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a b s t r a c t

In this paper, we consider the problem of approximating the longest path in a grid
graph that possesses a square-free 2-factor. By (1) analyzing several characteristics of four
types of cross cells and (2) presenting three cycle-merging operations and one extension
operation, we propose an algorithm that finds in an n-vertex grid graph G, a long path of
length at least 5

6n + 2. Our approximation algorithm runs in quadratic time. In addition
to its theoretical value, our work has also an interesting application in image-guided maze
generation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Finding the longest path in a graph is a classical problem and have attracted considerable attentions in theoretical
computer science. Given that Hamiltonian path (or circle) problem is N P -complete as a special case, it is only practical
to design computer programs that find approximate solutions to the longest path in a graph. For general undirected graphs,
Karger et al. [1] have shown that, unlessP = N P , for any ε < 1, the problem of finding a path of length n−nε isN P -hard.
Bazgan et al. [2] further revealed that for any ε > 0, the longest path problem is not constantly approximated even in cube
Hamiltonian graphs.

Many approximation algorithms have been proposed for the longest path problem. Monien [3] proposed an exponential
time algorithm that finds in a graph, a long path of length O(log L/ log log L), where L is the length of the longest path. For a
general undirected graph, Bjorklund andHusfeldt [4] improved the results by presenting a polynomial algorithm that finds a
path of length Ω


(log L/ log log L)2


with the performance ratio O(n(log log n/ log n)2), where n is the vertex number in the

graph. Several special graphs have also been considered. Feder et al. [5] showed that for sparse graphs such as 3-connected
cubic n-vertex graphs, there is a polynomial time algorithm that can find a cycle of length at least n(log3 2)/2. Chen et al. [6]
showed that, for a 3-connected n-vertex graph with bounded degree d, there is a cubic algorithm which can find a cycle of
length at least n(logb 2)/2, where b = 2(d − 1)2 + 1. This result was improved in [7], showing that for the same graph, there
is a cubic algorithm which can find a cycle of length at least n(logb 2)/2/2 + 3, where b = max{64, 4d + 1}.

In this paper, we consider the approximate longest path problem in grid graphs. Itai et al. [8] first proved that
determining whether a general grid graph is Hamiltonian is N P -complete. Later in 1997, Umans and Lenhart [9] showed
that Hamiltonian cycles can be identified in solid grid graphs (a special type of grid graphs without holes) in polynomial
time. Their algorithm is based on a 2-factor of the graph and runs in O(n3) time. For general grid graphs with initial square-
free 2-factors, in this paper, we show that a long path of length at least 5

6n + 2 can be found in an n-vertex grid graph in
quadratic time.

In addition to theoretical contributions, our work on approximating longest paths in grid graphs has also an interesting
application, maze design. In the history of art creation and design, mazes have found diverse applications in visual art (e.g.,
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Fig. 1. A simple perfect maze embedded in 16 × 16 lattices, whose solution encodes the shape of a Chinese character ‘‘Zhong’’.

Fig. 2. Image-guided maze generation. (a) An original color image. (b) The gray-scale image. (c) The black-and-white image after halftoning. (d) The maze
whose solution embeds the pictorial information.

stylized line drawings), architectural decoration (e.g., the herb garden hedgemaze in UK) and cultural and religious symbols
(e.g., decoration in bronze wares in China Shang Dynasty), etc. Designing a meaningful and interesting maze is not an easy
task. Usually wealth of experience and long-term training are needed. In this paper, we show that using the approximating
longest path in grid graphs, a perfect maze can be constructed with the aid of a computer that can encode any predefined
pictorial information.

A perfect maze is defined as a maze which has one and only one path from any point in the maze to any other point. A
simple example is illustrated in Fig. 1. Between the entrance and exit points that are both on the maze boundary, there is
a unique path. When all the lattices passed through by the solution path are painted in black, the encoded shape appears.
To use computer to develop a maze whose solution shows predefined pictorial information, an image-guided maze design
method can be used as follows. First the user chooses an interesting image as a reference (ref. Fig. 2(a)). If the chosen image
is a colored one, it is converted to a gray-scale image (ref. Fig. 2(b)) using a standard computer vision technique [10]. Then
a halftoning technique (Chapter 3 in [11]) is applied to convert the gray-scale image into a binary (i.e., black-and-white)
image (ref. Fig. 2(c)), in which the black pixels are all connected. Finally, the binary image is embedded into a rectangle of
squared lattices (ref. Fig. 2(d)) and the 4-connectivity property of black pixels defines a sparse graph with bounded degree
d ≤ 4. If a Hamiltonian path exists in the graph, then the maze solution is exactly the binary image. Our proposed algorithm
finds a long path in the graph that passes through as many as possible lattices so that the painted path shows a very closed
image of the binary image.

