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1. Proofs of Properties in Main Paper

1.1. Proof of Property 4.2

Property 4.2 in main paper. Upon the termination of
the MMP algorithm, two adjacent windows wi and w j
have a non-empty co-illuminated region. Moreover, bisector
β(w1,w2) is in the co-illuminated region c(w1,w2).

We prove Property 4.2 by proving the next two properties.

Property S.1 Upon the termination of the MMP algorithm,
two adjacent windows wi and w j on edge e have a non-empty
co-illuminated region.

Proof We prove this property in two cases: (1) wi and w j are
on the same side of e and (2) wi and w j are on the different
sides of e.
(1) wi and w j are on the same side of e. See Figure S1. As-
sume w1 and w2 have an empty co-illuminated region, which
means that they have a 2D intersected area I in the area upon
e. It is obvious that a 2D non-empty subset (denoted as I′)
of I must be in the triangle t adjacent to e. Consider a point
pi on edge e where wi covers (i = 1,2), we can always find
such a pair of (p1, p2) that the geodesic paths to them inter-
sect in I′. Denote the intersection point as x. It is easy to see
that the two path: x → s1 → g1 and x → s2 → g2 both have
geodesic length to x (otherwise a shorter geodesic path to
p1 or p2 can be constructed by replacement). Then the path
to p2: p2 → x → s1 → g1 also has the geodesic distance to
p2. Since x is in a triangle face, a shortcut can be made to
improve this path, a contradiction.
(2) wi and w j are on the different sides of e. Assume w1 and
w2 are two such windows in an edge of triangle t. First, we
note that in the MMP algorithm, if a window exists at the
final stage, then its parent window must also exist at the fi-
nal stage. Refer to Figure S2. Let w3 be the parent of w2.
We claim that if projecting w3 to the edge AB containing w2,
the projection of w3 on AB must cover a larger portion than

Figure S1: Proof of Property S.1: the case that w1 and w2
are on the same side of e.

Figure S2: Proof of Property S.1: the case that w1 and w2
are on the different sides of the edge.
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(a) w3 and w4 on the same side of the edge

(b) w3 and w4 on the different sides of the edge

Figure S3: Proof of Property S.1: the case that the projec-
tion of w3 on AB must cover the same portion of w2, that is,
the points s2, e and b lie in the same line.

the portion of w2. If this claim is true, by the definition of
co-illuminated region, the co-illuminated region is obvious-
ly non-empty. See also the yellow area in Figure S2 for an
illustration.
The remainder of this proof is about the claim that if pro-
jecting w3 to the edge AB containing w2, the projection of
w3 on AB must cover a larger portion than the portion of w2.
Refer to Figure S3. If this claim is not true, then the points
s2, e and b in Figure S3 lie in the same line and there are
again two cases: (a) w3 and w4 are on the same side of the
edge, as shown in Figure S3a and (b) w3 and w4 are on the
different sides of the edge, as shown in Figure S3b. For the
case (a), there exists a shortcut (shown in red line in Figure

(a) (b)

(c) (d)

(e) (f)

Figure S4: Proof of Property S.2

S3a) going through window w4 such that there is a path to
the point b going through w4 that is shorter than the short-
est path to b going through w3, a contradiction. For the case
(b), let the parent of w4 be w5. Then similar to the case (a),
there exists a shortcut (shown in red line in Figure S3b) go-
ing through window w5 such that there is a path to the point
b going through w5 that is shorter than the shortest path to b
going through w3, a contradiction. That completes the proof.

Property S.2 Consider two adjacent windows w1 = (a,b)
and w2 = (b,c). Let gi and si be the generator and pseudo-
source of window wi, i = 1,2. Then bisector β(g1,g2) has a
non-empty part in c(w1,w2).

