α1, θ1, θ2,…,θh, θh+1=α2} will be defined as the 
angular partitioning at point q. Let ξi be an arbitrary number in 
interval (θi, θi+1), i=0,1,…,h, the set {(q, ξ0), (q, ξ1), …, (q, ξh)} 
is called an eigen set of interval (ti, ti+1) on e(t), to be denoted as 
Ei<v,e>(ti, ti+1). In Figure 10, an example illustrating angular 
partitioning and eigen set in object space is presented. 
Equipped with angular partitioning and eigen sets, we define 
the characteristic set of contact pair <v,e> to be the union of the 
eigen sets on e(t), i.e., Cs(<v,e>) = iU Ei<v,e>(ti, ti+1). We present 
the following lemma with its proof omitted. 

Lemma 1: The characteristic set Cs(<v,e>) is a superset of 
the representative points of π(<v,e>). That is, every face φ in 
π(v,e) has at least one corresponding point ξ in Cs(<v,e>) such 
that ξ∈φ, and for every point ξ∈Cs(<v,e>) there is a face φ in π 
(<v,e>) such that ξ∈φ. 
 

 
Fig. 11. Placement of A that touches P with an E-V type contact and intersects a 
single polygon P’ ∈ Ξ \ P. 
 

 
Fig. 12. Contact order of point e(t) with respect to vertex v. 
 

B. Edge-Vertex Contact Type 
Having found a representative set Σ*(ω) for the V-E contact 

type, we now proceed to search for a representative set for the 
E-V contact type. First of all, it is important to state the 
necessity of this task.  In terms of intersection relations, it is 
conceivable that not every point in a representative set of π(A, 
Ξ) is equivalent to a CC point attributed to a V-E type contact. 
For instance, in the example given in Figure 11, it can be easily 
verified that all the placements of A that touch P and intersect 
P’ only must have an E-V contact with P. 

Let e(t) (t∈[0,1]) be the linear parametric representation of 
an edge e of A that is required to contact a vertex v on a 
polygon P∈Ξ. If we choose one of two vertices adjoining to 

P’ 

P 

A 
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edge e of A as the reference point and re-parameterize the 
kernel representation, the region R(<e,v>) is then part of a 
helicoid, the only ruled minimal surface other than the plane [8]. 
Like in the case of the V-E type, a similar analysis of the 
algebraic structure can be conducted on this helicoid surface. 
For a clear and concise representation, we though go directly to 
take a geometric approach to find a representative set of the 
faces in π(<e,v>), based on the concept of the contact order and 
its induced congruence relation. Suppose A contacts v of P at a 
point e(t) on edge e for some t. Imagine A is “hinged” at the 
contact v-e(t) and can rotate about this hinge point; let At(θ) 
represent the placement of this hinged A that has an orientation 
θ. Let {At(θ1), At(θ2), …, At(θh)} be the placements with each 
of them touching a different polygon in Ξ (in addition to P), and 
{ω1, ω2, …, ωh} be the corresponding contact pairs. Assuming 
these θi are already sorted in ascending order, the ordered list 
<ω1, ω2, …, ωh> is defined to be the contact order of point e(t), 
denoted as Co(t). An example is given in Figure 12. 

Let θ0 = α1 and θh+1 = α2, where α1 and α2 are respectively 
the critical orientations of the two placements of A when its 
edge e in contact overlaps with each of the two edges of P 
incident to vertex v. It is straightforward to see that, for every i 
= 0,1,…,h, (the configuration points of) all the placements 
At(θ):θ∈(θi,θi+1) are in a same face in π(<e,v>), and thus any 
one of them, say At(ξi), ξi∈(θi,θi+1), can serve as a 
representative point of that face. The list fl(t) = {π−1(ξ0), 
π−1(ξ1), …, π-1(ξh)} is then called the face list at t, where we use 
π−1(ξi) to denote the face in π(<e,v>) represented by At(ξi). The 
set of placements {At(ξ0), Αt(ξ1), …, Αt(ξh)} is thus a 
representative set of fl(t). 

To find a representative set of the faces in π(<e,v>) 
geometrically, the strategy is to partition edge e(t) into a set of 
intervals such that within each interval all the points have the 
same face list. To be more specific, an interval I⊂[0,1] is called 
a congruent interval if all the contact orders Co(t):t∈I are 
identical to each other. It can be shown that all the points in a 
congruent interval have the same face list. Let 
0=t0<t1<t2<…<tm<tm+1=1 be m such critical points that partition 
e(t) into m+1 congruent intervals (ti, ti+1). Akin to the 
vertex-edge contact type case, we define an eigen set of interval 
(ti, ti+1), denoted by Ei<e,v>(ti, ti+1), as the representative set of a 
face list fl(τi) where τi can be any arbitrary number in (ti, ti+1).  
The characteristic set of contact pair <e,v> is then defined to be 
the union of all the eigen sets, that is, Cs(<e,v>) = m

i 0=U Ei<e,v>(ti, 
ti+1). Therefore, similar to lemma 1, we have the following 
lemma.  