To complete the maze design, given the approximate longest path as the solution, we start iteratively at each node in
the solution and apply the depth-first search in the whole square lattice graph. Finally, the maze pattern is obtained so that
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Fig. 3. Grid graph. Left: a regular grid graph. Right: an irregular grid graph formed by red edges and nodes.

every node in the lattices is reachable from any other node and there is only one solution in themaze between entrance and
exit lattices.

2. Problem specification

In this section, we show that if 4-connectivity in image pixels is used, the black portion in the binary image can be
represented by a grid graph. We follow the notations in [9]. A grid graph G(V , E) is a finite node-induced subgraph of the
infinite two-dimensional integer grid. Formally, one can assign a 2D integer coordinate (xi, yi) to each node vi ∈ V , so that
vi and vj are connected by an edge if and only if their Manhattan distance is 1, i.e. |xi − xj| + |yi − yj| = 1. A grid graph is a
planar graphwith bounded faces. A face of area one is called a cell, which is encompassed by a cycle of length 4. In this paper,
we study regular grid graphs in which all cells are connected and each edge must be incident to at least one cell (ref. Fig. 3).
A regular grid graph is bounded by an outermost hole h0 and possibly several inner holes {h1, h2, . . .}. The boundary B(h) of
each hole is a simple cycle.

Definition 2.1. A regular grid graph is a connected grid graph in which each edge is incident to at least one cell, i.e., a face of
area one.

A 2-factor of graph G is a spanning subgraph of G for which all the vertices have degree two. Let F be a 2-factor of G. If F
does not contain any cycle of length 4, F is called a square-free 2-factor of G. Hartvigsen [12] studied the problem of finding
a square-free 2-factor in bipartite graphs. A necessary and sufficient condition on the existence of a square-free 2-factor in a
bipartite graph is given in [12] in which a polynomial time algorithm was also proposed to find such a square-free 2-factor.
Any grid graph is known to be bipartite by the chessboard coloring as follows. One can assign an integer coordinate (xi, yi)
to each vertex v ∈ G. A node is even if xi + yi ≡ 0 (mod 2), otherwise it is odd. Two nodes are connected if and only if their
Manhattan distance is 1, indicating that every edge connects an odd node and an even node. A grid graph has a square-free
2-factor if and only if the graph satisfies the Hartvigsen’s condition in [12].

Given a regular grid graph, every boundary B(h) is a simple cycle of length larger than 4 (otherwise the cycle just bounds
a single cell). Let C = {C1, C2, . . . , Cm} be the set of all the cycles of length larger than 4. If C is a square-free 2-factor of the
graph G\


i B(hi), then F = {B(h0), B(h1), . . . , B(hk), C1, C2, . . . , Cm} is a square-free 2-factor of the graph G. In this paper,

we assume that the regular grid graph we studied is finite and satisfies the Hartvigsen’s condition. So a square-free 2-factor
F exists. In the following context, unless otherwise noted, a graph G is referred to as a finite, regular grid graph.

Definition 2.2. An initial 2-factorF of a graph G is defined asF = F ′
∪{B(h0), B(h1), . . . , B(hk)}, whereF ′ is a square-free

2-factor of G \


i B(hi), and B(h0), B(h1), . . . , B(hk) are all the boundaries of holes in G.

The problem we solve in this paper is summarized below.

Problem 2.3. Given a finite, regular grid graph G with an initial 2-factor F , find a path in G that is as long as possible.

In this paper, we propose a solution that can find in an n-vertex graph G with F , a path of length at least 5
6n + 2 in

quadratic time. Our approximate algorithm for the longest path problem is based on the classical cycle-merging technique.
We first study some characteristics of cross cells in G (to be defined in Section 3) and propose three cycle-merging and
one extension operations in Section 4. Then we present the approximate algorithm and prove its correctness in Section 5.
Performance analysis of the approximate algorithm and comparisons with previous results are given in Sections 6 and 7,
respectively. Finally, Section 8 gives our conclusion.

