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A1 OVERVIEW

In this appendix, a theoretical explanation and more
experimental results are provided, including:

• a theoretical explanation of the composite generator
(Section A2);

• some illustrative examples from the APDrawing
dataset (Section A3);

• more qualitative results that compare APDrawing-
GAN++ with seven state-of-the-art style transfer
methods: Gatys [1], CNNMRF [2], Deep Image Anal-
ogy [3], Pix2Pix [4], CycleGAN [5], Headshot Por-
trait [6] and APDrawingGAN [7] (Section A4);

• more details of the user study (Section A5);
• more details of the ablation study (Section A6);
• comparison of our training strategy with an alterna-

tive mixed training strategy (Section A7).

A2 THEORETICAL EXPLANATION OF COMPOSITE
GENERATOR

Our composite generator G defines a mapping gθ : Z → X ,
where Z is the latent space in which the input face photos
are embedded with random perturbations1, X is the data
space containing all portrait drawings, and θ denotes the
set of parameters in the generator.

Our key observation is that artists usually draw different
facial parts using different drawing techniques, e.g., eyes
are drawn with fine details and hair is drawn with curves
and flows. Accordingly, the APDrawing data of the same
person lies in multiple disjoint manifolds of possibly differ-
ent dimensions and we denote this manifold clustering as
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1. This is due to the randomness introduced in the dropout layer at
test time.

M = {M1,M2, · · · } ⊂ X , in which any two data manifolds
Mi and Mj are disconnected2.

Define the probability density function pz : Z → R for
the distribution of face photos embedded in the latent space,
and the probability density function px : X → R for the
distribution of APDrawing data that we want to learn. Note
that px satisfies that the value outside the target manifold
clusters M is 0, i.e. the support of px satisfies

supp(px) , {x ∈ X | px(x) 6= 0} ⊆M (1)

The distribution function µ on Z can be derived from pz ,
i.e., for an arbitrary subset U in Z ,

µ(U) =

∫
U
pz(z) dz (2)

Similarly, the distribution function ν on X can be derived
from px.

The generator G is optimized via a minimax process and
the goal is to find a proper θ so that gθ#µ = ν, where
gθ#µ stands for the push forward of µ by gθ [8]. I.e., for
an arbitrary subset V in X ,

gθ#µ(V ) , µ(g−1θ (V )) = ν(V ) (3)

where g−1θ is the inverse mapping of gθ , and g−1θ (V ) is a
subset in Z (refer to Fig. A1).

Here we show that a single generator cannot learn such
a proper θ that satisfies gθ#µ = ν. Therefore, designing a
set of multiple generators like our G is necessary. In this
study, we follow [9] to assume that all face photos of the
same person lie in a low-dimensional manifold. Since these
face photos lie in a single manifold, the probability density
function pz is non-zero on the whole latent space Z ; in other
words, the support of pz is the whole Z . Now we consider a
special case, in which the manifold cluster M contains only
two disconnected manifolds M1 and M2. We have

Theorem 1. Let pz, px be the probability density functions on
Z, X respectively, and satisfy supp(pz) = Z, supp(px) ⊆

2. Note that the condition Mi ∩Mj = ∅ alone cannot guarantee that
Mi and Mj are disconnected, e.g., in R2, the manifold sin 1

x
and x = 0

are connected, but their intersection is empty. On the other hand, if two
manifolds are disconnected, their intersection is also empty.
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Fig. A1. The proof of Theorem 1.

M = M1 ∪M2, supp(px) ∩M1 6= ∅, supp(px) ∩M2 6= ∅.
Let µ, ν be the distribution functions corresponding to pz, px,
respectively. Then there does not exist a Lipschitz continuous
function3 gθ : Z → X that makes gθ#µ = ν.

Proof. We prove this theorem by contradiction. Assume that
there exists such a Lipschitz continuous function gθ with
which gθ#µ = ν. For a subset V in X that satisfies V ∩
supp(px) = ∅, from the definition of supp(px), we have ∀x ∈
V, px(x) = 0, thus gθ#µ(V ) = ν(V ) = 0, i.e.,

µ(g−1θ (V )) = 0⇒
∫
g−1
θ (V )

pz(z) dz = 0 (4)

Since supp(pz) = Z , g−1θ (V ) is a zero set4 in Z . For the com-
plement set of supp(px) in X , (X \supp(px))∩supp(px) = ∅,
thus g−1θ (X \ supp(px)) is a zero set in Z .

Since gθ is Lipschitz continuous, we have g−1θ (X −
supp(px)) = ∅. Then gθ is a function from Z to M =
M1∪M2, i.e. gθ : Z →M1∪M2. Since a continuous function
maps a connected set to another connected set, but M1∪M2

is not connected, this leads to a contradiction.