Lemma 2: The characteristic set Cs(<e,v>) is a superset of 
the representative points of π(<e,v>). That is, every face φ in 
π(<e,v>) has at least one corresponding point ξ in Cs(<e,v>) 
such that ξ∈φ, and for every point ξ∈Cs(<e,v>) there is a face φ 
in π(<e,v>) such that ξ∈φ.  

Just how should this congruent partitioning be achieved? 
Notice that for a small perturbation δ, Co(t) should remain 
unchanged, i.e., Co(t+δ) = Co(t), so should their face list. This 
suggests that we only need to look at a t where the contact order 
changes. Calling such a t a critical point, we next characterize it 
geometrically in terms of the conditions causing the change. 

 
Fig. 13. Type IVa critical points. 
 

 
Fig. 14. Type IVb critical points. 
 
 
1) Type IV – Emerging and Disappearing of A Contact Pair 

Given t1, t2 ∈ [0, 1], to determine whether or not two contact 
orders Co(t1) and Co(t2) are identical to each other, the first 
necessary condition is that the number of contact pairs in both are 
the same. Suppose ωi is a contact pair between A and Pi that is in 
Co(t1) but no longer exists in Co(t2).  Because the contact 
point between A and Pi associated with ωi moves continuously 
along the boundary of Pi or A (depending on the contact type of 
ωi) when t changes from t1 to t2, there must exist a critical point 
t’∈(t1, t2) such that ωi is in all of Co(t):t∈(t1,t’) but in none of 
Co(t):t∈(t’,t2). There can only be two possible causes of this 
disappearing:  

i) The first is that, although at t2 there is still a placement 
At2(θ) that touches Pi, the orientation θ is nonetheless outside 
the range (α1, α2), and consequently <e,v> is not a contact pair 
between At2(θ) and P (cf. Figure 13). The critical point t’ due to 
this case is categorized to be a Type IVa point. 

ii) The second scenario is that no placement At2(θ) at t2 can 
be found for any angle θ that touches Pi, and the critical point t’ 
contributing to this case is counted as a Type IVb point (cf. 
Figure 14).  

Figure 13 depicts two examples illustrating the first case, 
each for a V-E and an E-V contact between Pi and A, 
respectively. It also demonstrates how a Type IVa point should 
be calculated on edge e ⎯ we simply “slide” A with a fixed 
orientation θ=α1 (resp. θ=α2) on its edge e along the line of 
edge e1 (resp. e2) of P until it is in touch with Pi, at which the 
point e(t) that coincides with vertex v, if it exists, is a Type IVa 
critical point on edge e of A. It is worth mentioning that Type 
IVa critical points are identical to Type I critical points, if we 
interpret the degree-1 E-E contact type as a composition of two 
degree-2 contact types E-V and V-E. 
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Fig. 15. Conditions for checking the existence of Type IVb critical points. 
 

 
Fig. 16. Computation of a triple-contact placement. 
 
 

To geometrically characterize a Type IVb point, intuitively, 
we should look for a t’ where a placement At’(θ) is in “tangent 
contact” with Pi. To describe this tangent contact more 
rigorously, the concepts of covering radius and covering disc 
are introduced. For a t∈[0,1], the covering radius Rc(t) is 
defined to be max{||e(t) – p||: p∈A}. Noting that since A is a 
polygon, Rc(t) is actually the largest distance from point e(t) in 
A to any vertex of A. The covering disc Cd(t) is then the circular 
disc of radius Rc(t) with the center at the contact vertex v of P. 
Referring to Figure 14, if Pi touches a covering disc Cd(t’) for 
some t’∈[0,1], disregarding the degenerate cases, t’ is certainly 
a Type IVb point. The converse of this assertion can also be 
proven easily. Therefore, a t’ is a Type IVb point if and only if 
there is some polygon Pi∈Ξ that touches the covering disc 
Cd(t’).  