3. Characteristics of cross cells

Denote the initial 2-factor F of a graph G by F = {C1, . . . , Cr}.1

1 F includes all the boundaries of G.
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Fig. 4. Four types of cross cells.

Fig. 5. Proof of Lemma 3.3.

Fig. 6. Proof of Lemma 3.4.

Definition 3.1. A cross cell of Gwith respect to F is a cell whose four nodes belong to at least two different cycles Ci and Cj,
i ≠ j.

As illustrated in Fig. 4, for a graph G with F , dark edges are used to refer to the edges in F and light edges are those
in G \ F . Also illustrated in Fig. 4, there are four different types of cross cells in G and they are called Type I, II, III and IV,
respectively, in this paper.

• Type I. There is only one dark edge in the cell;
• Type II. There are two adjacent dark edges in the cell;
• Type III. There are two opposite dark edges in the cell;
• Type IV. There is no dark edge in the cell.

Observation 3.2. In a graph G with F , for any cross cell P ∈ G and an edge e ∈ P , if e /∈ F , then e does not lie on the
boundary of any hole B(h) of G, i.e., there exists another cell P ′

∈ G that is adjacent to P and shares e.

Lemma 3.3. If P is a Type IV cell in G with respect to F , then at least one of the four neighboring cells of P in G is a Type III cell.

Proof. Observation 3.2 guarantees that P has four neighbor cells P1, . . . , P4. Refer to Fig. 5. Each node of A, B, C,D is passed
through by one cycle. If nodes A and B are not in the same cycle, then (E, F) cannot be a dark edge. So P1 is a Type III cell. The
same argument holds for the node pairs (A,D), (D, C) or (C, B). If this situation does not exist, A, B, C,D are all in the same
cycle and then P is not a cross cell, a contradiction. �

Given Lemma 3.3, if no Type III cell can be found in G, then there will be no Type IV cells. Refer to Fig. 6. Let P be a Type
II cell in G and {P1, P2} are the two neighbors of P that share the two light edges of P .

Lemma 3.4. If there are no Types III, IV cells in G with respect to F and P is a Type II cell in G, then at least one of two neighbors
{P1, P2} is a Type II cell.
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Fig. 7. Proof of Lemma 3.5.

Fig. 8. Operation II. (a) The non-nesting case. (b) The nesting case.

Proof. If Lemma 3.4 does not hold, the two adjacent cells {P1, P2} are both Type I cells. Let the Type II cell P be configured
as in Fig. 6. D is the node in P that is not in the cycle passing through nodes A, B, C . Then it is readily seen that DK and DL
are solid edges, otherwise F is not a 2-factor in G. Since there are no Types III and IV cells in G, the dark edges incident to
nodes A, C, E, F are determined accordingly, as shown in Fig. 6.

GEH and ABC must belong to the same cycle, otherwise P3 is a Type III cell. The same argument holds for IFJ and ABC
being in the same cycle. KM must be a light edge, otherwise P4 is a Type III cell. Since K has degree 2 in F , KN is a dark edge.
Symmetrically LN is a dark edge, leading to the result that P5 contains a cycle of length 4, a contradiction to the assumption
that F is a square-free 2-factor. That completes the proof. �

Lemma 3.5. If there are no Types III and IV cells in G with respect to F , then there exists a Type II cell in G.

Proof. If Lemma 3.5 does not hold, then all the cross cells in G are of Type I. Let P be such a Type I cell in G with the
configuration shown in Fig. 7. In P , AB is the only dark edge. By Observation 3.2, neighbor cells P1, P2 exist. Since nodes C,D
have degree 2 in F , the dark edges incident to C,D must be configured as shown in Fig. 7. Since P1 is not a Type III cell, GD
and ECF must be in the same cycle and P2 is a Type I cell. By repeating the process, neighbor cells P3, P4 of P2 exist, and AB
and JIK are in the same cycle, and P4 is again a Type I cell. Keeping iterating this process, the graph G is infinite long and the
2-factor F contains two cycles. This contradicts the fact that G is a finite graph and thus completes the proof. �

4. Cycle-merging and extension operations

Based on the characteristics of cross cells presented in the above section, in this section we define three merging
operations and one extension operation that are used in the algorithm proposed in Section 5.

