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Abstract—Despite significant effort and notable success of neural style transfer, it remains challenging for highly abstract styles, in
particular line drawings. In this paper, we propose APDrawingGAN++, a generative adversarial network (GAN) for transforming face
photos to artistic portrait drawings (APDrawings), which addresses substantial challenges including highly abstract style, different
drawing techniques for different facial features, and high perceptual sensitivity to artifacts. To address these, we propose a composite
GAN architecture that consists of local networks (to learn effective representations for specific facial features) and a global network (to
capture the overall content). We provide a theoretical explanation for the necessity of this composite GAN structure by proving that any
GAN with a single generator cannot generate artistic styles like APDrawings. We further introduce a classification-and-synthesis
approach for lips and hair where different drawing styles are used by artists, which applies suitable styles for a given input. To capture
the highly abstract art form inherent in APDrawings, we address two challenging operations — (1) coping with lines with small
misalignments while penalizing large discrepancy and (2) generating more continuous lines — by introducing two novel loss terms: one
is a novel distance transform loss with nonlinear mapping and the other is a novel line continuity loss, both of which improve the line
quality. We also develop dedicated data augmentation and pre-training to further improve results. Extensive experiments, including a
user study, show that our method outperforms state-of-the-art methods, both qualitatively and quantitatively.

Index Terms—Face portrait, Style transfer, Image translation, Generative adversarial network

F

1 INTRODUCTION

Drawing is the artist’s most direct and spontaneous
expression. A species of writing: it reveals, better
than does painting, his true personality.

Edgar Degas

L INE drawings for face portraits are a longstanding and
distinct art form, which typically use a sparse set of

continuous graphical elements (e.g., lines) to capture the
distinctive appearance of a person. They are drawn in the
presence of the person or their photo, and rely on a holistic
approach of observation, analysis and experience. An artis-
tic portrait drawing should ideally capture the personality
and the feelings of the person. Even for an artist with
professional training, it usually requires several hours to
finish a good portrait.

Training a computer program with artists’ drawings and
automatically transforming an input photo into high-quality
artistic drawings is highly desired. In particular, with the
development of deep learning, neural style transfer (NST)
— which uses CNNs to perform image style transfer —
was proposed [1]. Later on, generative adversarial network
(GAN) based style transfer methods (e.g., [2], [3], [4], [5])

• R. Yi, M. Xia, Y.-J. Liu are with BNRist, MOE-Key Laboratory of Per-
vasive Computing, the Department of Computer Science and Technology,
Tsinghua University, Beijing, China. Y.-J. Liu is the corresponding author.
E-mail: liuyongjin@tsinghua.edu.cn.

• Y.-K. Lai and P.L. Rosin are with School of Computer Science and
Informatics, Cardiff University, UK.

This work was supported by the Natural Science Foundation of China
(61725204, 61521002) and Royal Society-Newton Advanced Fellowship
(NA150431).

have achieved especially good results, by utilizing sets of
(paired or unpaired) photos and stylized images for learn-
ing. These existing methods are mostly demonstrated using
cluttered styles, which contain many fragmented graphical
elements such as brush strokes, and have a significantly
lower requirement for the quality of individual elements
(i.e., imperfections are much less noticeable).

Artistic portrait drawings (APDrawings) are substantially
different in style from portrait painting styles studied in
previous work, mainly due to the following five aspects.
First, the APDrawing style is highly abstract, containing a
small number of sparse but continuous graphical elements.
Defects (such as extra, missing or erroneous lines) in AP-
Drawings are much more visible than other styles such as
paintings (e.g., impressionist and oil painting) involving a
dense collection of thousands of strokes of varying sizes and
shapes. Second, there are stronger semantic constraints for
APDrawing style transfer than for general style transfer. In
particular, facial features should not be missing or displaced.
Even small artifacts (e.g., around the eye) can be clearly
visible, distracting and unacceptable. Third, the rendering
in APDrawings is not consistent between different facial
parts (e.g., eyes vs. hair). Fourth, the elements (e.g. the
outline of facial parts) in APDrawings are not precisely
located by artists, posing a challenge for methods based
on pixel correspondence (e.g., Pix2Pix [2]). Finally, artists
put lines in APDrawings that are not directly related to
low level features in the view or photograph of the person.
Examples include lines in the hair indicating the flow, or
lines indicating the presence of facial features even if the
image contains no discontinuities. Such elements of the
drawings are hard to learn. Therefore, even state-of-the-art
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Fig. 1. (a) An artist draws a portrait drawing using a sparse set of lines and very few shaded regions to capture the distinctive appearance of a
person or a given face photo. (b) Our APDrawingGAN++ learns this artistic drawing style and automatically transforms a face photo into a high-
quality artistic portrait drawing. (c) Using the same input face photo, six state-of-the-art style transfer methods cannot generate desired artistic
drawings. The drawings output by Deep Image Analogy [6], CNNMRF [7] and Gatys [1] seem not to obtain the right style and have some facial
features changed, which makes them difficult to recognize. CycleGAN [3] and Pix2Pix [2] produce false details around hairs, eyes or corners of the
lip. APDrawingGAN [8] works relatively well, but produces less delicate facial features (e.g. more messy lips) and hair than our result. More results
are presented in Section 7 and appendix.

image style transfer algorithms (e.g., [1], [2], [3], [6], [7], [9])
often fail to produce good and expressive APDrawings. See
Fig. 1c for some examples.

To address the above challenges, in our previous confer-
ence work [8], we proposed a composite GAN architecture
called APDrawingGAN to generate APDrawings from face
photos. To learn different drawing styles for different facial
regions, APDrawingGAN involves several local networks
dedicated to face structure, along with a global network to
capture holistic characteristics. To further cope with the line-
stroke-based style in artists’ drawings, APDrawingGAN
applies a novel distance transform (DT) loss to learn stroke
lines in APDrawings. APDrawingGAN works well when
its output APDrawings are roughly examined as a whole.
However, the subtle facial features and hair are still far
from the masterful level achieved by professional artists (see
Figures 1a and 1c for an example).

In this paper, we substantially improve upon our previ-
ous work [8] and propose APDrawingGAN++, which can
generate masterful APDrawings by learning delicate facial
features (Figure 1b). In particular, we make the following
contributions:

• Network structure. Face photos and APDrawings are
two quite different forms. APDrawingGAN++ uses
two levels to transform between them: a coarse level
(which makes use of CNNs with residual blocks
to transform a face photo into a rough APDrawing
form) and a fine level (which makes use of auto-
encoders to fine tune a rough APDrawing into a
masterful one). APDrawingGAN [8] only uses the
coarse level, while APDrawingGAN++ furthermore
introduces local auto-encoders into the fine level. No-

tably, we provide a theoretical explanation of using
multiple generators for APDrawing generation. The
theoretical proof can also shed light on other tasks
using multiple networks for image generation.