A3 ILLUSTRATIVE EXAMPLES IN APDRAWING
DATASET

In Section 6 of the main paper, we present the construction
of the APDrawing Dataset, which contains 140 pairs of
face photos and corresponding portrait drawings, with all
portrait drawings were drawn by a single professional artist.
Figure A2 shows examples of four pairs. More examples are
illustrated in Figures A5-A17, i.e., the pair is in the format
of (input photo, ground truth).

A4 MORE QUALITATIVE RESULTS

In Section 7.1.1 of the main paper, we compare APDraw-
ingGAN++ with seven state-of-the-art style transfer meth-
ods: Gatys [1], CNNMRF [2], Deep Image Analogy [3],
Pix2Pix [4], CycleGAN [5] , Headshot Portrait [6] and AP-
DrawingGAN [7].

To make this appendix self-explainable, we repeat here
the comparison method in the main paper. For methods

3. We consider the Lipschitz continuous functions here due to the
existence of ReLU, leaky ReLU and tanh functions in our network.

4. A zero set is a set with zero Lebesgue measure.

Fig. A2. Four examples of image pairs (each pair contains a face photo
and an artist’s portrait drawing) in our APDrawing dataset.

Fig. A3. A screenshot of the website for user study.

that take one content image and one style image as input,
i.e., CNNMRF, Deep Analogy and Headshot Portrait, we
randomly select a style image in the training set. Gatys’
method [1] by default takes one content image and one style
image as input. But for fair comparison, we use all the style
images in the training set and compute the average Gram
matrix to model the target style as in [5]. For CycleGAN,
Pix2Pix and APDrawingGAN, we use the same training
data as APDrawingGAN++ and default parameters to train
the models.

The qualitative results on all test data are illustrated
in Figures A13-A17. We also test our trained APDrawing-
GAN++ on arbitrary collected face photos which do not
have ground truth artist’s drawings, and the qualitative
results are illustrated in Figure A18. These results show that
APDrawingGAN++ consistently generates high-quality and
better APDrawings than other methods.

A5 MORE DETAILS IN USER STUDY

In Section 7.1.2, we present a user study to compare Cycle-
GAN [5], Pix2Pix [4], APDrawingGAN [7] and APDrawing-
GAN++. Here we present the detail of setup and experimen-
tal procedure in this user study.
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Source Ground Truth Stylized 1 Stylized 2

Fig. A4. Three checkpoints. (zoom in to see more details.) In checkpoints
in the 1st and 3rd row, the stylized drawing on the left is obviously better
than the right. In the checkpoint in the 2nd row, the stylized drawing on
the right is obviously better than the left.

A5.1 Experimental Procedure

All 70 test pairs in the APDrawing dataset were used in
the user study. For each face photo, four stylized drawings
were automatically generated by CycleGAN, Pix2Pix, AP-
DrawingGAN and APDrawingGAN++. Then each image
pair was expanded to a group of six images: one original
face photo, one ground truth APDrawing, and four artificial
stylized drawings. In a total of 70 groups of images, 10
groups were randomly assigned to each participant. Each
time the original face photo and two stylized drawings
were shown on the screen side by side. The participant
can hover the mouse over each stylized drawing and the
enlarged drawing will appear in the bottom for a detailed
comparison with ground truth side by side. After checking
the detail of each of two stylized drawings and comparing
them with the original face photo and ground truth, the
participant chose the one that was better as a masterful
APDrawing based on style similarity and quality (clearer
outline of facial features, less messy lines etc). See Figure
A3 for a screenshot. For four stylized drawings in an image
group, any two of them, i.e., (CycleGAN, Pix2Pix), (Cycle-
GAN, APDrawingGAN), (CycleGAN, APDrawingGAN++),
(Pix2Pix, APDrawingGAN), (Pix2Pix, APDrawingGAN++)
and (APDrawingGAN, APDrawingGAN++), were shown
once.

A5.2 Quality Control

To avoid unreliable input such as random selection, we
add checkpoints in the process of the user study to control
the quality of user input. We use three special pairs of
stylized drawings with obvious preference as checkpoints
(Figure A4). These three pairs randomly appeared in the
process of user study. According to our preparatory ex-
periments, participants with high concentration can easily
choose the obviously better drawing, while those who just
randomly select drawings are likely to fail in at least one

checkpoint input. We discard the user input if one or more
checkpoints failed.

A5.3 Result Analysis
102 participants were recruited in this user study and 87 of
them passed all the checkpoints. We performed statistical
analysis on the valid inputs of these participants in three
aspects.