Let P be a Type III cell through which two cycles C1, C2 in F pass. Flipping the edge types in P (i.e., changing the dark
edges into light and light edges into dark) will merge the two cycles C1, C2 into a larger one.

Definition 4.1. The flipping operation of a Type III cell is defined as Operation I, denoted by ⊕1, and the new merged cycle
is denoted by C = C1 ⊕1 C2.

If C1 is nested within C2, the exterior of C2 and the interior C1 become the exterior of C . If neither of C1 and C2 is nested
within the other, then the union of their interiors becomes the interior of C .

Given Lemmas 3.4 and 3.5, if there are no Type III cells in G with respect to F , we can find in G two adjacent cross cells
P and Q of Type II.

Definition 4.2. Operation II, denoted by ⊕2, deals with two adjacent Type II cells, and the new merged cycle is denoted by
C = C1 ⊕2 C2.

Two cases of Operation II are illustrated in Fig. 8. When merging two cycles, Operation II will create two free nodes that
do not belong to any cycle inF . When neither of two cycles C1, C2 is nestedwithin the other, the two new created free nodes
are inside themerged cycle C . If one cycle C1 is nested within C2, the exterior of C2 and the interior of C1 become the exterior
of the new cycle C , and the two free nodes are outside C . The extension operation defined below deals with multiple free
nodes.



W.-Q. Zhang, Y.-J. Liu / Theoretical Computer Science 412 (2011) 5340–5350 5345

Fig. 9. Proof of Lemma 4.5. (a) The original pattern. (b) After operation II. (c) Case I. (d) Case II: the first pattern. (e) Case III: the second pattern.

Definition 4.3. The extension operation, denoted by EXTEND(P), deals with the cell P , in which the four nodes A, B, C,D in
clockwise order satisfy that AB is a dark edge in F and C,D are two free nodes. EXTEND(P) extends the dark edge AB into
ADCB.

Definition 4.4. A free node v is said to be adjacent to a cycle Ci, if and only if Ci passes through some of the eight nodes of
cells incident to v.

If the free nodes are inside one merged cycle C ′, they will not affect the merging operations on the cross cells passed
through by other cycles in F . If one free node is adjacent to at least two different cycles, we can design another merging
operation (Operation III) to merge more cycles. The following lemma characterizes this situation.
Lemma 4.5. Assume that graph G contains no Type III cells. Let P, Q be two adjacent cross cells of Type II in G. Let node I incident
to P (Fig. 9(a)) become a free node after applying Operation II on P, Q (Fig. 9(b)). If after all the possible extension operations, I is
adjacent to at least two different cycles, then the surrounding pattern of I has only two possible patterns, as illustrated in Fig. 9(d)
and (e).

Proof. Refer to Fig. 9. Let C1, C2 be cycles in F and A, B, . . . ,K be nodes. After applying Operation II on P and Q , I becomes a
free node. Since nodes A and C have degree 2 in F , AB and CD are dark edges, as shown in Fig. 9(b). Since by assumption cells
P1, P2 are not Type III cells before merging cycles C1, C2, EF and GH are also dark edges in Fig. 9(b).

Now if K is a free node, P4 can be extended, and I is no longer a free node. Thus K is in F , and so is J . Given J , K have
degree 2 in F , if node L is free and JH and DK are both dark edges, then I is adjacent to only one cycle, a contradiction. Thus
L cannot be free, and all the nodes J , K , L are in F . By considering to which cycle node J and K belong, we have the following
three cases:

Case I: HJ and DK are dark edges, as shown in Fig. 9(c). In this case, L must belong to another cycle C3, so JL and KL are
light edges, and P3 is a Type IV cell before applying a merging operation on P , Q . According to Lemma 3.3, there must be a
Type III cell, which is contradictory to the assumption. So this case does not exist.

Case II: Both HJ and DK are light edges. This case (the first possible pattern) is shown in Fig. 9(d) (note that nodes J , K
have degree 2 in F ).