• Loss function. To capture the highly abstract art form
inherent in APDrawings, we propose a loss function
dedicated to APDrawing with five loss terms, includ-
ing a novel DT loss (to promote line-stroke based
style in APDrawings), a novel line continuity loss (to
enhance line continuity in APDrawings) and a local
transfer loss (for local networks to preserve facial fea-
tures). Unlike APDrawingGAN, APDrawingGAN++
introduces the new line continuity loss and applies a
nonlinear mapping to the DT before computing the
DT loss, so that the resulting APDrawings are kept
cleaner by strongly penalizing large misalignments
while tolerating small misalignments, which are typ-
ically present in artist drawings.

• Training scheme. We pre-train our model using 6,655
frontal face photos collected from ten face datasets,
and construct an APDrawing dataset (containing
140 high-resolution face photos and corresponding
portrait drawings by a professional artist) suitable
for training and testing. Since different skin colors
are unbalanced within the data set, advancing from
APDrawingGAN, APDrawingGAN++ applies his-
togram matching to provide data augmentation for
the training set. This changes the face color in the
photos, enabling APDrawingGAN++ to achieve bet-
ter results for dark faces that are under-represented
in the training set.

Extensive experiments and a user study demonstrate
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that APDrawingGAN++ produces significantly better artis-
tic drawings than state-of-the-art methods. Especially, AP-
DrawingGAN++ outperforms APDrawingGAN with im-
proved expressive facial features. We developed and re-
leased a mini-program on WeChat, which is the most pop-
ular free messaging and calling app in China. Our mini-
program became popular, receiving about 400K user clicks
in only two weeks. The source code of APDrawingGAN++
is available1.

2 RELATED WORK

Image stylization has been widely studied in non-
photorealistic rendering and deep learning research. Below
we summarize related work in three aspects.

2.1 Style transfer using neural networks
Gatys et al. [1] first proposed an NST method using a CNN
to transfer the stylistic characteristics of a style image to
a content image. For a given image, its content and style
features are represented by high layer features and texture
information captured by Gram matrices [10] in a VGG net-
work, respectively. Style transfer is achieved by optimizing
an image to match both the content of the content image and
the style of the style image. This method performs well on
oil painting style transfer of various artists. However, their
style is modeled as texture features, and thus not suitable
for our target style with little texture.

Li and Wand [7] used a Markov Random Field (MRF)
loss instead of the Gram matrix to encode the style, and
proposed the combined MRF and CNN model (CNNMRF).
CNNMRF can be applied in both non-photorealistic (art-
work) and photo-realistic image synthesis, since local patch
matching is used in MRF loss and promotes local plausibil-
ity. However, local patch matching restricts this method to
only work well when the style and content images contain
elements of similar local features.

Liao et al. [6] proposed Deep Image Analogy for visual
attribute transfer by finding semantically meaningful dense
correspondences between two input images. They compute
correspondence between feature maps extracted by a CNN.
Deep Image Analogy was successfully applied to photo-
to-style transfer, but when transferring APDrawing style,
image content is sometimes affected, making subjects in the
resulting images less recognizable.

Johnson et al. [11] proposed the concept of perceptual-
loss-based high-level features and trained a feed forward
network for image style transfer. Similar to [1], their texture-
based loss function is not suitable for our style.

In addition to aforementioned limitations for APDraw-
ing style transfer, most existing methods require the style
image to be close to the content image.

2.2 Non-photorealistic rendering of portraits
Non-photorealistic rendering (NPR) is a branch in com-
puter graphics that targets creating expressive rendering
styles [12] often in (but not constrained to) traditional artistic
styles, and involves abstraction, recoloring, simulation of

1. https://github.com/yiranran/APDrawingGAN2

various media, etc. Because of the importance of portraits,
there are many NPR methods developed specifically for
dealing with portraits [13]. Similar to general NPR meth-
ods, NPR portrait methods can be categorized into stroke-
based methods [14], [15], [16], region-based methods [17],
[18], [19], [20] and texture-transfer-based methods [21], [22].
Stroke-based methods render portraits by simulating the
stroke placement of artists. Some methods [14] warp strokes
from a training artistic image, while others [15], [16] learn
a stroke style model by observing stroke characteristics
from artist strokes. Region-based methods decompose the
input image into components, and then either match them
with templates from training artistic images and recom-
bine matched templates into a portrait [17], [18], [19], or
render different facial components using different special-
ized algorithms [20]. Texture-transfer-based methods trans-
fer textures from the exemplar artistic image to the output
rendering, using parametric texture synthesis [21] or non-
parametric texture synthesis [22].

Among these methods, sketch or line drawing rendering
methods [16], [17], [23], [24] are more relevant to our prob-
lem. However, the target APDrawing style is different from
these styles in having smaller shape deformation, little shad-
ing, and more delicate lines. The target style is challenging
because it contains sparse but delicate lines, which are hard
to render via existing NPR algorithms, and therefore we
exploit deep-learning based methods to provide a solution.

2.3 GAN-based image synthesis

Generative Adversarial Networks (GANs) [25] have
achieved much progress in solving many image synthesis
problems, in which closely related to our work are Pix2Pix
and CycleGAN.

Pix2Pix [2] is a general framework for image-to-image
translation, which explores GANs in a conditional set-
ting [26]. Pix2Pix can be applied to a variety of image trans-
lation tasks and achieves impressive results on various tasks
including semantic segmentation, colorization and sketch to
photo translation, etc.

CycleGAN [3] is designed to learn translation between
two domains without paired data by introducing cycle-
consistency loss. This model is particularly suitable for tasks
in which paired training data is not available. When applied
to a dataset with paired data, this method produces results
similar to the fully supervised Pix2Pix, but with much more
training time.

Neither Pix2Pix nor CycleGAN works well for APDraw-
ing styles and often generates blurry or messy results due to
the five challenges summarized in Sec. 1 for APDrawings.

3 OVERVIEW OF APDRAWINGGAN++

We model the process of learning to transform face photos to
APDrawings as a function Ψ which maps the face photo do-
main P into a black-and-white line-stroke-based APDraw-
ing domain A. The function Ψ is learned from paired train-
ing data Sdata = {(pi, ai)|pi ∈ P, ai ∈ A, i = 1, 2, ..., N},
where N is the number of photo-APDrawing pairs in the
training set.
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Fig. 2. The framework of the proposed APDrawingGAN++. The composite generator G takes a face photo pi ∈ P as input and consists of a global
network (for global facial structure), six local networks (for four local facial regions, the hair and the background region), five auto-encoders, two
classifiers and a fusion network. Outputs of the auto-encoders and hair/background generators are combined into Ilocal and fused with the output
Iglobal of the global network to generate the final output G(pi). The loss function includes five terms, in which a novel DT loss is introduced to better
learn delicate artistic line styles, and a novel line continuity loss is introduced to generate more continuous lines. The composite discriminator D
distinguishes whether the input is a real APDrawing or not based on the classification results by combining both a global discriminator and six local
discriminators.

