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Abstract Based on cognitive functionalities in human vision processing, we propose a computational cognitive

model for object recognition with detailed algorithmic descriptions. The contribution of this paper is of two

folds. Firstly, we present a systematic review on psychological and neurophysiological studies, which provide

collective evidence for a distributed representation of 3D objects in the human brain. Secondly, we present a

computational model which simulates the distributed mechanism of object vision pathway. Experimental results

show that the presented computational cognitive model outperforms five representative 3D object recognition

algorithms in computer science research.
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1 Introduction

Object recognition is one of fundamental tasks in computer vision. Many recognition algorithms have

been proposed in computer science area (e.g., [1, 2, 3, 4, 5]). While the CPU processing speed can now

be reached at 109 Hz, the human brain has a limited speed of 100 Hz at which the neurons process their

input. However, compared to state-of-the-art computational algorithms for object recognition, human

brain has a distinct advantage in object recognition, i.e., human being can accurately recognize one

from unlimited variety of objects within a fraction of a second, even if the object is partially occluded

or contaminated by noises. Thus, it is much desired to explore computational cognitive models of how

human brain recognizes objects, in both areas of computer vision and cognitive computation.

Objects in real world space project color natural images on the retina in the human vision system

which has normal visual acuity and normal color vision. The information of stimuli are transformed to

the visual cortex, in which a two-stream hypothesis is widely accepted [6]. The dorsal stream from V1 to

intraparietal areas solves the problem of where the object is located. The ventral stream goes through V2

and V4 to inferior temporal areas solves the problem of what the object is. According to this hypothesis,

temporal cortex is involved in object recognition task. Based on the cognitive mechanism in the human

vision, in this paper we present a computational cognitive model for object recognition.
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To specify the task of object recognition, we make distinctions between object perception and object

recognition. In literature, object perception may have different meanings and in this study we take a

narrow scope: Object perception concerns how the shape of objects are perceived by controlling stimuli

presented to the sense organs. Object recognition, in addition to seeing an object, concerns about seeing

an object as something that has been seen before. So object recognition involves memory and learning.

Based on this perspective, we study object recognition in a process of perception, memory, learning

and judgment1 [7]. There are many factors affecting the object recognition, including size, illumination,

viewpoint, orientation and so on. We will study these factors and organize them into a cognitive model

after a systemic review of psychological and neurophysiological research, with collective evidences.

Based on the summarized cognitive model, we present a computational implementation of the cognitive

model (also called computational cognitive model in this paper) for object recognition. A computational

model of human cognition can be defined in several different senses. In this paper, we present a model

which is quantitative in a programmable way. By utilizing cognitive functionalities in the human brain,

our model is distinct from existing computational algorithms in computer science area. We further

use McGill 3D shape benchmark [8] to demonstrate that the presented computational cognitive model

outperforms five representative computer algorithms for object recognition. We make the following two

contributions in this paper:

• We present a systemic review on psychological and neurophysiological studies with converging

evidences, to uncover cognitive and neural mechanisms of object recognition in the human brain.

• Based on these cognitive mechanisms, we present a computational cognitive model for object recog-

nition. The presented model utilizes distributed local features which are defined as activation pat-

terns and are similarity-invariant. By utilizing a learning process characterized by a Markov chain

model, the features are clustered into abstract representations stored in memory traces, which form

the partial representations of the object.

2 Object representation and recognition in human vision

In this section, we summarize psychological and neurophysiological findings for object representation

and recognition in the human vision. The summarization follows the cognitive process [7] including the

mental process of perception, memory, learning2 and judgment. Based on these findings, we develop a

computational cognitive model in Section 3.

2.1 Perception

Perception as objects or features. The existence of neurological disorder prosopagnosia (or face blindness)

and category-specific deficits in brain-damaged patients, shows that there are particular areas in human

visual cortex for particular categories of stimuli. For examples, the fusiform face area (FFA) devotes to

faces [9, 10], the parahippocampal place area (PPA) and the retrosplenial cortex (RSC) devote to scenes

depicting places [11, 12, 13], and lateral occipital complex (LOC) devotes to a variety of objects [14], etc.