Case III: One of HJ and DK is a dark edge. Without generality, assume that HJ is a dark edge and DK is light. First, if KL is a
light edge, then P3 is a Type IV cell before merging P and Q , a contradiction. Second, assume that KL is a dark edge as shown
in Fig. 9(e). Since nodes K , D have degree 2 in F and KM is a dark edge, if DN is also a dark edge, then P4 becomes a Type III
cell, also a contradiction. So DN is a light edge and DR is a dark edge. Note that NS is a light edge, otherwise P6 becomes a
Type III cell. Since N has a degree of 2 in F , NT must be a dark edge. If RU is a dark edge, then RS is a light edge and the two
dark edges starting from S must be SW and SV ; in this subcase, to whichever cycle WSV belongs, one of P7 and P8 will be a
Type III cell, a contradiction. Thus RS must be a dark edge. Accordingly, we obtain the second possible pattern, as shown in
Fig. 9(e). �

Given Lemma 4.5, once we apply Operation II on two adjacent Type II cells with respect to cycles C1, C2 and apply all the
possible extension operations, if a free node is adjacent to two cycles C = C1 ⊕2 C2 and C3, and the surrounding pattern is
in the first case as shown in Fig. 9(d), the third merging operation can be designed and the following definition is in order.
Definition 4.6. Operation III, denoted by⊕3, deals with free nodes created by applying Operation II (C = C1 ⊕2 C2), and the
new merged cycle is denoted by C ′

= C ⊕3 C3.

Fig. 10 illustrates the Operation III. It is not difficult to point out that if C and C3 are not nested within each other, the
new free node is inside C ′; otherwise if C is nested within C3, the new free node is outside C ′. Operation III is an important
tool for us to deal with the free nodes created by Operation II.

Note that the patterns at the left and bottom sides of the new free node is exactly the same as the old one. So with a
similar analysis as the proof to Lemma 4.5, if this node is still free after applying the extending operation and is adjacent to
different cycles, its surrounding pattern is the same as illustrated in Fig. 9(d) or (e).

For the second case as shown in Fig. 9(e), we note that cells P5 and P6 form the pattern that can be merged by Operation
II; after applying Operation II, the free node is no longer adjacent to different cycles. Thus the second case does not affect
the merging procedure.
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Fig. 10. Graph patterns after operations II and III.

Observation 4.7. Given a graph G with F , after applying Operations I, II, III and extending operations, for any free node
v that is adjacent to two or more nodes belonging to different cycles, the surrounding patterns of v can have at most two
types, and the free node will not affect the merging procedure on the remaining cycles.

Up to now, we have defined all the four types of operations we need in the cycle-merging algorithm. The first operation
finds a Type III cell and flips it, merging two cycles with no free nodes left. If no Type III cell can be found, we prove that
two adjacent Type II cells can be found, on which we define the second type of merging operation, merging two cycles and
generating two free nodes. In order to handle with these free nodes, we prove that if any free node affects other boundaries,
the surrounding pattern is uniquely determined. Based on this pattern, we define Operation III whichmerges two cycles and
moves the free node, plus an extending operation guaranteeing that no adjacent free nodes appear. These four operations
will be the core of the algorithm introduced in the next section.

5. The cycle-merging algorithm

We define an auxiliary graph CYCLE(G, F ) as follows. First, CYCLE(G, F ) is initialized to be empty. Then for every cycle
Ci in F , we add a node oi into CYCLE(G, F ). For all the cycle pairs (Ci, Cj), if Cj is immediately nested within Ci, we add an
edge connecting oi and oj. Since the nesting relation is a partial order, for an initial 2-factor F of G, we have the following
observation:

Observation 5.1. CYCLE(G, F ) is a tree with root node o0, whose corresponding circle B(h0) is the outmost hole of G.

In CYCLE(G, F ), we define o = o1⊕o2 as amerging operation, which operates in three steps: (1) add o into CYCLE(G, F );
(2) delete o1 and o2; (3) for any ok connectingwith o1 or o2, add an edge between o and ok. A node pair (oi, oj) in CYCLE(G, F )
is called an available pair if and only if one of the following two cases is satisfied:

1. oi and oj are child nodes of the same father node ok in CYCLE(G, F ), and oi, oj are leaves.
2. oi is a child of oj and oi is a leaf, or oj is a leaf with father oi.

Given CYCLE(G, F ) and themerging operation⊕, the cycle-merging algorithmworkswith a finite graphGwithF , which
finds a long cycle in G using the following steps.