First, we figure out the best ranked drawing from the
four stylized drawings in each image group. For example,
if A is ranked better than B, A is better than C and A is
better than D by a participant, then the best result in (A,
B, C, D) is A. If no single result is better than all three
others, the votes of this participant for this image group are
discarded. From all votes in 87 valid inputs, we compute
the percentages that the four methods (CycleGAN, Pix2Pix,
APDrawingGAN and APDrawingGAN++) are ranked best
respectively. The ranking results are summarized in Table 1
of the main paper. We also compute the percentage of
each method being preferred in pairwise comparison and
summarize the results in the same table. The results in the
main paper show that APDrawingGAN++ is much better
than the other three methods.

Second, we conduct analysis of variance (ANOVA) for
pairwise comparisons on ranked best percentage and pre-
ferred percentage. Pairwise ANOVA results are shown in
Table 2 of the main paper. All of the p-values are � 0.01,
justifying that the rejection of the null hypothesis and the
differences between the means of our method and either
method (Pix2Pix, CycleGAN or APDrawingGAN) are sta-
tistically significant.

Third, we investigate the improvement of APDrawing-
GAN++ over APDrawingGAN on dark faces. We concen-
trate on the pairwise comparison of (APDrawingGAN, AP-
DrawingGAN++) and find that APDrawingGAN++ wins
in this comparison in 77.67% of cases for dark faces and
74.69% of cases for light faces. This justifies that histogram
matching augmentation in APDrawingGAN++ is useful for
correcting dark faces that cannot be dealt with well by
APDrawingGAN.

A6 MORE INGREDIENTS IN THE ABLATION STUDY

In Section 7.2 of the main paper, we present an ablation
study on:

• some key ingredients of APDrawingGAN++, includ-
ing local networks, line-promoting DT loss LDT and
initialization using the model pre-trained on the NPR
data; and

• major differences between APDrawingGAN++ and
APDrawingGAN, including auto-encoders, lip and
hair classifiers, DT nonlinear mapping, and his-
togram matching augmentation.

Here we present the study on more ingredients.

A6.1 Loss Function
There are four terms in the loss function of APDrawing-
GAN++ (refer to Eq.(1) in the main paper). In addition
to LDT (studied in Section 7.2 of the main paper), we
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(a) Input (b) GT (c) w/o LL1
loss (d) Ours

Fig. A5. Ablation study on the pixel-wise loss term LL1
in the loss

function. From left to right: input face photos, ground truth, results of
removing LL1

from the loss function, and our results.

Input Ilocal Iglobal Final output
Without local transfer loss

Ground Truth Ilocal Iglobal Final output
With local transfer loss

Fig. A6. Ablation study on the local transfer loss term Llocal in the loss
function. The first column shows the input face photo and ground truth
APDrawing. The second, third and last columns show Ilocal, Iglobal and
the final output of generator G. Results of removing Llocal from the loss
function are shown in the top row, and results with Llocal are shown in
the bottom row.

further study the other three terms: pixel-wise loss LL1
,

local transfer loss Llocal and adversarial loss Ladv .
LL1

drives the synthesized drawings close to the
ground-truth drawings in a pixel-wise manner. As illus-
trated in Figure A5, without this loss term, excessive white
lines appear in the hair region, and meanwhile, regions
without lines (such as the necks) become blurry. This is
possibly because LDT prefers to promote lines, and without
the balance of LL1

, regions containing a few lines (such as
hair) exhibit too many lines, while other regions without
lines are still not controlled properly, leading to obvious
artifacts in these regions (such as necks).

Llocal puts extra constraints on the intermediate output
of six local generators in Gl∗, and behaves as a regulariza-
tion term in the loss function. As illustrated in Figure A6,
without this loss term, both the intermediate results Ilocal
(which is an aggregated drawing blending outputs of all
local generators) and Iglobal (which is the output of Gglobal)
are underconstrained, leading to unstable and poor genera-
tions. Overall, using the local transfer loss Llocal decreases
the average LPIPS distance value on the test set from 0.286 to

(a) Input (b) GT (c) no Ladv (d) 2 local nets (e) Ours

Fig. A7. Ablation study on GAN loss Ladv and using only 2 local nets
(face and hair). From left to right: input face photos, ground truth, results
of removing Ladv from the loss function, results of using only face and
hair local nets, and our results.

(a) Input (b) GT (c) w/o Global net (d) Ours
Fig. A8. Ablation study on the global net. From left to right: input face
photos, ground truth, results of removing the global net, and our results.