Since the ventral temporal cortex has a limited number of areas, it is unlikely that each distinct category

of objects has a corresponding area. Thus, it is possible that only a few biological relevant objects such

as faces have responsible cortical areas emergiong through long-term evolution, while the representation

of other unfamiliar objects are more widely distributed based on primitive features [15, 16].

2D-view or 3D-part features. Both 2D view-dependent features and 3D structural primitives have been

used for distributed object recognition. One representative 3D-part-based approach to object perception

is recognition-by-components (RBC) of geon structural description [17]. The fundamental assumption of

the RBC theory is that 36 geons of volumetric components (generalized cones) are generally invariant

1Here, recognition is the specific judgment task we focus on.
2In the PMJ model [7] that is originally proposed in psychology domain, the part M includes both memory and learning.

Since in information science domain, learning methods attract particular attention; thus we explicitly state memory and

learning as two separated phases.
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Figure 1: Color photographs and corresponding line drawings of single objects with a clear background.

120 color photographs are selected according to basic level categories: 60 natural objects (30 animals, 30

fruits and vegetables) and 60 man-made objects (30 tools, 30 electronic devices). All line drawings are

produced by tracing contours in the color photographs using a simple graphical user interface, by three

paid artists at the Academy of Arts & Design, Tsinghua University, China.

over viewing positions and are sufficient for diverse object representations. I.e., each object is represented

by a unique relationship of a small set of volumetric building blocks called geons. The main weakness of

the RBC theory is that no neurophysiological evidence exists to support the representation of volumetric

building blocks. Conversely, several psychophysical studies show that the recognition is view-dependent

[18], but not view-independent as hypothesized by the RBC theory. That is, given an object, some

views are generally easier to recognize than others. This leads to a feature-based, multiple-view approach

[19] to object representation and recognition: in this theory, each view is represented by a collection of

small picture elements which are tolerant to slight deformation. Many researches demonstrate this view

dependence and specificity property [18, 20, 21].

Color photographs vs. line drawings. Concerning 2D image features in a distributed representation,

there could be many factors, such as color, texture, luminance, contrast and spatial frequencies. Line

drawing, which is a set of sparse, simple two-dimensional featured lines without hatching lines or stippling

for shading/tone effects, has been used to examine what information is applied for low-level features. Line

drawings are a convention of art that even untrained infants and children can easily recognize them. Lines

in line drawings include not only those edges that can be detected by object silhouette, intensity contrast

and color gradients, but also some perceptually important lines that currently can only be captured

by artists in an ambiguous way (Figure 1). Several pieces of neurophysiological evidence [15, 22, 23]

supported that when the visual stimuli were presented as short as 120 ms, line drawings may trigger

neural activities that are similar to the neural activities of color photographs and are sufficient for object

and scene recognition. These findings [15, 22, 24] also suggest that line drawings appear to include

definitive information sufficient for object recognition. In Section 3, we will present a visual circular

feature representation to describe such definitive information. There is a long-standing controversy for

two opposite surface-based (in terms of color, brightness, texture, etc.) versus edge-based (in terms

of lines) representations of visual recognition [25]. Color is a fundamental factor of human perception

[26] and some previous work also showed that color do help in computer program for object recognition

[27]. A recent ERP study [28] showed that people need more time to extract information from color

photographs than line drawings and people pay more attention to detect features and evaluate internal

representation from color photographs than line-drawings. In this study, we take the hypothesis that

color may affect the accuracy of recognition in long time, but line features are more critical for fast object

category specification.