Figure 15 shows how a Type IVb point should be calculated. 
For any vertex v’ or edge e’ on any polygon Pi∈Ξ (Pi≠P), we 
first check if Pi touches the disc CL that centers at v of P and has 
a radius L equal to the distance from v to v’ or e’ (cf. Figure 
15(a)). If this is true, as exemplified in Figure 15(b), we then 
with every vertex on A as a center draw a circle of radius L to 

intersect edge e of A. If the intersection exists, we check 
whether the circle CL of radius L centering at the intersection 
point encloses A. If this is true, the intersection point is reported 
as a Type IVb critical point (e.g., in the example shown in 
Figure 15(b), t2 is a Type IVb point but t1 is not).  
2) Type V – Order Switching of Two Contact Pairs 

Suppose now we are assured that an interval [t1,t2]⊂[0,1] is 
free of Type IV critical points. As a result, all the contact orders 
Co(t):t∈[t1,t2] should have the same set of contact pairs. Let 
Co(t1)=<ω1, ω2, …, ωh>. If Co(t2) is different from Co(t1), there 
must be a contact pair ωi between A and a P’ whose position (or 
index) in Co(t2) is different from i. Let θi(t), t∈[t1,t2], be the 
orientation of the placement of A associated with ωi; that is, 
At(θi(t)) touches P’ at ωi. It is trivial to see that for all i, θi(t) is a 
continuous function of t in [t1,t2] (cf. Figure 13). If ωi undergoes 
an index change from Co(t1) to Co(t2), there must exist a 
t’∈(t1,t2) where either θi(t’)=θi+1(t’) or θi(t’) = θi−1(t’). This 
implies however that the placement At’(θi(t’)) has three contact 
pairs, namely, a triple-contact placement with <e,v> between A 
and P, ωi, and ωi−1 (or ωi+1). We are therefore led to the 
following lemma. 

Lemma 3: A point on edge e of A is a Type V critical point 
with respect to a vertex v of polygon P∈Ξ if and only if there is 
a triple-contact placement of A with one of contact pairs being 
<e,v>. 

 

IV. COMPUTING TRIPE-CONTACT PLACEMENTS 
The result of the analyses of the previous section calls for the 

identification of all the triple-contact placements of A. 
Consider a triple-contact placement of A with three contact 
pairs ω1, ω2, ω 3, each with one of distinct polygons P1, P2, and 
P3 respectively. To maintain the first contact ω1 between A and 
P1 results in a ruled surface in the configuration space. 
Parameterize this ruled surface by (t, θ). To simultaneously 
maintain the second contact ω2 between A and P2 introduces a 
constraint relation between t and θ; this forms a critical curve γ1 
in the parameter plane (t,θ). In the same way, the contact 
between A and P3 introduces another critical curve γ2 in (t,θ). 
The image of the intersection point of these two critical curves 
on the ruled surface is then a triple-contact point in 
configuration space (cf. Figure 16). The parametric forms of 
three different types of critical curves are presented in 
Appendix. A generic procedure for computing all the 
triple-contact placements is given below. 

 
Algorithm: Triple_Contact_Placements (A, Ξ) 
/* find all the triple-contact placements of A with respect to Ξ */ 
begin 
Step 1. S  ∅; 
Step 2. for every distinct three polygons Pi, Pj, and Pk in Ξ do  
 begin 
Step 2.1. for every contact pair ω1, ω2, and ω3 (between A and 

Pi, Pj, and Pk respectively) do 
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  begin 
Step 2.1a.  γ1  the critical curve of ω1, ω2 
Step 2.1b.  γ2  the critical curve of ω1, ω3 
Step 2.1c.  τ  γ1∩γ2  
  if τ exists then S  S ∪ {τ} 
 end 
 end 
end 

 
To analyze the running time of the above algorithm, let ni be 

the number of edges on polygon Pi, i=1,2,…,n. For every vertex 
and edge on A and the three polygons Pi, Pj, and Pk, we need to 
check if the three corresponding contact pairs ω1, ω2, and ω3 
constitute a triple-contact placement. Thus, the total number of 
iterations at Step 2.1 is 8b3ninjnk, where b is the number of 
edges on A. Since all the three steps Step 2.1a through Step 
2.1c take a constant time (cf. Appendix), the entire loop at Step 
2.1 requires O(b3ninjnk) to compute. Therefore the total running 
time of algorithm Triple_Contact _Placements is 
O(b3∑ = ≠≠

n

kji kjikji nnn
1,,

), which can be easily shown to be less 

than O(b3E3) where E = ∑ =

n

i in
1

 is the number of edges in Ξ. 
 

V. ALGORITHM DETAILS AND COMPLEXITY ANALYSIS 
With the types of critical points classified and their 

geometric characterizations established, this section presents 
the final algorithm that finds a representative set of π(A, Ξ), as 
well as its complexity analysis. Let {a1, a2, …, ab} be the b 
vertices on A and E be the total number of edges on the n 
polygons in Ξ = {P1, P2, …, Pn}. The core of the algorithm 
consists of two routines, Representative_VE and 
Representative_EV, that compute Σ*(ω) for a contact pair ω 
of V-E and E-V type, respectively. The outline of the algorithm 
is given below.  