0.258, and a user study5 shows that our results are selected
as better than the results of no Llocal in 81.1% cases.

Ladv is fundamental for the GAN architecture and
guarantees better results than a CNN. As illustrated in
Figure A7c, without GAN loss Ladv , the discriminator in
APDrawingGAN++ is removed and the results tend to
be blurry, i.e., delicate lines are absent especially in hair
regions.

A6.2 Local Network Structure

We use six local networks in APDrawingGAN++, corre-
sponding to the local facial regions of the left eye, right
eye, nose, mouth, hair and the background. To explore the
necessity of using six local networks, we conduct an ablation
study on using only two local networks for face and hair. As
illustrated in Figure A7d, with only two local nets for face
and hair, facial features are not well drawn, e.g. eyes in both
results are much more messy than our results, and lips in
the first result are drawn in a strange shape.

A6.3 Global Network Structure

To explore the necessity of using the global network in gen-
erator, we conduct an ablation study on the global network.
We remove the global network and the fusion network, and
use the combination of local network results Ilocal as the
output of the generator. As illustrated in Figure A8, without

5. 48 participants were recruited in this user study and 40 of them
passed checkpoints.
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(a) Input (b) GT (c) U-Net (d) c+ResBlocks (e) Ours
Fig. A9. Ablation study on residual blocks in the generator. From left
to right: input face photos, ground truth, results of using U-Net in the
generator, results of using U-Net and residual blocks in the generator,
and our results (using CNN with residual blocks in the generator).

Input GT Train w/o JC Train with JC
Fig. A10. Ablation study on adding jaw contours (JC) in coarse training
data. From left to right: input face photos, ground truth, results of the
APDrawingGAN++ model trained without adding JC, and results of the
APDrawingGAN++ model trained with adding JC.

the global network, the hair is drawn less delicately and
the boundaries of local regions (e.g. eyes) are more visible,
degrading the quality of synthesized drawings. Overall, us-
ing the global network decreases the average LPIPS distance
value on the test set from 0.274 to 0.258. A user study6 shows
that our results are selected as better than the results of no
global net in 58.3% cases.

A6.4 Residual Blocks in the Generator
In Section 4 of the main paper, we introduce the architecture
of our network. Compared with APDrawingGAN, we de-
sign the generator G using a CNN with residual blocks [10].
Residual blocks were designed to reduce the impact of
vanishing gradients and speed up the training procedure.
We compare the current generator structure with the U-Net
structure used in APDrawingGAN and U-Net with residual
blocks in Figure A9. It is shown that the results of using
residual blocks (Figure A9(d)(e)) have less messy lines on
the face and the results generated by our structure have
finer details.

A6.5 Pre-training Strategy
In Section 6 of the main paper, we use a coarse-level pre-
training to provide the training of APDrawingGAN++ with
a good initialization. We collect 6,655 frontal face photos
taken from ten face datasets [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20]. For each photo, we generate a synthetic

6. The same user study as the one in footnote 5.

Paired Data 𝜌",$

Unpaired Data 𝜌" Unpaired Data 𝜌$

OR

NPR results Web data

Fig. A11. Paired and Unpaired data used in the mixed training strategy.

(a) Input          (b) Ground truth          (c) Ours         (d) 𝜌" NPR results (e) 𝜌" web data

Fig. A12. Comparison results with mixed training strategy. From left to
right: input photos, ground truth, our results, results of mixed training
with NPR data, and results of mixed training with web data

drawing using the two-tone NPR algorithm in [21]. Since
it often generates results without a clear jaw contour (due
to low contrast in input images at these locations), we use
the face model in OpenFace [22] to detect the landmarks
on the jaws and subsequently add the jaw contour to
the NPR results. We further study the effect of adding
jaw contours in coarse training data. As illustrated in Fig-
ure A10, without this important preprocessing step, the
trained APDrawingGAN++ (after formal training with the
APDrawing dataset) cannot generate good jaw features in
the synthesized APDrawings. This also demonstrates the
benefits of pre-training, i.e., improved pre-training data can
be efficiently obtained without manual effort.

A7 COMPARISON WITH MIXED TRAINING

We further compare our pre-training strategy with the
mixed training strategy in [23]. The mixed training strategy
jointly trains a generator G : x → y and a discriminator
D : y → D(y) ∈ R using both paired data ρx,y and unpaired
data ρx and ρy . Since G only takes x as input and D only
takes y, unrelated unpaired data can be used. Both GAN
loss and supervised training loss are applied to paired data
ρx,y , while only GAN loss is applied to unpaired data ρx
and ρy . We compare with mixed training with two kinds of
ρy : NPR results or web collected data, refer to Figure A117.