Proof 1) If w1 and w2 are projected to the same direction,
see Figure S4 (a) to (c), then we denote by S the fan shaped
region bordered by rays

−→
s1b and

−→
s2b. Next we prove the prop-

erty by proving that the bisector β(g1,g2) has a non-empty
part in S.
(1) If w1 and w2 are both point windows:
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If s1 = g1 and s2 = g2, the bisector β(g1,g2) is a line seg-
ment. Obviously it is in S. Otherwise, β(g1,g2) is a hyper-
bolic segment and passes through the common point b, and
s1 and s2 are the foci of β(gi,g j). Therefore, both rays

−→
s1b

and
−→
s2b have one intersection with β(g1,g2), which is the

common point b. So β has a non-empty part in S. See Figure
S4(a).
(2) If w1 and w2 are both line windows:
By Property 4.1 in the main paper, bisector β(g1,g2) is a
line segment bisecting the angle formed by g1 and g2, so
β(g1,g2) ∈ S. See Figure S4(b).
(3) If w1 is point window and w2 is line window:
By Property 4.1 in the main paper, the bisector β(g1,g2) is
a parabolic segment with s1 as its focus and line L, paral-
lel with g2, as the directrix. So the ray

−→
s1b intersects β only

once, i.e., at the common point b. And it is easy to see that
−→
s2b ⊥ g2, i.e.

−→
s2b ⊥ L, then

−→
s2b also intersects β only once

(i.e., at point b). See Figure S4(c).
2) If w1 and w2 are projected to opposite directions, see Fig-
ure S4(d) to (f). According to the definition of co-illuminated
region, it is easy to see that there is always a part of β(g1,g2)
in c(w1,w2)

1.2. Proof of Property 4.3

Property 4.3 in main paper. Each LVD edge bisects two
windows, and it does not intersect their borders.

First we prove the following property.

Property S.3 Denote the pseudo-source of window wi as si,
the generator of wi as gi, i = 1,2. If β(g1,g2) has a non-
empty part that falls into l(w1)∩ l(w2), then β(g1,g2) does
not intersect with any border of w1 and w2. Moreover, there
will be a window (denoted as w3) so that α(w1,w2,w3) ,
l(w1)∩ l(w2)∩ l(w3) ̸= ∅ and β(g3,g1) (or β(g3,g2)) inter-
sects β(g1,g2) in α(g1,g2,g3).

Proof First, we prove that β(g1,g2) do not intersect any bor-
der of w1 and w2.
If w1 is not the first/last window on its edge, see Figure
S5(a), β(g1,g2) has a non-empty part in l(w1)∩ l(w2). We
use contradiction to prove this. Assume that β(g1,g2) in-
tersects with w1’s boarder −→s1a at e. Thus, affected by −→s1a,
the next segment on the bisector will be a hyperbolic seg-
ment with the weighted point a and s2 as foci, denoted as
β(a,s2). Denote an arbitrary point on β(a,s2) as f . Since f
is on β(a,s2), the path f → a → s1 → g1 must be a geodesic
path. However, a short cut can be made easily, a contra-
diction. Thus β(s1,s2) cannot intersect −→s1a, a contradiction.
This contradiction can also be seen from the fact that the
pseudo-source of a geodesic path can only be a saddle ver-
tex [MMP87]. So the weighted point a in this case that is
inside a triangle cannot be a pseudo-source.
If w1 is the first/last window on its edge, see Figure S5(b),
the same contradiction is held, i.e. β(a,s2) is generated from
e. Denote an arbitrary point on β(a,s2) as f . If a is a convex

(a)

(b)

Figure S5: Proof of Property S.3

vertex, then we can construct a short cut just as above to get
a contradiction; otherwise, there will be a window w3 with
a as pseudo-source while w1 is propagated, but w3 may not
provide a geodesic distance to f when MMP terminates (ei-
ther because w3 does not cover f or there is a shorter distance
provided by another window). If w3 does provide geodesic
distance to f , then the bisector β(a,s2) can be treated as
β(g3,g2), i.e. the bisector β(g1,g2) is not “cut” by −→s1a but
by β(g3,g2); If w3 does not provide geodesic distance to f ,
i.e. the length of path f → a → s1 → g1 is not geodesic dis-
tance, thus β(a,s2) should not exist. Whatever the case it is,
β(g1,g2) will not intersect −→s1a.
Note that the above proof is independent on whether w1, w2
and w3 are point or line windows.
Since β(g1,g2) does not intersect with any border of w1 and
w2, the reason can only be that it is “cut” by another bisector.
And also, since any bisector cannot intersect with the border
of its two windows, it is easy to see that a w3 satisfying the
conditions described in the property exists.