1. Find all the boundaries of holes in G and list them as B(h0), . . . , B(hk), where B(h0) is the outermost cycle. Checkwhether
G is a regular graph with boundaries B(h0)...B(hk). If G is not regular, reject the graph and halt.

2. Let G′
= G \

k
i=0 B(hi), divide G′ into a bipartite graph by chessboard coloring. Use Hartvigsen’s algorithm [12] to find

a maximum cardinality square-free simple 2-matching F ′. Check whether F ′ is a square-free 2-factor. If not, reject the
graph and halt. Otherwise let F = F ′

∪ {B(h0), B(h1), . . . , B(hk)}, which is an initial 2-factor of G.
3. Build the auxiliary graph CYCLE(G, F ).
4. While F contains more than one cycle, repeat the following steps until F is a single cycle.

4.1. Find an available pair (oi, oj) in CYCLE(G, F ) and a Type III cross cell P with respect to Ci and Cj. Take Operation I
on P . Let C ′

= Ci ⊕1 Cj and update F . Let o′
= oi ⊕ oj and update CYCLE(G, F ). Take all the possible extending

operations. Go back to Step 4. If no more such node pairs (oi, oj) can be found, go to 4.2.
4.2. Find an available pair (oi, oj) and two adjacent Type II cross cells P,Q with respect to Ci and Cj. Take Operation II on

P and Q . Let C ′
= Ci ⊕2 Cj and update F . Let o′

= oi ⊕ oj and update CYCLE(G, F ). Take all the possible extending
operations. Go back to Step 4. If no more such node pairs (oi, oj) can be found, go to 4.3.

4.3. Find an available pair (oi, oj)with their corresponding cycleswhose configuration is as the pattern shown in Fig. 9(d).
Take Operation III on the pattern. Let C ′

= Ci ⊕3 Cj and update F . Let o′
= oi ⊕ oj and update CYCLE(G, F ). Take all

the possible extension operations. Go back to Step 4.
5. Output the single cycle in F .

To illustrate the main steps of the algorithm, a simple example is presented in Fig. 11.

Theorem 5.2. For a finite graph G with F , the cycle-merging algorithm terminates in finite time and outputs a single cycle.
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Fig. 11. An example of letter shape ‘A’. (a) The image pixels. (b) The finite regular graph. (c) The initial 2-factor. (d) A long path.

Fig. 12. Proof of Theorem 6.1: three sequential nodes A, B, C are in a cycle Cj and are also on the convex hull of Cj .

Proof. If a finite graph cannot pass through the test in Steps 1 and 2, it is not a regular grid graph with an initial square-free
2-factor. Otherwise, the algorithm will build an auxiliary graph CYCLE(G, F ) in Step 3, and enter Step 4.

Assume that CYCLE(G, F ) is a tree of depth k. Mathematical induction is applied here. When k = 1, the only cycle is the
outmost boundary and the theorem obviously holds. Assume that the theorem holds for all k ≤ t , t > 1. Let k = t + 1. The
root o0 has multiple children, each of which is a subtree of depth ≤t . According to the assumption, each subtree Ti can be
merged into a single cycle Ci, with some free nodes in or out of Ci. Thus we only need to consider the case that o0 has r ≥ 1
children o1, . . . , or , each child corresponds to a cycle nested within C0, with some free nodes generated by Operations II, III
and the extension operations.

In the case r = 1, (o0, o1) is an available pair. If there exists free nodes A1, . . . , Aq outside C1, all of them are adjacent
to C1. We have two subcases: (1) If any Ai is adjacent to C0, by Observation 4.7 the surrounding pattern of Ai is uniquely
determined and Operation III can be applied to merge C0 and C1. (2) Otherwise none of the free nodes is incident to the
cross cells between C0 and C1: in this subcase, all the analysis in Lemmas 3.3–3.5 holds, and there exists a Type III cell or two
adjacent Type II cells. Correspondingly, Operation I or II can be applied and the tree can be merged into a single node.

In the case r > 1, every (oi, oj), 0 ≤ i, j ≤ r is an available pair.We first prove that there are two cycles in {C0, C1, . . . , Cr}

which can be merged into one by the algorithm. If there exists a free node v which is adjacent to two cycles Ci and Cj,
Operation III can be applied. Otherwise all the cross cells are not affected, and a Type III cell or two Type II cells can be found,
leading to Operation II or III being applied. Since two cycles in {C0, C1, . . . , Cr} can be merged, the tree structure does not
change but r decreases by 1. If we repeat this process, r will eventually become 1.