 
Algorithm:  Representative_π (A, Ξ) 
/* find a representative set Σ* of faces in π(A, Ξ) */ 
begin 
Step 1. Σ*  ∅; 
Step 2. {ω1, ω2, …, ωN}  all the possible contact pairs 

between A and Ξ; 
Step 3.  Triple_Contact_Placements(A, Ξ). 
Step 4. for i=1 to N do  
  begin 

 if ωi is of V-E type then S  Representative_VE(ωi) 
 else S  Representative_EV(ωi); 
 Σ*  Σ* ∪ S 
  end 
Step 5. Output Σ*. 
end 

 
There are exactly 2bE possible contact pairs, each between 

one of the b vertices (resp. edges) of A and one of E edges (resp. 

vertices) in Ξ. The two routines Representative_VE(ωi) and 
Representative_EV(ωi) called in Step 4 are responsible for 
finding a representative set S of π(ωi) which is then appended 
to the final set Σ*. 

By perturbing the set Σ* in linear time, we obtain a finite 
representative set Σ. This set is a superset of a kernel 
representation: each kernel in configuration space is 
represented by a subset of elements in Σ, which serve as the 
sample points of that kernel. This sampling is sufficient for 
discretization since it results from perturbing every vertex of 
that kernel. If a concise representation of kernels is needed, we 
index the polygons in Ξ and then sort Σ keyed on the index 
values. For all the CC points in Σ having an identical key value, 
we keep only one copy in Σ by deleting others. By using a quick 
sort algorithm [5], this clean up process takes expected time 
Θ(plogp), where p is the number of elements in the 
representative set. 

A. Algorithm Representative_VE 
Let v be a vertex on A and e be an edge in Ξ and note that all 

the Type III critical points of contact pair <v,e> on edge e have 
already been identified by algorithm Triple_Contact_ 
Placements(A,B).  

 
Algorithm: Representative_VE(<v, e>) 
begin 
Step 1. S  ∅; 
Step 2. Calculate Type I critical points on e; 
Step 3.  Calculate Type II critical points on e; 
Step 4.  Sort all the critical points (Types I, II, III) on e to form 

the congruent partitioning of e; 
Step 5. for each congruent interval (ti, ti+1) do  
  begin 

 computing the eigen set Ei<v, e>( ti, ti+1) → S 
  end 
Step 6.  Output S. 
end 

 
1) Calculating Critical Points 

Let mI, mII and mIII be the numbers of Types I, II and III 
critical points of contact pair <v, e>, respectively. At steps 2 
and 3, only the Type I and II need to be checked. For Type I, 
Figure 6 clearly illustrates how a vertex or edge in Ξ should be 
examined to see if it will contribute a Type I critical point on e. 
As there are only E vertices and edges to check, the time 
required for checking Type I points on e is thus O(bE). Since 
owing to the convexity a polygon in Ξ can contribute at most 
two Type I critical points to a pair <v,e>, the number mI is at 
most 2(n−1). For Type II, referring to Figure 7, we need first to 
build offset CL(Pi) for all the polygons Pi in Ξ, intersect edge e 
with these offsets next, and then identify those intersection 
points where the contact condition as stipulated in Figure 7 is 
satisfied. It takes linear time O(E) to build these offsets and 
obviously the same time to intersect them with edge e.  It is 
readily seen that mII is also at most 2(n−1) (edge e intersects a 
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CL(Pi) at most twice). Obviously, O(E+b) time is sufficient for 
identifying all the mII Type II critical points of <v,e>. The 
following lemma is in order. 

Lemma 4: Assuming all the triple-contact placements have 
already been identified, it takes O(bE) time to find all the 
critical points of a V-E type contact pair <v,e> on edge e, and 
the total number of critical points of <v,e> on e is less than 
4n+mIII.  

By applying Lemma 4 to all the possible bE V-E type contact 
pairs and noticing the amortization of mIII on all the edges in Ξ, 
with the result of Section 4, we have the following result on the 
total number of critical points of all the possible V-E type 
contact pairs on all the edges in Ξ. 

Theorem 1: Let MI, MII, and MIII respectively be the number 
of Type I, Type II, and Type III critical points of all the possible 
V-E type contact pairs between A and Ξ. Then they are 
bounded by O(bnE), O(bnE), and O(b3E3) respectively and can 
be computed in time O(b2E2), O(bE2+b2E) and O(b3E3), 
respectively. 