As illustrated in Figure A12d, since NPR generated
data is only a coarse approximation and is far from ideal

7. The NPR results and photos are actually paired, but are used in an
unpaired way here.
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APDrawings, the difference in style leads to inconsistent
results, i.e. sometimes results show NPR style (the second
row), and sometimes results show APDrawing style (the
first and third rows). As illustrated in Figure A12e, although
the web collected data is more delicate and more similar
to APDrawings than NPR generated data, the results still
sometimes show inconsistent styles and contain thicker lines
(the third row), while other times the results are better (the
first row).

Overall, the LPIPS distance on the test set is 0.284 for
mixed training with NPR generated data, 0.280 for mixed
training with web data, 0.277 for no pre-training (i.e. using
paired APDrawing data only) and 0.258 for our method.
A user study8 shows that our results are selected as better
than the results of mixed training with NPR data in 77.5%
cases, and better than the results of mixed training with
web data in 77.4% cases; the results without pre-training
are selected as better than the results of mixed training
with web data in 60.4% cases. The results of mixed training
are worse than ours, probably because the mixed datasets
containing APDrawings and NPR/web data are of different
characteristics (line width, abstraction level, etc), and this
leads to inconsistent styles in results.

These results show that the mixed training strategy is
sensitive to differences between training images, and the
benefits of using unpaired data are limited and can produce
worse results. In contrast, our pre-training benefits from
easily obtained NPR data while avoiding the final results
being affected by differences in styles.

It is still worth exploiting unpaired web data when
paired data is limited, but further effort may be needed to
deal with different styles.
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Input Ground Truth StyleRef CNNMRF DeepAnalogy Headshot Gatys’ method CycleGAN Pix2Pix APDrawingGAN Ours

Fig. A13. Qualitative results of our method and comparison with seven state-of-the-art methods. From left to right: input face photos, ground truth
APDrawings, the randomly-chosen style images for methods which take one content and one style image as input, CNNMRF [2] results, Deep
Image Analogy [3] results, Headshot Portrait [6] results, Gatys [1] results, CycleGAN [5] results, Pix2Pix [4] results, APDrawingGAN [7] results, our
APDrawingGAN++ results.
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Input Ground Truth StyleRef CNNMRF DeepAnalogy Headshot Gatys’ method CycleGAN Pix2Pix APDrawingGAN Ours

Fig. A14. Qualitative results of our method and comparison with seven state-of-the-art methods. From left to right: input face photos, ground truth
APDrawings, the randomly-chosen style images for methods which take one content and one style image as input, CNNMRF [2] results, Deep
Image Analogy [3] results, Headshot Portrait [6] results, Gatys [1] results, CycleGAN [5] results, Pix2Pix [4] results, APDrawingGAN [7] results, our
APDrawingGAN++ results.
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Fig. A15. Qualitative results of our method and comparison with seven state-of-the-art methods. From left to right: input face photos, ground truth
APDrawings, the randomly-chosen style images for methods which take one content and one style image as input, CNNMRF [2] results, Deep
Image Analogy [3] results, Headshot Portrait [6] results, Gatys [1] results, CycleGAN [5] results, Pix2Pix [4] results, APDrawingGAN [7] results, our
APDrawingGAN++ results.
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Fig. A16. Qualitative results of our method and comparison with seven state-of-the-art methods. From left to right: input face photos, ground truth
APDrawings, the randomly-chosen style images for methods which take one content and one style image as input, CNNMRF [2] results, Deep
Image Analogy [3] results, Headshot Portrait [6] results, Gatys [1] results, CycleGAN [5] results, Pix2Pix [4] results, APDrawingGAN [7] results, our
APDrawingGAN++ results.
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Fig. A17. Qualitative results of our method and comparison with seven state-of-the-art methods. From left to right: input face photos, ground truth
APDrawings, the randomly-chosen style images for methods which take one content and one style image as input, CNNMRF [2] results, Deep
Image Analogy [3] results, Headshot Portrait [6] results, Gatys [1] results, CycleGAN [5] results, Pix2Pix [4] results, APDrawingGAN [7] results, our
APDrawingGAN++ results.
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Fig. A18. Qualitative results of our method and comparison with seven state-of-the-art methods. From left to right: input face photos (collected
from internet which do not have ground truth artist’s drawings), the randomly-chosen style images for methods which take one content and one
style image as input, CNNMRF [2] results, Deep Image Analogy [3] results, Headshot Portrait [6] results, Gatys [1] results, CycleGAN [5] results,
Pix2Pix [4] results, APDrawingGAN [7] results, our APDrawingGAN++ results.