Single object vs. clustered scene. Much work on cognition was restricted to isolated objects with a

clear background. Natural scenes can be regarded as a composition of objects. Detecting objects that are
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Figure 2: Color photographs and corresponding line drawings of six scene categories, including beaches,

city streets, forests, highways, mountains and offices. Each image category has 80 color photographs. All

line drawings are produced by tracing contours in the color photographs using a simple graphical user

interface, by trained artists. Data courtesy of Professor Dirk B. Walther at Department of Psychology,

The Ohio State University, USA.

consistent with some particular scenes contributes to a fast recognition of scenes [29]. However, image

belonging to the same scene category such as forests may exhibit quite different color, luminance and

individual objects but human can still make subtle distinctions between heterogeneous sets of images

and recognize natural scenes as brief as 100-250 ms [30, 31]. By collecting fMRI data of ten participants

viewing color photographs and line drawings (Figure 2) of six categories, i.e., beaches, city streets, forests,

highways, mountains and offices, it was found [23] that simple line drawings are sufficient for a fast scene

recognition. On the other hand, the gist of a scene was also considered to provide visual context for

object recognition [32]. These results demonstrate that the distinctive features in natural scenes, as well

as single objects, are not 3D-part-based, but may be 2D image features inherent in line drawings.

2.2 Memory

Memory units. What differentiates object recognition from object perception is the involvement of mem-

ory and learning. Corresponding to a distributed object representation in the visual cortex, a distributed

model of memory was proposed in [33]. In this model, the processing system consists of a collection of

simple processing units. Units are interconnected to each other and are organized into modules. Two

opinions exist about what have with the units. One is to use specific exemplars (enumeration of spe-

cific experiences) in memory units for object category [34] and the other is to use prototype (abstract

representation) of a category in memory units [35]. Enumeration of specific experiences works well in

many studies. However, if every event or object is stored using an extremely rich representation, an

almost unlimited storage is required. Thus we take abstraction (or prototype) representations of objects

in memory units.

Memory traces. The memory trace of a particular pattern of activation is the change of weights in

the interconnection of units. Neural system research maps the term ‘unit’ to an individual neuron and

there are 1011 neurons in human brain connected by 1015 synapses [36, 37]. The weight change then

corresponds to changes in synapses (a mode of plasticity), including either efficacy changes of existing

synapses (weight changes) or structure changes (wiring changes) by addition or subtraction of synapses

between neurons. In the presented study, we unify weight and wiring changes by making a complete graph

of all units: assigning a nonzero (or zero) weight to an edge corresponds to weight (or wiring) changes. In

the distributed memory model [33], what store in the memory are the interconnection strengths (weights)

and memory traces are the changes in the strengths. Mental states are patterns of activation over units

and when a part of a know pattern is input, its corresponding change in the subpattern can be used for

the retrieval/recovery of rest subpattern. Each memory trace is distributed over different connections

and each connection is contributed to different memory traces.

Short-term and long-term memory. The memory consolidation theory [37] supports that there are at

least two stages of memory, short-term and long-term memory, which act independently in parallel. Short-
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term (or working) memories of new learned information are created almost instantly and they are easily

disrupted by the learning of other information; this shows that the new memories are in a fragile state.

The treatment of memory enhancement by long-term training shortly after original learning demonstrates

that the memories are consolidated over time. The relatively slow consolidation from short-term (seconds

to hours) to long-term (hours to months) has been demonstrated to be a biological mechanism of using

adaptive functions to modulate memory strength [38].

2.3 Learning

Learning can evokes both weight and wiring changes. Weight changes are provided by modulating synaptic

efficacy and wiring changes are provided by synapse formation and axonic and dendritic outgrowth and

retraction in the adult brain [39]. The cortex is sparsely connected [36], meaning that neural circuit

only has a small fraction of all possible connections between neurons. Learning-based cortical rewiring

increases the storage capacity of neural circuit and long-term memory corresponds to the stability of

synapse connection.

In terms of object recognition, 3D objects are likely stored in the brain as 2D views and each view

is represented by a collection of distributed small picture elements, rather than 2D templates or 3D

primitives [40]. The effect of learning through long-term training has been studied by investigating how

continued exposure of an object may affect the representation of that object. It has been shown that

sufficient exposure to particular stimuli causes the representation of that stimuli enhanced [41]. Further-

more, exposure experience of an object class also increases the number of neurons that are selectively

discriminative for that object class [42].