Our model is based on the GAN framework, which
consists of a composite generator G and a composite dis-
criminator D, both of which are CNNs specifically designed
for APDrawings with line-stroke-based artist drawing style.
The generator G learns to output an APDrawing in A while
the discriminator D learns to determine whether an image
is a real APDrawing or generated.

Since our model is based on GANs, the discrimina-
tor D is trained to maximize the probability of assign-
ing the correct label to both real APDrawings ai ∈ A
and synthesized drawings G(pi), pi ∈ P , and simulta-
neously G is trained to minimize this probability. Denote
the loss function as L(G,D), which is specially designed
to include five terms Ladv(G,D), LL1

(G,D), LDT (G,D),
Lconti(G,D) and Llocal(G,D). Then the function Ψ can be
formulated by solving the following min-max problem with
the function L(G,D):

min
G

max
D

L(G,D) = Ladv(G,D) + λ1LL1(G,D)

+λ2LDT (G,D) + λ3Llocal(G,D) + λ4Lconti(G,D)
(1)

In Section 4, we introduce the architecture of APDraw-
ingGAN++. Sections 5 and 6 present the five terms in
L(G,D) and the training scheme, respectively. Section 7
presents a comprehensive evaluation of APDrawingGAN++
and compares it with state of the art. Finally Section 8
offers the concluding remarks. An overview of APDraw-
ingGAN++ is illustrated in Figure 2.

4 NETWORK ARCHITECTURE

We propose a composite structure for both generator and
discriminator, each of which includes a global network and
six local networks. The six local networks correspond to the

local facial regions of the left eye, right eye, nose, lip, hair
and the background. Furthermore, the generator has an ad-
ditional fusion network to synthesize the artistic drawings
from the output of global and local networks. The reason
behind this composite structure is that in portrait drawing,
artists adopt different drawing techniques for different parts
of the face. For example, fine details are often drawn for
eyes, and curves drawn for hair usually follow the flow of
hair but do not precisely correspond to image intensities.
Since a single CNN shares filters across all locations in
an image and is very difficult to encode/decode multiple
drawing features, the design of composite global and local
networks with multiple CNNs can help the model better
learn facial features in different locations.

Different from APDrawingGAN [8], we introduce auto-
encoders into the generator network to further improve
local fine details in APDrawings. To cope with six combi-
nations of two lip styles and three hair styles, we introduce
two classifiers for lips and hair respectively, and the output
of the classifiers is used to guide the local generators/auto-
encoders towards one of the target styles, while avoiding
synthesizing output in an undesirable intermediate style.

4.1 Composite generator G
The generator G transforms input face photos to APDraw-
ings. The style of APDrawings is learned once the model is
trained. In the composition of G = {Gglobal, Gl∗, E∗, C∗,
Gfusion}, Gglobal is a global generator, Gl∗ = {Gl eye l,
Gl eye r, Gl nose, Gl lip, Gl hair, Gl bg} is a set of six local
generators, E∗ = {Eeye l, Eeye r, Enose, Elip b, Elip w} is a
set of five auto-encoders, C∗ = {Clip, Chair} is a set of two
classifiers and Gfusion is a fusion network. We design G
using CNNs with residual blocks [27].
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4.1.1 Local generators

Each of Gl eye l, Gl eye r, Gl nose and Gl lip is a CNN with
a flat-convolution layer, two down-convolution layers, three
residual blocks, two up-convolution layers and one final
flat-convolution layer. Each of Gl hair and Gl bg is a CNN
with a flat-convolution layer, two down-convolution layers,
six residual blocks, two up-convolution layer and one final
flat-convolution layer. The role of local generators in Gl∗ is
to learn the transform ability (from photos to APDrawings)
of different local face features; e.g., transforming hair photo
to a hairy style (i.e., repeated wispy details by short choppy
or long strokes to capture the soft wispiness of individual
hair strands), eyes and nose to line style, and lip to solid or
line style.

The inputs to Gl eye l, Gl eye r , Gl nose, Gl lip are local
regions in the photo, centered at the facial landmarks (i.e.,
left eye, right eye, nose and lip) obtained by the MTCNN
model [28]. The input to Gl bg is the photo background
region detected by a portrait segmentation method [29]. The
input to Gl hair is the remaining region in the face photo.

The success of APDrawingGAN [8] demonstrates that
the six local generators Gl∗, together with Gglobal and
Gfusion, have a powerful ability to transform a face photo
(i.e., color pixel information) into an APDrawing (i.e., highly
abstract, imprecise, sparse but continuous graphical ele-
ments). However, the subtle facial features and hair in the
output of G are still far from artistically beautiful. APDraw-
ingGAN++ uses Gl∗ to transform different portions of the
input photo into a rough APDrawing at a coarse level. Then
at a fine level, APDrawingGAN++ uses two lip and hair
classifiers for specifying the drawing style for different facial
features (Section 4.1.2) and applies trained auto-encoders to
transform rough APDrawing portions into masterful AP-
Drawing portions (Section 4.1.3), which are naturally fused
together using Gglobal and Gfusion (Section 4.1.4).

We note that using multiple local GANs for different
facial regions is not a new idea (e.g., [30]). Our contribution
lies in the new composite network structure that efficiently
incorporates the set of six local generators Gl∗ with Gglobal
and Gfusion as an integrated framework. In addition to its
practical value for the challenging APDrawing style, we
also provide a theoretical explanation in Section A2 of the
appendix for this composite structure.

4.1.2 Style-control classifiers for lips and hair

The APDrawings for lips and hair in our APDrawing
dataset exhibit multiple styles, e.g. there are both full black
lip drawings and full white (outline) lip drawings (Figure
3). Artists tend to draw lips with lipstick in the full black
manner, and other lips in the white manner. Learning to dis-
tinguish both styles using the same network is challenging
and often produces suboptimal drawings. To better generate
lip and hair drawings, we introduce two classifiers Clip,
Chair to detect the target style for the lip and hair regions
respectively. Then we use the detected class information to
guide the generation towards the desired style.

The inputs to Clip and Chair are the local lip and hair
regions of the face photo, respectively, and their outputs are
class labels. The ground truth class labels for face photos are
assigned according to the paired artist drawings. Lip regions

dark hair middle hair middle hair light hair
white lips white lips black lips black lips

Fig. 3. Some examples of different types of hair (dark/middle/light) and
lips (white/black). First row: face photos, second row: artist drawings.
The ground truth class labels for each face photo are assigned accord-
ing to the paired artist drawing.

(a) synthesized (b) reconstructed (c) compact (d) refined
nose nose mask nose

Fig. 4. An example of the nose auto-encoder’s input and the recon-
structed nose drawing. (a) synthesized nose drawing by the local gen-
erator Gl nose, (b) reconstructed nose drawing by nose auto-encoder
Enose, (c) the compact mask for the nose, (d) refined nose drawing by
combining input and output of Enose using the compact mask.

are classified into white lips and black lips, and hair regions
are classified into light hair, dark hair and middle hair
(based on the proportion of white lines). Some examples are
illustrated in Figure 3. Classifiers adopt an architecture with
m convolution layers followed by a fully-connected layer
(m = 4 for lip regions and m = 7 for hair regions). Clip and
Chair are trained using the cross entropy loss.