Thus for k = t + 1, the theorem is correct. That completes the proof. �

6. Performance analysis

Let f (G) denote the length of the long cycle in G found by the cycle-merging algorithm.

Theorem 6.1. For a finite, regular grid graph G = (V , E) with an initial 2-factor F , f (G) ≥
5
6n + 2, where n = |V |.

Proof. Only Operation II decreases the number of nodes inF . IfF initially contains s cycles, and the algorithm takes a times
of Operation II and b times of extending operation, we have f (G) = n − 2a + 2b. Every operation of type I, II and III reduces
the number of cycles in F by 1. So the total time of applying the three operations is n − 1 and we have a ≤ n − 1.

For a cycle Ci in F , if no cycle is nested in Ci, then Ci is a leaf in CYCLE(G, F ). Furthermore, if there exists a Type III cross
cell with respect to Ci and another cycle, then Ci will be merged first by the algorithm in Step 4.1. We call such Ci a first-class
cycle. Since F is a square-free 2-factor and all cycles in a bipartite graph having even lengths, we know that Ci has at least
6 nodes.

Refer to Fig. 12. Assume that no free node exists. If three sequential nodes A, B, C are in a cycle Cj and are also on the
convex hull of Cj, then the nodes D, E, F must belong to other cycles. Since E has degree 2 in F , at least one of DE and EF is
a dark edge, and at least one of P1 and P2 is a Type III cell. Therefore, for a cycle Cj, if no other cycle is nested in Cj and there
are three sequential nodes in Cj which is also on the convex hull of Cj, Cj is a first-class cycle.

By simple enumeration as shown in Fig. 13(a), it is clear that all the cycles of lengths less than 12 are first-class cycles,
and the minimum length of non-first-class cycle is 12 (shown in Fig. 13(b)). Assume that G contains x first-class cycles
and s − x non-first-class cycles. The algorithm needs applying Operation I at least x/2 times to make all the cycles being
non-first-class. After merging first-class cycles, at most s − x + x/2 = s − x/2 non-first-class cycles exist in F . So at
most s − x/2 − 1 times of Operation II will be applied, leading to at most 2(s − x/2 − 1) free nodes. Hence, we have
f (G) = n − 2a + 2b ≥ n − 2a ≥ n − 2(s − x/2 − 1) = n − 2s + x + 2.
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Fig. 13. Proof of Theorem 6.1. (a) All the cycles of length less than 12: the cycles that become the same after reflection and rotation are treated as one case.
(b) The minimum non-first-class cycle.

Fig. 14. An upper bound of the long cycle in graph G. (a) A piece of component. (b) The whole graph.

Since there are x first-class cycles and s − x non-first-class cycles, we have n ≥ 6x + 12(s − x) = 6(2s − x). Thus
f (G) ≥ n − 2s + x + 2 ≥ n −

1
6n + 2 =

5
6n + 2. �

Theorem 6.1 shows that in a finite, regular grid graph with an initial square-free 2-factor, a long cycle of length at least
5
6n+2 exists. However, this lower bound seemsnot very tight, because in all our experimentswe cannot give an example that
reaches this lower bound. Consider a piece of graph component shown in Fig. 14(a). The algorithmmust apply an Operation
II to merge the component into one cycle, indicating that 2 out of 40 nodes in the component will become free nodes. If we
use this component as a basic primitive to cover a large area as shown in Fig. 14(b), we can generate an arbitrary large graph
Gwith f (G) =

19
20n + o(n). As G grows larger, we have f (G)/n →

19
20 . We conclude this in the following observation.

Observation 6.2. For finite, regular grid graphs with initial square-free 2-factors, for arbitrary ϵ > 0, there exists an integer
N , such that ∀n > N , the approximation ratio of the long path in an n-vertex graph founded by the cycle-merging algorithm
satisfies 5

6 ≤ f (G)/n ≤
19
20 + ϵ.

Next, we give an analysis on the time complexity of the cycle-merging algorithm.

Theorem 6.3. For an n-vertex regular grid graph G with F , the cycle-merging algorithm has the time complexity O(n2).