With Property S.3, Property 4.3 in the main paper can be
proved by induction as follows: By Property S.2 and S.3, the
bisector between any adjacent windows does not intersect
with any border. Apply Property S.3 again, we get another
pair of windows, i.e. w1(or w2) and w3, with a non-empty
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Figure S6: Proof of Property 4.4 in main paper.

part of its bisector in l(w1)∩ l(w3) (or l(w2)∩ l(w3)). By it-
eratively applying Property S.3, the LVD is constructed, and
the edges (bisectors) will never intersect with any border.

1.3. Proof of Property 4.4

Property 4.4 in main paper. The GVD restricted on a trian-
gle t is a subset of the LVD on t, i.e., G(t)⊆ L(t).

Proof As Figure S6 shows, we consider an arbitrary point
p on a GVD edge in the triangle t. Since p is on a bisector,
there are two distinct equal-length geodesic paths to the gen-
erators g1 and g2. The corresponding windows containing
γ(p,g1) and γ(p,g2) are w1 and w2, respectively. Then p is
on the bisector of either an additively weighted Voronoi dia-
gram or a line-segment Voronoi diagram generated by s(w1)
and s(w2), implying that p is on the LVD edge. Therefore,
any part of the GVD is a subset of the LVD.

1.4. Proof of Property 4.5

Property 4.5 in main paper. Only two types of triangles,
namely, the ones having at least one key point on its side, or
the ones having a source inside, can contain GVD edges.

Proof We prove this theorem by contradiction. Assume tri-
angle t contains a GVD edge, denoted by β, and t has nei-
ther any key point(s) on its sides nor any point- or polyline-
source(s) inside it. Since there are no key points, β cannot
cross the edges of t, which implies that β must be a loop that
is completely inside t. By Property 4.4 in the main paper, β
is a part of the LVD on t, which is a 2D Voronoi diagram.
Therefore, β cannot be a loop, which is a contradiction.

1.5. Proof of Property 5.1

Property 5.1 in main paper. On an n-face mesh with m
generators, Algorithm 1 has an O(Nn logN) time complexity
and an O(Nn) space complexity, where N = max{m,n}.

Figure S7: Illustration of GVD structure

Proof During the window propagation of the MMP algorith-
m, there are at most O(N) windows at each triangle edge. To-
tally there are at most O(nN) windows entered into the queue
of window propagation. Sorting them in a priority queue
takes O(Nn logN) time and O(Nn) space. For each candidate
triangle containing LVD, it has at most O(N) windows and
the plane sweep algorithm [For87] takes O(N logN) time.
That completes the proof.

2. Implementation Details

2.1. Data Structure of GVD

According to the GVD structure proposed in the main paper,
we define the GVD data structure as follows. It is basically
a DCEL structure ( [MP78]) with slight modification:

struct GVD {
Node nodes[NODESIZE];
Edge edges[EDGESIZE];
Region regions[REGIONSIZE];

};

//Node structure
struct Node {

//Edges emitted from the node
Edge* adjEdges[DEGREE];

};

struct HalfEdge {
//Line, parabolic or hyperbolic segment
Type type;

//adjacent nodes
Node* adjNodes;

//twin half-edge
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HalfEdge* twinEdge;

//incident Voronoi region
Region* incidentRegion;

//next half-edge
HalfEdge* nextEdge;

};

struct Region {
//Edges forming the borders of a Region
Edge* adjEdges[EDGEAROUNDNUM];

//triangle faces covered by the Region
Face* coveredFaces[COVEREDFACENUM];

};

An illustration of the GVD structure shows in Figure S7.

2.2. Representation of a triangle mesh

The MMP algorithm proposed in [MMP87] and implement-
ed in [SSK∗05] are all based on the traditional half-edge
structure. [Liu13] further discusses the correctness and ef-
ficiency of MMP algorithm on an edge based structure. In
our GVD algorithm, the computation of key points is direct-
ly related to the mesh representation. Comparing with the
half-edge structure in which the key points need to be ob-
tained by “merging” the windows on each pair of half-edge,
an edge-based structure will generate the key points direct-
ly without any extra calculation. Moreover, [Liu13] shows
that an edge-based structure speeds up the MMP algorithm
significantly both in time and space. Hence we use the edge-
based structure to represent the input mesh.