To guide the local generators/auto-encoders towards
a desired style, the output of Clip is used to control the
auto-encoder enhancement (to be detailed in Section 4.1.3)
and the output of Chair is used as follows. Similar to
Im2Pencil [31], which uses a one-hot vector to represent
different outline/shading styles, we use a one-hot vector to
represent different drawing styles of hair regions. The out-
put of Chair is converted to a 3-dimensional one-hot vector,
then mapped to a 3-channel map, and concatenated with the
feature extracted by the encoder of the hair local generator
Gl hair (concatenated after the second down-convolution
layer). The concatenated feature is then decoded byGl hair’s
decoder. Therefore, the output of Gl hair is controlled by the
hair style detected by Chair .

4.1.3 Auto-encoders for subtle facial features
After the local generators Gl eye l, Gl eye r , Gl nose, Gl lip
output rough APDrawings for different facial parts, we
introduce auto-encoders Eeye l, Eeye r , Enose, Elip b/w to
improve local drawings. Both the input and output of these
auto-encoders are parts of APDrawings. By training on the
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APDrawing dataset, each auto-encoder learns a good fea-
ture representation (for an encoder) and a good decoder (to
reconstruct high-quality APDrawings of the corresponding
facial part). In APDrawingGAN++, we feed synthesized,
rough APDrawings output from local generators into auto-
encoders. The auto-encoders encode rough APDrawings
into concise feature representations, which are in turn de-
coded for reconstructing high-quality APDrawings close to
the artist drawings.

The auto-encoders adopt an architecture of four down
convolution layers, two fully-connected layers and four up
convolution layers. In preprocessing, we use the APDraw-
ing dataset to train the auto-encoders and choose the mean
square error (MSE) loss that is computed in a compact
mask mc (ref. Figure 4c) obtained by OpenFace [32]. In
APDrawingGAN++, these auto-encoders are fixed during
GAN training. The output of the auto-encoders rout is then
combined with input rin using the compact mask mc, i.e.,
the combined result rin ·mc + rout · (1−mc) is used as the
refined local drawing. Figure 4 shows an example, where
the refined nose (Figure 4d) is depicted by much nicer lines
than the synthesized, rough nose (Figure 4a) output from
Gl nose. Such auto-encoders also benefit from our composite
GAN architecture, as learning individual facial features is
much easier than learning the entire face drawings as a
whole, making it possible to train these auto-encoders with
a limited number of training examples.

For the lip region, two special auto-encoders Elip b and
Elip w are trained separately. Elip b is dedicated to black lip
generation while Elip w is dedicated to white lip generation.
Which lip auto-encoder to use is determined by the output
of the lip classifier Clip.

Finally, we blend outputs of auto-encoders and outputs
of hair and background generators into an aggregated draw-
ing Ilocal, by using min pooling in overlapping regions. This
min pooling operation can effectively retain responses from
individual local generators, as low intensities are treated
as responses for black pixels in artistic drawings. To avoid
sharp intensity change at the boundaries of local regions
during blending, we adopt a soft border mask for each local
region.

4.1.4 Global generator and fusion network

Gglobal is a CNN with a flat-convolution layer, two
down-convolution layers, nine residual blocks, two up-
convolution layers and one final flat-convolution layer.
Gfusion consists of a flat convolution layer, two residual
blocks and a final convolution layer. We use Gfusion to
fuse together Ilocal and Iglobal (i.e., the output of Gglobal)
for obtaining the final high-quality APDrawing. In many
previous GAN models (e.g., [25], [33]), usually some noise
is input or added in the generator network. Following [2],
we do not add noise in G explicitly, but use dropout [34] in
residual blocks to work as noise.

Different from the multiple GAN structure proposed
in [30], our composite GAN model contains the global
generator and fusion network. They play an important role
in APDrawing style generation and we present an ablation
study in Section A6.3 of the appendix to demonstrate its
effectiveness.

(a) An APDrawing x (b) IDT (x) (c) ĨDT (x)

Fig. 5. Distance transforms IDT (x) and ĨDT (x) of an APDrawing x.

4.2 Composite discriminator D

The discriminator D distinguishes whether the input draw-
ing is a real artist’s portrait drawing or not. In the hierarchy
of D = {Dglobal, Dl∗}, Dglobal is a global discriminator and
Dl∗ = {Dl eye l, Dl eye r, Dl nose, Dl lip, Dl hair, Dl bg} is
a set of six local discriminators. Dglobal examines the whole
drawing to judge the holistic APDrawing features, while the
local discriminators inDl∗ examine different local regions to
evaluate the quality of fine details.

We implement Dglobal and all local discriminators in
Dl∗ using the Markovian discriminator in Pix2Pix [2]. The
only difference is the input: the whole drawings or different
local regions. The Markovian discriminator processes each
70 × 70 patch in the input image and examines the style of
each patch. Local patches from different granularities (i.e.,
coarse and fine levels at global and local input) allow the
discriminator to learn local patterns and better discriminate
real artists’ drawings from synthesized drawings.

5 LOSS FUNCTION

There are five terms in the loss function in Eq. (1), which are
explained as follows.

Adversarial loss Ladv models the discriminator’s ability
to correctly distinguish real or false APDrawings. Following
Pix2Pix [2], the adversarial loss is formulated as:

Ladv(G,D) =
∑
Dj∈D

E(pi,ai)∼Sdata
[log(Dj(pi, ai)

+ log(1−Dj(pi, G(pi)))]. (2)

When Dj ∈ Dl∗, the images pi, ai and G(pi) are all re-
stricted to the local region specified by Dj . As D maximizes
this loss while G minimizing it, Ladv forces the synthesized
drawings to become closer to the target domain A.

Pixel-wise loss LL1
drives the synthesized drawings

close to ground-truth drawings in a pixel-wise manner. We
compute the LL1

loss for each pixel in the whole drawing:

LL1
(G,D) = E(pi,ai)∼Sdata

[‖G(pi)− ai‖1] (3)

Using the L1 norm generally outputs less blurry results than
the L2 norm and so is more suitable for APDrawing style.

Line-promoting distance transform loss with nonlin-
ear mapping LDT is a novel measure specially designed
for promoting line strokes in the style of APDrawings.
Since the elements in APDrawings are not located precisely
corresponding to image intensities, we introduce LDT to
tolerate the small misalignments — that are often present in
artists’ portrait drawings — and to better learn stroke lines
in APDrawings. The distance-based loss LDT can tolerate



ACCEPTED BY IEEE T-PAMI 7

small misalignments but penalizes big misalignments, while
L1 loss treats both as the same. To do so, we make use of
distance transform (DT) and chamfer matching as follows.