Temporal correlations in appearance of object views also affect the learning of object representation

[40]. When we see an object continuously from different viewing directions, the discrete image sequence

for identifying that object is subject to transformation due to changes of viewing directions. The temporal

order in the image sequence forms an integral part of the object representation. Several neurophysiological

studies have demonstrated the influence of order in temporal sequence [43, 44].

2.4 Judgment

Single-cell-level studies [45] showed that cells in inferotemporal cortex of the monkey brain selectively

respond to various object features and columns with cells that respond to similar features tend to cluster

together. However, it is still controversial how individual neurons are organized at a large scale for object

recognition. Some psychophysical evidences showed that faces are represented and recognized holistically

[46, 47]. On the other hand, there is also evidence that a distributed feature representation can better

explain the human data of other recognition tasks [15, 16, 22].

To reveal a pattern of large-scale spatial organization in object vision pathway, functional magnetic

resonance imaging (fMRI) studies were preformed to measure patterns of response in the ventral temporal

cortex. Pictures of faces, cats, five categories of man-made objects (houses, chairs, scissors, shoes and

bottles) and nonsense images were used as stimuli and correlations between patterns of response were

used as similarity indices [15]. The results showed that for each stimulus category, there is a distinct

pattern of response and more importantly, the distinctiveness of response to a given category was not only

limited to the cortex regions that responded maximally to that categories (i.e., the primary region), but

also were identified by the patterns of non-maximal responses in the secondary regions3. For example,

the region maximally responsive to houses is preferentially recruited to augment the perception of chairs

and vice versa [16]. We take the hypothesis in [40] that a mixed type of holistic and distributed feature

representations exist for all objects. For familiar objects like faces, holistic representation is dominated,

while for unfamiliar objects, distributed feature representation is dominated: to use which one of two

representations actually is determined by a learning process, i.e., familiar (or unfamiliar) objects were

learned for a long (or short) process.

3They are the regions respond maximally to another categories.
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Figure 3: Viewpoint distribution over a spherical domain using an interval of 5 degrees in both longitude

and latitude. For each viewpoint, a line drawing is generated using the CLD method [50]. Parts of this

figure was previously published in [51] and is republished with permission by Springer.

3 A distributed computational cognitive model

Below we summarize the cognitive rules as indicated in Section 2, which serve as the guidelines for the

cognitive model developed in this section.

• Rule 1. Human brain uses a pictorial representation for 3D objects.

• Rule 2. Either color photographs or line drawings trigger similar brain activation in a fast nat-

ural scene categorization task and we choose line drawings since they are much succinct in fast

information encoding.

• Rule 3. The pictorial representation is encoded in a local, abstract form.

• Rule 4. The local and abstract forms are not static, but dynamically changed during a learning

process.

• Rule 5. Object recognition is based on the partial match of abstract forms.

There are several types of cognitive models in the literature. One is a variety of symbolic models

proposed in artificial intelligence that only provide a general description of the flow of the information

process (e.g., [48]). This type of models need not rigorously matching the human data. In contrast, there

are types of rigorous models of human cognitive process, in relation to human data in a quantitatively

way; however, there are still arguments against these rigorous models [49]. Here, we state a cognitive

model in the former type, i.e., the human cognitive process of object recognition is characterized by the

following information processing flow:

• Perception. Human views 3D objects and triggers stimuli to visual cortex similar to the stimuli

when viewing an appropriate line drawing.
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Figure 4: A local feature representation of line drawings. This figure was previously published in a

preliminary conference paper [51] and is republished with permission by Springer.

• Memory. Object recognition is to identify an observed object from a set of known labels. The labels

of known objects are stored in terms of local abstract forms extracted from line drawings.

• Learning. The known labels or local abstract forms in memory are not static but dynamically

changed during a learning process when more 3D objects are perceived.

• Judgement. When a person views a novel 3D object, he/she converts the perceived stimuli into

some similar local abstract forms stored in memory. By comparing the local abstract forms in an

integrated way, the identity of the perceived object is determined.

We emphasize that our cognitive model is distributed, since individual local abstract forms act inde-

pendently of each other and the whole model is a collection of independent local abstract forms that

co-devote to the identification and recognition of the perceived object as a single coherent system. Mean-

while, these local abstract forms share a similar representation and communicate with each other during

the learning process.