It must be emphasized that a critical point is meaningful only 
with respect to a particular contact pair <v,e>. After all the 
critical points of <v,e> are identified, they are sorted so to form 
congruent intervals on edge e. The next task is then to find an 
eigen set for each of these intervals. 
 

(a)                    

(b)                 
Fig. 17. Eigen set calculation. 
 
 

2) Calculating Eigen Sets 
To find an eigen set of a congruent interval I on edge e, we 

choose an arbitrary point q from the interior of I and then 
construct the angular partitioning at q. Referring to Figure 17, 
to build the angular partitioning at q, a set of co-centric 
semi-circles Ci are defined that center at q and have radii equal 

to the distances between vertex v and other vertices on A 
respectively. For each edge e’ in Ξ (exclusive of those on the 
same polygon with e), if it intersects a Ci, the intersection point 
determines a unique instance A(q, θ) (assuming v is the 
reference point of A) whose vertex v’ (which defines Ci) 
coincides with the intersection point. Number θ is in the 
angular partitioning of q if and only if edge e’ touches but not 
intersects A(q, θ), e.g., in Figure 17(a) θ is but θ’ is not in the 
angular partitioning of q. The examination on a vertex v’ in Ξ is 
similar to that of edges, except this time v’ is checked against a 
ring between some neighboring Ci and Ci+1, as manifested by 
Figure 17(b). Observing that  for any polygon Pi in Ξ there exist 
at most two instances A(q, θ) and A(q, θ’) to contact Pi (owing 
to the convexity of both Pi and A), the following lemma is in 
order. 

Lemma 5: It takes O(blogb+bE+nlogn) time to compute an 
eigen set of a point q on an edge e in Ξ with respect  to a vertex 
v of A, and the number of points in the eigen set is less than 2n. 

In deriving the above lemma, the first term blogb is due to 
the need to build the b−1 rings out of the b−1 semi-circles Ci. 
The term bE is obviously required for checking every vertex 
and edge in Ξ against the circles Ci and verifying the correct 
contact. The last term nlogn owes to the fact that the angles in 
the angular partitioning have to be sorted so that the eigen set 
can be obtained. 

Given a contact pair <v, e>, the numbers mI, mII and mIII of 
type I, II and III critical points on e are bounded by O(n), O(n) 
and O(b2E2), respectively. Then sorting the critical points with 
respect to all the possible V-E type contact pairs takes time 
O(b3E3log(bE)). Together, the following result is presented. 

Theorem 2: There is a representative set Σ* of π(A, Ξ) in 
which the number of V-E contact type points is bounded by 
O(nM) and they can be found in O(b3E3log(bE)+M(blogb+bE+ 
nlogn)) time, where M is the total number of type I, II, and III 
critical points with respect to all the contact pairs <v, e> 
between A and Ξ, which is bounded by O(b3E3). 

B. Algorithm Representative_EV 
Recall that Type IVa critical points are identical to Type I 

critical points and Type V critical points belong to 
triple-contact placements of A. Thus, Type IVa and V critical 
points can be identified by performing algorithm 
Representative _VE and Triple_Contact_Placements(A, Ξ), 
respectively. Let e be an edge on A and v be a vertex in Ξ. 

 
Algorithm: Representative_EV(<e, v>) 
begin 
Step 1. S  ∅; 
Step 2. Calculate Type IVb critical points on e; 
Step 3.  Sort all the critical points (Types IV, V) on e to form 

the congruent partitioning of e; 
Step 4. for each congruent interval (ti, ti+1) do  
  begin 

 computing the eigen set Ei<e, v>( ti, ti+1) → S 
  end 
Step 5.  Output S. 
end 
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Fig. 18. Proof of Lemma 6. 
 
 

 
(a) 

 
(b) 

Fig. 19. Algorithm implementation. (a) Experimental result with a vertex-edge 
contact type. (b) Experimental result with an edge-vertex type. 
 
 

The algorithm Representative_EV is similar to that of 
Representative_VE; the only difference lies in critical points 
identification. To identify Type IVb critical points, the 
following lemma is needed. 

Lemma 6: Given a contact pair <e,v>, e∈A, v∈P∈Ξ, and a 
covering radius R, the number of Type IVb critical points 
associated with <e,v> is at most two and can be identified in 
O(b) time. Thus the total number of Type IVb critical points 
between A and Ξ is bounded by O(bnE) and can be identified in 
O(b2nE+E2) time. 