A DT (a.k.a. distance map) can be represented by a
digital image, in which each pixel stores a distance value.
Given a real or synthesized APDrawing x, we define two
DTs of x as images IDT (x) and ĨDT (x): assuming x̂ is
the binarized image of x, each pixel in IDT (x) stores the
distance value to its nearest black pixel in x̂ and each pixel
in ĨDT (x) stores the distance value to its nearest white pixel
in x̂. Figure 5 shows an example.

Different from APDrawingGAN [8] that directly uses
DT to compute chamfer matching distance, we apply a
nonlinear mapping to the DT that puts stronger penalty
on large misalignments and reduces the penalty on small
misalignments. Since small misalignments frequently ap-
pear in artist drawings, the nonlinear mapping can help
clean the local messy drawings that are typically output
from APDrawingGAN. We choose the nonlinear mapping
as:

ĨDT (x)(j, k) =
ec·IDT (x)(j,k) − 1

ec − 1
(4)

where IDT (x)(j, k) is the distance value at the pixel (j, k) in
IDT (x), c is a parameter to control nonlinearity. We found
our method is insensitive to moderate change of this param-
eter, and it is set to 3.3 in our experiments. Since IDT (x)
is originally normalized to the range [0,1], the nonlinear
mapping result ĨDT (x) is also in range [0,1]. Ĩ ′DT (x) is
similarly remapped from I ′DT (x).

We train two CNNs2 to detect black and white lines in
APDrawings, denoted as Θb and Θw. The chamfer matching
distance between APDrawings x1 and x2 is defined as

dCM (x1, x2) =
∑

(j,k)∈Θb(x1)

ĨDT (x2)(j, k)

+
∑

(j,k)∈Θw(x1)

Ĩ ′DT (x2)(j, k)
(5)

where ĨDT (x)(j, k) and Ĩ ′DT (x)(j, k) are distance values
at the pixel (j, k) in the images ĨDT (x) and Ĩ ′DT (x),
respectively. dCM (x1, x2) measures the sum of remapped
distances from each line pixel in x1 to closest pixel of the
same type (black or white) in x2. Then LDT is defined as

LDT (G,D) =E(pi,ai)∼Sdata
[dCM (ai, G(pi))

+ dCM (G(pi), ai)]
(6)

Local transfer loss Llocal puts extra constraints on the
intermediate output of six local generators in Gl∗, and then
behaves as a regularization term in the loss function. Denote
the six local regions of an APDrawing x as El(x), Er(x),
Ns(x), Mt(x), Hr(x) and Bg(x). Llocal is defined as

Llocal(G,D) =
E(pi,ai)∼Sdata

[
||Eeye l(Gl eye l(El(pi)))− El(ai)||1

+||Eeye r(Gl eye r(Er(pi)))− Er(ai)||1
+||Enose(Gl nose(Ns(pi)))−Ns(ai)||1
+||Elip b/w(Gl lip(Mt(pi)))−Mt(ai)||1
+||Gl hair(Hr(pi), Chair(Hr(pi)))−Hr(ai)||1
+||Gl bg(Bg(pi))−Bg(ai)||1

]
(7)

2. We use two-tone NPR images and the corresponding lines gener-
ated by the NPR algorithm [23] as data to train the two CNN models.

score=1.0
(a) An artist patch

10% score=0.9 30% score=0.7 50% score=0.5 70% score=0.7 90% score=0.9
(b) Synthesized patches by random inversion of line pixels

10% score=0.5 30% score=0.3 50% score=0.1 70% score=0.3 90% score=0.5
(c) Synthesized patches by random inversion of non-line pixels

Fig. 6. An example of an artist patch (white-dominant), random inver-
sions of line pixels and non-line pixels and their given line continuity
scores.

Line continuity loss Lconti is a novel loss term designed
for enhancing line continuity. We introduce a line continuity
measure by learning from 11 × 11 patches extracted from
artist drawings. We define the line continuity score of artist
patches as 1, and give lower scores (0 ∼ 1) for synthesized
patches obtained by randomly inverting some pixels in
artist patches. For a white-dominant artist patch (a patch
is white-dominant if there are more white pixels than black
pixels; white-dominant patches often contain black lines),
we first randomly invert some black pixels (i.e. line pixels)
and define the line continuity value of r% (0 < r < 100)
inversion as 0.5 + |r − 50|/100 (i.e. 50% inversion gets the
lowest continuity score). Then we randomly invert white
pixels (i.e. non-line pixels) and define the line continuity
value of r% inversion 0.1 + |r − 50|/100 (refer to Figure 6).
We conduct similar random inversions for black-dominant
artist patches.

We train a line continuity prediction networkRconti from
these artist patches, synthesized (i.e. modified artist) patches
and the given continuity scores. The prediction network
takes a 11× 11 patch as input and outputs a line continuity
value. The network contains three flat-convolutions and a
fully-connected layer. Then the line continuity score of an
APDrawing x is defined as

Sconti(x) = Eρk∼P (x)Rconti(ρk) (8)

where P (x) is the set of all patches that are not pure white
or pure black, extracted from x, and ρk is the k-th patch
in this set. The higher the line continuity score, the more
continuous the lines in APDrawing x. We further define
Pface(x) as the set of face patches and Pnface(x) as the set
of non-face patches.

Then line continuity loss Lconti is defined as

Lconti(G,D) = E(pi,ai)∼Sdata
Eρk∼P (G(pi))wk(1−Rconti(ρk))

(9)
where weight wk = 2 if ρk ∈ Pface(G(pi)), and wk = 1
if ρk ∈ Pnface(G(pi)). A higher weight is given to face
patches since lines in the face area are often less continuous
and harder to learn. Experimental results (to be detailed in
Section 7.2.2) show that the novel line continuity loss greatly
improves the line continuity and the similarity between
synthesized drawings and real drawings.

6 TRAINING APDRAWINGGAN++
APDrawing dataset. To train the proposed APDrawing-
GAN++, we build a dataset containing 140 pairs of face
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Original face NPR NPR results with Our
photos results jaw contour result

Fig. 7. From left to right: original face photos, NPR results [23], NPR
results with clear jaw contours added (used for pre-training), and the
results of APDrawingGAN++. Face photos are from the datasets of
CFD [35]. Note that these two example images are not used in pre-
traning.

photos and corresponding portrait drawings. To make the
training set distribution more consistent, all portrait draw-
ings were drawn by a single professional artist. All images
and drawings are aligned and cropped to 512 × 512 size.
Some examples are illustrated in the appendix.