2.3. Construction of LVD

There are plenty of classical algorithms to construct 2D Eu-
cidean Voronoi diagrams with different metrics and different
site types. The plane sweep algorithm (also known as For-
tune’s algorithm) is one of the optimal algorithms. Among
all types of different Euclidean 2D Voronoi diagrams, two
of them are important to our case. The first one is called the
additively weighted Voronoi diagram, where the site si is as-
signed with a non-negative weight value wi and the distance
from any point p to si is defined as dE(p,si)+wi, where dE
is the Euclidean distance. The second one is defined with
sites of line segments using Euclidean distance. For either
of these two types of Voronoi diagrams, the plane sweep al-
gorithm can be applied to obtain the optimal O(nlogn) time
bound ( [For87] and [DBVKOS00]). In our case, the LVD
is exactly the combination of these two types: if a pseudo-
source is a point, it is a site with a non-negative weight; if a
pseudo-source is a line site, it is a line source. Hence we use
the plane sweep algorithm to construct the LVD structure.
The details are as follows.

• We implement the event queue using a binary heap.

[DBVKOS00] discussed the categories of events in both
ordinary and additively weighted Voronoi diagrams: for
the point sources with non-negative weights, there is one
case for site event (event occurs when the sweepline pass-
es through a site) and one case for circle event (event oc-
curs when the sweepline passes through the lowest point
of the circle defined by three sites corresponding to three
consecutive parabola segments on the beach line). For the
line sources, the site event also occurs when the sweepline
passes the endpoints of a line segment, while the circle
event have several different types according to what kind
of breakpoints (a particular point on the beach line) is met
when a segment on the beach line disappears. When con-
sidering non-negative weights, a point site still generates
a parabolic segment on the beach line. The only differ-
ence is the order with which the corresponding site event
is generated.

• A beach line is implemented as a balanced binary tree. As
described in [DBVKOS00], the leaf nodes store the corre-
sponding sites of the segments on the beach line, while in-
ternal nodes stores the breakpoints between the segments.

• LVD is stored in a DCEL structure.

Notice that when applied the case with sites of line seg-
ments, the plane sweep algorithm needs that the line seg-
ments do not intersect in their interior. However, this cannot
be guaranteed as all the line segment sources are unfolded
into the same plane when constructing LVD. But for a s-
mooth (for example, a C1 continuous) curve approximated
by line segments, the line sources are usually short enough
compared with its distance to the window when unfolded, so
here we assume that the intersection of line segments does
not exist. It is readily to see that the O(nlogn) optimal time
can still be held here.

2.4. Building GVD

Building GVD from LVD is accomplished in a depth-first-
search (DFS) manner. Details are as follows.

Note that DFS itself takes linear time. For construct-
ing GVD, at every time when a new pair of edges of
GVD explored, a new pair of structs (objects) are added in-
to GVD with each other’s twinEdge fields filled, and the
incidentRegion field of these two edges can also be filled
in constant time. The ad jNodes, types of the segment and
nextEdge field can be settled using LVD structure. On the
other hand, Node structures can be built up when the corre-
sponding Edges are filled in, so does the ad jEdges field of
Region structure. As for the coveredFacws field, it can be
filled when Algorithm 1 in the main paper checks whether
LVD needs to be built in line 15.

2.5. Reducing Memory Consumption

As stated in the main paper, our algorithm builds the GVD
during the process of running the MMP algorithm. In fact,
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building the GVD can be postponed to the time when MMP
algorithm terminates. But what we consider here is the room
in which the MMP can still be improved, i.e. the space cost.
Building GVD inside one planar face and discarding all the
windows around the boundary of that face will save the s-
pace (see the experiments in Section 6 in the main paper).
Obviously, space saving usually takes more time to finish
the whole algorithm. Specifically, triangles near the edges of
GVD may be checked for several times before the windows
around it are finally settled. Theoretically, the checking can
be executed at every cn iterations of the main loop, where
c is a constant number and n is the scale of mesh. See the
results in Section 6 in the main paper about how different cn
affects the practical efficiency of the algorithm.
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