Proof.  Given a contact pair <e,v> and a covering radius R, 
suppose there are m Type IVb critical points on e contributed 
by m vertices in A. Let Λ be the intersection of the m circular 
discs of radius R, with centers at the m critical points 
respectively. By definition of a Type IVb point, Λ must enclose 
polygon A. In addition, each of the m contributing vertices lies 
on a distinct arc on the boundary of Λ (cf. Figure 15(b)). Since 
all the m critical points lie on a same line, the boundary of the 
intersection Λ can only consist of two distinct arcs (see Figure 
18); consequently, m can not exceed 2. 

We have to go through each of the b vertices in A to check 
whether it contributes Type IVb critical point; therefore, it 
takes O(b) time. Due to the convexity, every polygon in Ξ can 
offer at most one possible covering radius R for a given vertex 

in Ξ. Identifying all the covering radii between A and Ξ takes 
time O(E2). Thus it is readily verified that the total number of 
Type IVb critical points between A and Ξ is bounded by O(bnE) 
and can be identified in O(b2nE+E2) time.        Q.E.D. 

Sorting the critical points is the same as that of V-E type. 
Given a point q on e of A, to calculate its associated eigen set is 
similar to that of V-E type by just replacing the semi-circles 
with full circles. 

C. Algorithm Complexity 
The complexity of the proposed algorithm clearly depends on 

the number of critical points, and thus, the algorithm is 
output-sensitive: 

Theorem 3: Let M = Mtcp+Mothers be the total number of 
critical points of all the types between A and Ξ, where Mtcp is 
the number of all the triple-contact placements of A which is 
bounded by O(b3E3) and Mothers is the number of other critical 
points which is bounded by O(bnE). The elements in the 
representative set Σ* of π(A, Ξ) is then bounded by O(nM) and 
can be found in O(b3E3+MlogM+M(blogb+bE+nlogn)). 

The complexity of the output-sensitive algorithm depends on 
the arrangement of the polygonal environment Ξ. It is inviting 
to ask whether the upper bound O(b3E3) for Mtcp is tight or not.  
The answer to this is better exploited from the point of view of 
the configuration space. In the configuration space, the number 
of all the boundary surfaces of all the C-primitives is clearly 
O(bE). Since each boundary surface is a ruled surface with 
(small) constant maximum degree and, in the most general case, 
the polygons in Ξ are allowed to overlap, O(b3E3) is a 
worse-case tight bound on the number of all the vertices in any 
three-dimensional arrangement of O(bE) algebraic surface 
patches of constant maximum degree. Prior to this general 
upper bound, we note that better bounds have been achieved for 
certain special applications: Leven and Sharir [16] showed that, 
if all the polygons in Ξ are convex and disjoint, the total 
number of triple-contact placements of A is bounded by 
O(bEλ6(bE)), where λs(x) is the maximum length of 
(x,s)-Davenport-Schinzel sequences [22], and all these critical 
points can be computed in time O(bEλ6(bE)log(bE)) [13]. 

It is also interesting to exploit what is the average-case 
running time of the proposed algorithm in the most general case. 
A rigorous analysis on the average case depends on both the 
algorithm implementation and a large number of practical tests 
constituting an “average” input for a particular application, 
which is nevertheless beyond the scope of this paper. 

D. Algorithm Implementation 
To demonstrate its feasibility, the proposed algorithm is 

implemented on the Visual C++ platform. Figure 19 illustrates 
the experimental result with both a vertex-edge contact type 
and an edge-vertex contact type. In the first example (cf. Figure 
19(a)), Ξ = {P1, P2, P3, P4} and all the critical points on an edge 
e∈P1 with respect to a particular contact pair <v, e>, v∈A, are 
presented. The critical points of different types are displayed 
with different symbols. The angular partitioning of q∈(t11, t12) 
is also displayed with dashed lines. In the second example (cf. 
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Figure 19(b)), Ξ = {P1, …, P8} and all the critical points on an 
edge e∈A with respect to a vertex v∈P1 are displayed; the 
contact order of point e(t)∈(t18, t19) is also displayed with 
dashed lines. 

The simple implementation described here is however not 
sufficient to test the efficiency and robustness of the algorithm. 
The details of the issues on reliability and numerical accuracy 
with floating-point arithmetic, as well as degenerate cases 
handling, are out of the scope of this paper and will be 
presented in a follow-up paper with a large set of practical 
experiments. 
 

(a)                   
 

(b)              
Fig. 20. Landscape development problem. (a) Rathaus and its 2D projection. (b) 
Zoomed downtown map. 
 

A D 

 
Fig. 21. Solution to the landscape development problem posed in Fig. 20. 

 

VI. APPLICATION SCENARIO 
Consider the following geometric optimization problem. In a 

constrained planar region D, given a set Ξ of planar convex 

polygons among which some are “hard” (its meaning given 
below), and given a convex polygon A: 

1) Can A be placed within D without touching any polygons 
in B?  