Initialization with pre-training. Since it is time-consuming
and laborious for an artist to draw each portrait drawing,
our constructed dataset consists of only a small number of
image pairs, which makes the training particularly challeng-
ing. To address this issue, we use a coarse-level pre-training
to make the training starting at a good initial status. We
collect 6,655 frontal face photos taken from ten face datasets
[35], [36], [37], [38], [39], [40], [41], [42], [43], [44]. For each
photo, we generate a synthetic drawing using the two-
tone NPR algorithm in [23]. Since it often generates results
without clear jaw lines (due to low contrast in the image
at these locations), we use the face model in OpenFace [32]
to detect the landmarks on the jaws and subsequently add
jaw lines to the NPR results. Two examples are illustrated in
Figure 7. Note that the drawings synthesized in this simple
way are only a coarse approximation and still far from ideal
APDrawings. We use a pre-trained model after 10 epochs as
the initialization for the subsequent formal training. Since
our NPR generated drawings (unlike artists’ drawings) are
accurately aligned to the photos, we do not use the distance
transform loss in pre-training.

Formal training. We partition our APDrawing dataset into
a training set of 70 image pairs and a test set of 70 image
pairs. We first apply data augmentation of small-angle rota-
tion (-10◦∼10◦) and scaling (1∼1.1) to the training set. Fur-
thermore, we apply the Adam optimizer [45] with learning
rate 0.0001, momentum parameters β1 = 0.5, β2 = 0.999
and batch size of 1.

One more data augmentation that distinguishes AP-
DrawingGAN++ from APDrawingGAN is the histogram
matching augmentation, which generates face photos with
different face colors to further augment the training set. We
partition the face photos in the training set into a light face
set SL and a dark face set SD . For each face photo x in
SL (or SD), we randomly select one face photo y in SD
(or SL), and perform a histogram matching on x and y to
obtain a matched image Ihm(x, y), which has the same color

(a) A face x in SL (b) A face y in SD (c) Ihm(x, y)

Fig. 8. An example of histogram matching. Histogram matching is per-
formed on a face photo x in SL and a face photo y in SD to obtain a
histogram matched image Ihm(x, y).

distribution as y while preserving the content of x. We use
contrast limited histogram matching [46] — which restricts
the slope of the mapping function — to avoid extreme and
unnatural recolorizations. To avoid any influence from the
background, we only match the histogram in face regions
for x and y. An example is shown in Figure 8. The generated
new face photo Ihm(x, y) is then paired with x’s artist
drawing to function as a new training sample. We apply
histogram matching to each face photo in the training set
7 times using 7 randomly selected images from our AP-
Drawing dataset (to account for existing data augmentation
such that after the histogram matching augmentation, the
numbers of dark and light skin examples are close). This
histogram matching augmentation improves the balance of
face colors in the training set and makes the model more
generalized and better suited to faces over a wide range of
colors.

Auto-encoder training. As aforementioned, auto-encoders
are trained independently of APDrawingGAN++ and these
auto-encoders are fixed during APDrawingGAN++ train-
ing. The training of auto-encoders uses the same APDraw-
ing dataset. We also apply the same data augmentation
methods (i.e., small-angle rotation and scaling) as APDraw-
ingGAN++ (except for histogram matching augmentation,
since the input to auto-encoders are local APDrawings that
are irrelevant to the skin color). Furthermore, we apply
one more data augmentation of translation, because auto-
encoders involve fully-connected layers and are not transla-
tion invariant.

As shown in Figure 7, the NPR results are far from ideal
APDrawings and thus can only serve as a coarse approxima-
tion in the pre-training phase. In other words, training with
only NPR results cannot obtain desired APDrawings. In
addition to our two-step training strategy (i.e., pre-training
and formal training), another possible strategy is to use the
mixed training with both paired and unpaired data (e.g.,
the strategy in [47]). We compare our training strategy with
the mixed training strategy of [47] in Section A7 of the
appendix. The results show that our strategy can obtain
better results.

7 EXPERIMENTS

We implemented APDrawingGAN++ in PyTorch [48] and
conducted experiments on a computer with an NVIDIA
Titan Xp GPU. The input and output of the generator G
are color photos and gray drawings, respectively, and so the
numbers of input and output channels are 3 and 1. In all our



ACCEPTED BY IEEE T-PAMI 9

experiments, the parameters in Eq.(1) are fixed at λ1 = 100,
λ2 = 0.35, λ3 = 25 and λ4 = 40. All the evaluation results
presented in this section are based on the test set to ensure
fairness. Section 7.1 presents a detailed comparison with
state of the arts (including both qualitative and quantitative
evaluation). Section 7.2 presents a comprehensive ablation
study in APDrawingGAN++.

7.1 Comparison with state-of-the-art

7.1.1 Qualitative evaluation
We compare APDrawingGAN++ with seven state-of-the-
art style transfer methods: Gatys [1], CNNMRF [7], Deep
Image Analogy [6], Pix2Pix [2], CycleGAN [3], Headshot
Portrait [9] and APDrawingGAN [8].

Qualitative results of comparison with Gatys, Cycle-
GAN, Pix2Pix and APDrawingGAN are shown in Figure 9.
Gatys’ method [1] by default takes one content image and
one style image as input. For fair comparison, we use
all the style images in the training set and compute the
average Gram matrix to model the target style as in [3].
As shown in Figure 9, Gatys’ method generates poor results
for APDrawing stylization: some facial features are missing
in the stylized results, and different regions are stylized
inconsistently. The reasons behind these artifacts are that
the method models style as texture information in the Gram
matrix, which cannot capture our target style with little
texture, and its content loss based on VGG output cannot
preserve facial features precisely.

For CycleGAN, Pix2Pix and APDrawingGAN, we use
the same training data as APDrawingGAN++ and default
parameters to train the models. CycleGAN [3] cannot mimic
the artistic portrait style well. As shown in Figure 9, Cycle-
GAN’s results do not look like an artist’s drawing, especially
in the facial features. There are many artifacts, such as
missing details in the eyes, blurred/dithered lip region, dark
patches (e.g. the eyes and cheeks in the second row) caused
by shadows, and not capturing eyebrow style. CycleGAN is
unable to preserve facial features because it uses the cycle-
consistency to constrain the content, which is less accurate
than a supervised method and leads to problems when
one of the domains is not accurately recovered. Also note
that although CycleGAN uses our APDrawing dataset in
an unpaired way, the images are actually paired: the actual
paired training data makes it easier for CycleGAN to learn
APDrawing style. Without paired data, the results will be
worse.

Pix2Pix [2] generates results that preserve some aspects
of artistic drawings, but they also have many artifacts. There
are many messy unwanted lines, making the stylized result
unlike the input photo, and the white lines in the hair are not
learned well. The reason is that a generator with one CNN is
unable to learn several independent drawing techniques in
different facial regions, and there is no specifically designed
loss term dedicated to the APDrawing style.

APDrawingGAN [8] generates drawings that capture
different drawing techniques in different facial regions and
have delicate white lines in the hair. However, as shown in
Figure 9, APDrawingGAN’s results have less delicate facial
features (e.g. the eyes of the second and third rows, the lip of
the bottom row). Moreover, APDrawingGAN cannot handle

TABLE 1
Human preference statistics. For each of the four methods (CycleGAN,

Pix2Pix, APDrawingGAN and APDrawingGAN++), the average
percentage of it being ranked best, and the average percentage of it

being preferred over another method are summarized. The 90%
confidence intervals are shown in parentheses.