Proof. In the cycle-merging algorithm, Step 1 finds all the boundaries of holes and checks the regularity of the boundaries.
We first assign a 2D integer coordinate (xi, yi) for each node vi of G. At an integer position, vi has 8 neighbor points (x, y)
on the 2D plane satisfying max{|x − xi|, |y − yi|} = 1. vi is on the boundary of a hole if and only if its 8 neighbor points are
not all in G. By a linear-time scanning, we can determine all the boundary nodes in G. Then the graph is regular if and only
if these boundary nodes span separate cycles in G. At the same time, we find all the boundaries of holes. Therefore, Step 1
runs in linear time.

By Hartvigsen’s analysis [12], on a bipartite graph G(X, Y , E) with |X | = s and |Y | = t , the maximum cardinality square-
free 2-factor can be solved inO(st) time,which isO(n2) in a grid graph. Then the auxiliary tree CYCLE(G, F ) can be generated
in O(n2) as follows. First, assign a number to each node as the cycle ID it belongs to, and mark all the nodes as unfinished.
Then iteratively (1) find a cycle that all the nodes inside are finished, (2) mark the nodes on the cycle as finished, and
(3) add the sub-forest constructed from those inside nodes as children of the newhandled cycle.When the outermost cycle is
processed, the cycle tree is constructed. Since the number of cycles inF is less than n, both Steps 2 and 3 requiresO(n2) time.

In Step 4, finding two cycles that can be merged in the graph needs a linear-time scanning on the cycle tree. Then the
algorithm needs a scanning on the border of the two cycles to determine the area of merging. The above two operations
need O(n + r) time, where |CYCLE(G, F )| = r < n. Since each time the number of cycles decrease by 1, Step 4 can be done
in O(r(n + r)) ≤ O(n2).

In summary, the algorithm runs in O(n2) time. �
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Table 1
Comparison with classical results.

Algorithms Handling graph type The length of long Running time
path in grid graph

Bjorklund and Husfeldt [2003] General graph O((log n/ log log n)2) Polynomial
Feder et al. [2002] 3-connected cubic graph Invalid Polynomial
Chen et al. [2007] 3-connected graph with bounded degree ≥

1
2 n

1/12
+ 3 O(n3)

Our algorithm Regular grid graph with an initial F ≥
5
6 n + 2 O(n2)

Fig. 15. Two examples of encoding image shape in long paths.

7. Comparison with known results

There are several classic approximation algorithms for finding long paths on general or special graphs. In this section,
we compare the performance of these known algorithms on grid graphs, showing that our algorithm achieves the best
performance on grid graphs possibly with multiple inner holes.

In [3], Monien first proposed an exponential time algorithm that finds a long path of length O(log L/ log log L). Later
Bjorklund and Husfeldt [4] improved this result and proposed a polynomial time algorithm that finds a long path of length
O((log L/ log log L)2). On a regular grid graphwith aF , wehaveproved that L > 5

6n, which implies that Bjorklund’s algorithm
can find a path of length O((log n/ log log n)2).

Feder et al. [5] showed that for 3-connected cubic graphs, there is a polynomial time algorithm for finding a cycle of
length at least O(n(log3 2)/2) ≈ O(n0.631). However, this algorithm cannot be applied to grid graphs since all the grid graphs
contain at least one node of degree 2, i.e., it is not 3-connected. In addition, grid graphs cannot bemodified into a cubic graph.
Chen et al. [7] gave an improved result that for any 3-connected graph with bounded degree d, there is an algorithm that
runs in O(n3) and finds a cycle of length at least 1

2n
(logb 2)/2

+ 3, where b = max{64, 4d + 1}. A grid graph can be modified
into a 3-connected graph by cutting every node v with degree 2, and connecting the two nodes that connect with v. Thus the
graph becomes a 3-connected graph with bounded degree d = 4. Thus b = 64 and the long path found by Chen’s algorithm
is of length at least 1

2n
1/12

+ 3. These results are summarized in the Table 1.

8. Conclusions

In this paper, we analyze the characteristics of cross cells and propose a merging-cycle algorithm to find a long path
in a finite, regular grid graph with an initial square-free 2-factor. The algorithm can find a long path of length at least 5

6n+2
and runs in quadratic time. Since the found path is sufficiently long, a practical application ofmaze design becomes possible,
showing that the pixels in a guided image are almost completely gone through by the path. Two practical examples are
illustrated in Fig. 15.
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