2) If not, what is the minimum number of polygons in Ξ that 
need to be removed such that A can be placed within D? 

3) If the “hard” polygons in Ξ cannot be removed, what is the 
minimum number of polygons in Ξ that need to be removed 
such that A can be placed within D? 

An important application of the answers to these questions is 
in the landscape development: if we want to build a rathaus in 
the downtown which is full of old commercial and residential 
buildings, can we find such a place for rathaus or what is the 
minimum number of buildings that need to be demolished for 
such a placement? In the downtown, the nearby highway, parks, 
museums, or historical sites are hard constraints that should be 
preserved. The convex hull of the 2D projection of the rathaus 
corresponds to A (cf. Figure 20(a)), the downtown area is D 
and the downtown buildings form Ξ including hard ones (the 
colored ones in Figure 20(b)). Note that the 2D projections of 
buildings can overlap each other. 

The first question posed above might be answered by 
existing algorithms, but not the second nor the third. To place a 
polygon A within D, we decompose the outside region that 
complements region D in the plane using a set of unbounded 
convex polygons which are treated as hard constraints (cf. 
Figure 21) and included in Ξ.  By applying the proposed 
algorithm to A and Ξ, we obtain an intersection representative 
set Σ from which we first delete all the placements whose 
intersection polygon list contains hard polygons. The 
remaining placements in Σ are then sorted keyed on the 
intersection polygon number in ascent order and the element on 
the top of the list is the answer. In the case shown in Figure 20, 
we have three candidate placements of A which require 
removing only two “soft” polygons (cf. Figure 21). The final, 
exact location of A can be obtained by considering further 
optimization criteria, e.g., minimizing the overlap area [21]. 

 

VII. CONCLUSION 
In this paper we propose a geometric method to determine a 

finite and discrete representation of all the possible intersection 
relations between a movable convex object and a set of planar 
convex polygons. The main contribution is that, by formulating 
the intersection relations with the topological structure of 
kernels decomposition in configuration space, we identify all 
the possible intersection relations completely by their 
geometric realizations in object space; therefore, complex 
algebraic formulation and tedious intersection testing and 
trimming are avoided. A construction algorithm is proposed 
with time and space efficiency and an interesting example in 
landscape development is presented to demonstrate the rich 
applications of the formulated problem and the proposed 
solution. 

In terms of further improvement of the proposed algorithm 
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and possible future research, three points are noted below. In 
principle, the basic ideas of the paper are applicable to a curved 
environment, i.e., the objects in Ξ are simple and compact 
figures bounded by convex simple curves such as Bezier curves. 
In [27] a detailed algebraic description on the contact between a 
convex polygon and a convex curved figure is given. Rigorous 
analyses as well as efficient algorithms are however needed to 
formulate and compute all the types of critical points. 
Especially, how to identify a triple-contact placement between 
three curved edges poses to be a challenging task.  
1) The complexity analysis given in the paper on the 

proposed algorithm is rather coarse and it should be 
inquired if better bounds on the running time can be 
achieved. Moreover, from practical point of view, it is also 
imperative that the proposed algorithm be completely 
implemented and applied to a large set of test data, so to 
verify its robustness in dealing with geometric degeneracy 
as well as to study the average running time. A follow-up 
paper concentrating on both the theoretical algorithmic 
analysis and the experiments is current in progress and 
hopefully it can address the above two issues. 

2) One interesting extension is to transform the domain from 
the plane to the sphere – finding all the intersection 
relations between a movable spherical polygon and a set of 
fixed spherical polygons (all on the unit sphere). By 
consolidating the spherical polygons with visibility maps, 
one important application of this spherical geometry 
problem is in 5-axis NC machining [26]: finding a set-up 
for a 5-axis NC machine so that the maximal area of a 
given free-form part can be machined. This optimization 
problem can be formulated as finding a placement of a 
given spherical polygon that intersects a maximal number 
of a set of fixed spherical polygons. 
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Fig. A-1. Coordinate transformation. 

APPENDIX 
In this appendix, we establish the parametric formulation of 

critical curves. As illustrated in Figure A-1, given a local 2D 
coordinate frame {ex, ey} and a global 2D coordinate frame {gx, 
gy}, the transformation rule H mapping the point (xe, ye) in {ex, 
ey} to the point (xg, yg) in {gx, gy} is 
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or in matrix form 
TRppp +== eeg H )(  

where R and T stand for the rotation matrix and translation 
vector, respectively. A vector ve = ae − be in {ex, ey} is then 
mapped to a vector vg in {gx, gy} by 

eeeeeggg HH RvbaRbabav =−=−=−= )()()(  
Given the point and vector transformation rules, we analyze 

the following three types of critical curves. 
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Fig. A-2. V-E and V-E contact critical curve. 
 