Methods Ranked Best Preferred in a Pair
CycleGAN [3] 9.35%(2.6%∼14.7%) 31.87%(22.9%∼40.6%)

Pix2Pix [2] 6.43%(3.5%∼9.8%) 31.83%(27.7%∼35.1%)
APDrawingGAN [8] 16.74%(10.9%∼23.8%) 56.85%(53.2%∼59.6%)
APDrawingGAN++ 67.48%(55.7%∼79.1%) 79.45%(70.0%∼87.5%)

TABLE 2
Analysis of variance (ANOVA) results for pairwise comparisons.

Pairwise comparison Ranked Best Preferred in a Pair
Ours vs CycleGAN p=2.20e-17 p=1.07e-16

Ours vs Pix2Pix p=6.48e-19 p=2.72e-19
Ours vs APDrawingGAN p=4.90e-16 p=2.97e-12

dark faces well, leading to white patches in the hair or messy
lines in the face (e.g. many white patches in the hair in the
first row, many messy lines in the face in the second row). In
comparison, our method generates high-quality results (i.e.,
with delicate facial features and white lines in the hair) and
can adapt well with faces over a wide range of colors.

Qualitative results of comparison with CNNMRF, Deep
Image Analogy and Headshot Portrait are shown in Fig-
ure 10. These methods take one content image and one
style image as input, and require these two images to be
similar. Given a content image in the test set, we select
two style images in the training set that are semantically
similar to the content image (i.e. they have similar facial
features) as shown in Figure 10. Each pair of content and
style images can generate one result. We draw the following
observation from these two stylized results. CNNMRF [7]
generates results that do not exhibit the same color distri-
bution as the target style. Both CNNMRF and Deep Image
Analogy [6] generate results with facial features closer to
the style image but unlike the input content image, i.e.
content has been erroneously copied from the style image.
Headshot Portrait [9] is a portrait specific method but it
generates photo-realistic results, which are not the style
of the target artist’s portrait drawing. In comparison, our
method generates drawings that both preserve the facial
features in the face photo and capture the artistic portrait
drawing style. Moreover, our results are high-quality and
are also better than APDrawingGAN with respect to the fine
details, as highlighted by the close-ups of facial features.

In a nutshell, our method is significantly better than
Gatys’ method, CNNMRF, Deep Image Analogy and Head-
shot Portrait. Our method is also better than Pix2Pix, Cycle-
GAN and APDrawingGAN in handling fine details. Below
we present a quantitative evaluation that compares our
method with the latter three methods.

7.1.2 Quantitative evaluation

Human Preference. Due to the subjective nature of image
styles, we conduct a user study with 102 participants
to compare our APDrawingGAN++ results to CycleGAN,
Pix2Pix, and APDrawingGAN. All 70 test pairs were used
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Input face photo                  Ground truth                  Gatys’ method                     CycleGAN Pix2Pix                      APDrawingGAN Ours

Fig. 9. Comparison results with Gatys’ method [1], CycleGAN [3], Pix2Pix [2], APDrawingGAN [8] and APDrawingGAN++.

Input Content

Input Style 2 CNNMRF Deep Image Analogy APDrawingGAN Ground TruthHeadshot Portrait Ours

Eyes:

Mouth:

Input Style 1

Fig. 10. Comparison results with CNNMRF [7], Deep Image Analogy [6], Headshot Portrait [9], APDrawingGAN [8] and APDrawingGAN++.

TABLE 3
Average LPIPS distance of CycleGAN, Pix2Pix, APDrawingGAN and

our APDrawingGAN++ on the full test set.

Methods LPIPS
CycleGAN [3] 0.345

Pix2Pix [2] 0.330
APDrawingGAN [8] 0.291
APDrawingGAN++ 0.258

in the user study. For four stylized drawings in an im-
age group, any two of them, i.e., (CycleGAN, Pix2Pix),
(CycleGAN, APDrawingGAN), (CycleGAN, APDrawing-
GAN++), (Pix2Pix, APDrawingGAN), (Pix2Pix, APDraw-
ingGAN++) and (APDrawingGAN, APDrawingGAN++),
were compared once by each participant. For each of the
four methods (CycleGAN, Pix2Pix, APDrawingGAN and
APDrawingGAN++), we compute the percentage of it being

ranked best, and the percentage of it being preferred in
pairwise comparison. The results are summarized in Table 1.
Results show that our APDrawingGAN++ is ranked the
best in 67.48% of cases, significantly higher than CycleGAN
and Pix2Pix where each of them is only ranked the best
for less than 10% of cases, and much higher than AP-
DrawingGAN which is ranked the best for 16.74% of cases.
The percentage of our APDrawingGAN++ being preferred
in pairwise comparison is 79.45%, much higher than Cy-
cleGAN, Pix2Pix and APDrawingGAN. We then conduct
analysis of variance (ANOVA) for pairwise comparisons on
ranked best percentage and preferred percentage. Pairwise
ANOVA results are shown in Table 2. All of the p-values are
� 0.01, justifying that the rejection of the null hypothesis
and the differences between the means of our method and
another method (Pix2Pix, CycleGAN or APDrawingGAN)
are statistically significant. A test boxplot of four methods is
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(a) Input                       (b) Ground truth              (c) W/O local nets              (d) W/O DT loss         (e) W/O initialization (f) Ours

Fig. 11. Ablation study: (a) input face photos, (b) ground truth drawings by an artist, (c) results of removing local networks Gl∗, Dl∗, and E∗ in
APDrawingGAN++, (d) results of removing line-promoting DT loss LDT from Eq.(1), (e) results of not using model pre-trained on NPR data as
initialization, (f) our results.
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Fig. 12. Test boxplot [49] of four methods. In each box, the central red
line indicates the median, and the bottom and top blue edges of the box
indicate the 25% and 75% percentiles respectively. The dashed black
line extends to those extreme data points which are not considered as
outliers. The outliers (if any) are plotted using the red ‘+’ symbol.

shown in Figure 12. We further investigate the improvement
of APDrawingGAN++ over APDrawingGAN on dark faces.
We concentrate on the pairwise comparison of (APDraw-
ingGAN, APDrawingGAN++) and find that APDrawing-
GAN++ wins in this comparison in 77.67% of cases for dark
faces and 74.69% of cases for light faces. This justifies that
histogram matching augmentation in APDrawingGAN++ is
particularly useful for correcting dark faces that cannot be
dealt with well by APDrawingGAN. The full details on how
to set up the user study are presented in Section A5 of the
appendix.

LPIPS Distance. We compare APDrawingGAN++ with
CycleGAN, Pix2Pix and APDrawingGAN using the LPIPS
distance [50], which is a perceptual similarity metric and has
been demonstrated to correlate well with human perceptual
similarity. We evaluate the LPIPS distance on the full test
set to measure the perceptual similarity between generated

(a) Input         (b) Ground truth    (c) w/o AEs  (d) w/o Classifiers    (e) Ours

Fig. 13. Ablation study on auto-encoders and classifiers: (a) input face
photos, (b) ground truth drawings by an artist, (c) results of removing
auto-encoders in generator, (d) results of removing lip and hair clas-
sifiers, (e) our results. To better compare changes resulted by auto-
encoders, zoomed eyes are shown under each synthesized drawing.
Zoom in to see more facial feature details for lips and hair.

APDrawings and real APDrawings using the authors’ code3

and default settings. The comparison results are presented
in Table 3. The results show that our method has a much
lower LPIPS distance than CycleGAN and Pix2Pix, and
lower than APDrawingGAN, indicating our generated AP-
Drawings are perceptually closer to the real APDrawings.

7.2 Ablation study in APDrawingGAN++

We perform an ablation study from two aspects: one is on
key ingredients in APDrawingGAN++ and the other is on
the difference between APDrawingGAN++ and APDraw-
ingGAN. More studies on other ingredients are presented
in the Appendix.

3. https://github.com/richzhang/PerceptualSimilarity. We use ver-
sion 0.1.
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(a) Input (b) Ground truth (c) W/O Haug (d) Ours

Fig. 14. Ablation study on histogram matching augmentation (Haug): (a)
input face photos, (b) ground truth drawings by an artist, (c) results of
not using histogram matching augmentation, (d) our results.

(a) Input (b) Ground truth (c) W/O remap (d) Ours

Fig. 15. Ablation study on DT loss nonlinear mapping: (a) input face
photos, (b) ground truth drawings by an artist, (c) results of not using
nonlinear mapping in DT loss, (d) our results.

7.2.1 Study on local networks, line-promoting DT loss and
initialization

First, we perform an ablation study on key ingredients in
APDrawingGAN++, i.e., local networks Gl∗, Dl∗ and E∗,
line-promoting DT loss LDT and initialization.

Local networks (Gl∗, Dl∗ and E∗) in APDrawingGAN++
are essential to capture the style of each facial region. Since
the style of an APDrawing contains several independent
rendering techniques in different local regions, without local
networks, the model cannot learn the varying styles well
with a location-independent fully convolutional network.
As shown in Figure 11c, without local networks, the model
generates messy results, where both facial region and hair
region exhibit messy hairy style, leading to obvious defects.

Line-promoting DT loss LDT is essential to produce
good and clean results with delicate lines. Without the DT
loss, there are fewer delicate lines in the hair region and
some undesirable white patches appear instead, as shown
in both rows in Figure 11d. Moreover, some unattractive
lines appear around the jaw, leading to drawings unlike the
input photos, as shown in both results in Figure 11d. These
lines are effectively avoided by using the DT loss.

Initialization using the model pre-trained on the NPR
data helps the model to generate good results in less time.
The results without initialization are worse in having more
messy lines in the facial region and more messy hair region,

(b) w/ ℒ"#$%&

(a) w/o ℒ"#$%&

Fig. 16. Ablation study on line continuity loss: (a) synthesized drawings
with line continuity loss removed (b) synthesized drawings with line
continuity loss included. To better compare changes due to the line con-
tinuity loss, zoomed local regions are shown beside each synthesized
drawing.

as shown in the cheek region of the first result, the chin
region of the second result and the hair region of both results
in Figure 11e. The pre-training strategy helps the model to
quickly converge to a good result, avoiding such artifacts.

7.2.2 Study on difference between APDrawingGAN++ and
APDrawingGAN
The major differences between APDrawingGAN++ and AP-
DrawingGAN include (1) auto-encoders, (2) classifiers for
lips and hair, (3) histogram matching augmentation, (4) DT
nonlinear mapping in the DT loss calculation and (5) a novel
line continuity loss. We perform an ablation study on their
effect.

Auto-encoders help generate better facial feature draw-
ings in fine detail. As illustrated in Figure 13c, without
auto-encoders, the drawings around eyes, noses and lips
are worse than using auto-encoders, i.e., with more messy
lines around these facial features and less natural shape (see
the eyes, lip and nose of all three examples). Classifiers
Clip and Chair help get better lips, hair drawings and
reasonable lip colors according to the input photos. As
illustrated in Figure 13d, without classifiers and the one-hot
vector to control lip and hair drawing generation, the colors
(white/black) of lip drawings are often not consistent with
the artist drawings (lips with lipstick are often drawn in full
black by the artist, but are drawn in either full white or half
white half black in Figure 13d), and the hair drawings tend
to have more unwanted white patches.

Histogram matching augmentation (Haug) helps balance
face colors in the training set. Since there are relatively few
dark faces in the APDrawing dataset, we found histogram
matching augmentation especially helps portrait generation
of dark faces. We use dark face photos to illustrate its
improvement in Figure 14. Without Haug, the synthesized
drawings are more messy and may have unwanted black
patches in the faces.

DT nonlinear mapping in the DT loss calculation helps
strongly penalize large misalignments while tolerating small
misalignments. As illustrated in Figure 15, without DT
mapping, the synthesized drawings are more messy, while
with DT mapping, we get cleaner drawings.

Line continuity loss helps improve line quality in gen-
erated APDrawings. As illustrated in Figure 16, without
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the line continuity loss, the lines in synthesized drawings
are often discontinuous, while with line continuity loss,
the lines in synthesized drawings become more continuous.
Overall, using the line continuity loss lowers the average
LPIPS distance on the test set from 0.277 to 0.258.

8 CONCLUSION

In this paper, we propose APDrawingGAN++, a composite
GAN model to transform a face photo into a high-quality
APDrawing. APDrawingGAN++ builds upon composite
generators and discriminators that combine both a global
network (for images as a whole) and local networks (for
individual facial regions). We propose a loss function dedi-
cated to APDrawing with five loss terms, including a novel
DT loss (to promote line-stroke-based style in APDrawings),
a novel line continuity loss (to enhance line continuity in
APDrawings) and a local transfer loss (for local networks to
preserve facial features).

APDrawingGAN++ is dedicated to the human face and
APDrawing style, and particularly aims to avoid the many
artifacts produced by existing methods. In particular, AP-
DrawingGAN++ improves upon APDrawingGAN in the
following six aspects: (1) auto-encoders are introduced to
improve facial feature drawings; (2) two lip and hair clas-
sifiers are introduced to guide the local generator/auto-
encoder towards a desired style; (3) a nonlinear mapping on
the DT loss is used to strongly penalize large misalignments
while tolerating small misalignments; (4) a line continuity
loss is introduced to enhance line continuity in generated
APDrawings; (5) a theoretical explanation of using multiple
generators for APDrawing generation; and (6) histogram
matching augmentation is used for the training set to
achieve better results for dark faces.

Experimental results and a user study show that AP-
DrawingGAN++ can generate high-quality and expressive
APDrawings and outperforms state-of-the-art methods. In
particular, APDrawingGAN++ generates APDrawings with
improved facial features than APDrawingGAN and can
adapt well with faces over a wide range of colors.
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