A. Critical Curve α with V−E and V−E Contact Pairs 
In this case, the critical curve is a special version of sliding 

curve [25], which results from two contact pairs <ai, Em> and 
<aj, En>, where ai and aj are two distinct vertices of A, and Em 
and En are two distinct edges of Pm∈Ξ and Pn∈Ξ, respectively, 
Pm≠Pn. 

As illustrated in Figure A-2, we assign the local coordinate 
frame {oe, ex, ey} by oe=ai, ex=ei, ey⊥ei, where ei is the edge of A 
incident to ai, bm is a vertex incident to Em and bn is a vertex 
incident to En. The normalized direction along Em and En are 
denoted by Em and En, respectively. Denoting the position of 
point aj in {oe, ex, ey} as aji and parameterizing the placement of 
A by (t, θ) as shown in Figure A-2, we have 

mmi tEba +=  
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with the constraint that aj lies on En, 
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where c1, c2 are constant column vectors. The above system has 
two equations (w.r.t. x and y directions) and three unknowns s, 
θ, t. In particular, the system is linear with respect to s and t. 
Thus t can be represented as a function with θ: 
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Assuming Em1En2 − Em2En1 ≠ 0 (otherwise we get the trivial 

degenerate case of Em//En), we have 
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where α, a, b, c, and d are constants determined by the 
geometry of A, Pm, and Pn. The above equation introduces a 
critical curve in the parameter domain (t,θ) whose image on the 
parameterized ruled surface (a plane in this case) is the 
parameterized critical curve attributed to two V-E type contact 
pairs. 
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Fig. A-3. E-V and E-V contact critical curve. 
 

B. Critical Curve β with E−V and E−V Contact Pairs 
In this case, the critical curve is a variation of isoptic curve 

[25], which results from two contact pairs <ei, bm> and <ej, bn>, 
where ei and ej are two distinct edges of A, and bm and bn are 
two distinct vertices of Pm∈Ξ and Pn∈Ξ, respectively, Pm≠Pn. 

As illustrated in Figure A-3, we assign the local coordinate 
frame {oe, ex, ey} by oe=ai, ex=ei, ey⊥ei, where ai is the vertex of 
A incident to ei, bm is a vertex of Pm and bn is a vertex of Pn. The 
normalized direction along ei and ej are denoted by ei and ej, 
respectively. Denoting the presentation of point aj and vector ej 
in {oe, ex, ey} as aji and eji, and parameterizing the placement of 
A by (t, θ), we have 
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where c1, c2, c3 are constant column vectors. The above system 
has two equations (w.r.t. x, y directions) and three unknowns s, 
θ, t. In particular, the system is linear with respect to s and t. 
Thus we have: 
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Barring the degenerate case of c22 = 0 which implies ejiy = 0 
and hence ej//ei, the last equation becomes 

dcdbadbat ++=+++=++= )βθsin()βθsin(θcosθsin 22  
where β, a, b, c, and d are constants determined by the 

geometry of A, Pm and Pn. The above equation introduces a 
critical curve in the parameter domain (t, θ) whose image on the 
parameterized ruled surface (a helicoid in this case) is the 
parameterized critical curve attributed to two E-V type contact 
pairs. It can be seen that the parametric forms of critical curves 
α and β are identical and thus can be regarded as the dual type 
of each other. 
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Fig. A-4. E-V and V-E contact critical curve. 
 

C. Critical Curve γ with E−V and V−E Contact Pairs 
Finally, we consider the case in which the critical curve is a 

mixture of the two previous curves, which results from two 
contact pairs <ei, bm> and <aj, En>, where ei and aj are an edge 
and a vertex of A, respectively, and bm and En are a vertex and 
an edge of Pm∈Ξ and Pn∈Ξ, respectively, Pm≠Pn. 

As illustrated in Figure A-4, we assign the local coordinate 
frame {oe, ex, ey} by oe=ai, ex=ei, ey⊥ei, where ai is the vertex of 
A incident to ei, bm is a vertex of Pm and En is an edge of Pn. The 
normalized direction along ei and En are denoted by ei and En, 
respectively. Denoting the position of point aj in {oe, ex, ey} as 
aji, and parameterizing the placement of A by (t, θ), we have 
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Ignoring the degenerate case of sinθ⋅En1 − cosθ⋅En2 = 0 
(which means ei//En), let 
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we have: 
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where γ,  p, q and r are all constants determined by the 
geometry of A, Pm and Pn. 
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