Below we present the computational implementation of this distributed cognitive model.

3.1 Perception

Given a viewpoint and viewing direction, a 3D object projects an image on the retina. To simulate this

process, we place the 3D object model by coinciding the center of gravity with the center of a sphere

which bounds the 3D object (Figure 3). A dense sampling of viewpoints are applied on the spherical

surface in which the sampling density is 5 degrees in both longitude and latitude. For each viewpoint, a

standard Lambertian light model is applied to generate a shading image of that object and this shading

image is further converted into a line drawing using the CLD algorithm [50].

If we represent each line drawing by a 320×320 pixels, all line drawings sampling from the surrounding

sphere is clearly a 2-manifold point cloud4 embedded in a very high-dimensional (more than 100k) feature

space. Many dimensional reduction methods can be applied here and in this study we apply a complexity-

dependent clustering method (subsection 3.2) to obtain a small yet effective representative set of line

drawings for each 3D object.

3.2 Memory

Given a pictorial representation P in terms of line drawings, let B(P ) be the minimum-area bounding box

of all black pixels in P (Figure 4 left). The Halton’s quasi-random point sequence is applied to uniformly

sample np points in B(P ) (Figure 4 middle). At each sample point, a circular histogram is established

4This 2-manifold property come from the fact that each point of 320 × 320 dimensions is sampled in a two-dimension

spherical domain and due to the viewpoint continuity, each two adjacent viewpoints devote to two adjacent points in the

space of 320× 320 dimensions.
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Figure 5: Three line drawings with sample points and corresponding feature histogram. The left horse

line drawing is converted from the projection of a 3D object (Figure 3). The middle horse line drawing

is provided by a paid artist (Figure 1). The right vegetable line drawing presents a different object

representation. For the feature histograms, the blue solid bins are activated ones. Hollow bins are non-

activated. Note that line drawings may have different line widths. This figure was previously published

in a preliminary conference paper [51] and is republished with permission by Springer.

(Figure 4 right), in which each circular bin has the same difference of radii and the maximal circle has

radius of one fifth of diagonal length of B(P ). The reasons that we use such a feature representation are:

• Random sampling provides a maximal entropy of point locations. For 3D object models, random

sampling on object surfaces has been demonstrated to be an effective tool [4].

• Circular histogram makes the feature representation rotation invariant and less sensitive to the

shape distortion: this is important since line drawings are not an accurate form and human used

to matching them with elastic deformation (cf. two horses in Figure 5).

The feature histogram of each sample point has nf bins. In the proposed computational model, there

are many parameters including np and nf , which can be adaptive and be large values (compare to

1011 neurons in human brain) to make a powerful discrimination capacity. In our experiment, however,

np = 300 and nf = 20 are sufficient to make the proposed computational model superior to other models

in computer science area.

Denote by ntl the total number of black pixels falling into the circular histogram. Different from

the feature histogram used in [52], in this work we propose a saturation-firing strategy in the circular

histogram as follows. For each bin, if the number of black pixels is larger than a threshold5, then that

bin is activated (akin to neuron firing). We index the bins 1, 2, · · · , nf from innermost to outmost and

denote the first activated bin by bf . Each black pixel in bf corresponds to an angle in polar coordinate

and the average of all angles of all black pixels in bf is denoted by Aaver. We use Aaver to set up a

local coordinate system for the feature histogram h. Each of all later activated bins (other than the

first activated one) has an average angle and we use this angle as the bin values. Three examples are

illustrated in Figure 5. Only activated bins are involved in the feature matching.

For feature histogram matching, due to inaccurate forms of line drawings, it is desired that a small

deformed histogram has a small distance to the original one. For example, denote by ha the histogram

5The threshold gives a measures of signal intensity and in our experiment we set it as 5% of ntl.
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which has nonzero bin values π/2 at bins 4 and 16, and suppose hb has nonzero bin values π/2 at bins

5 and 17, and hc has nonzero bin values π/2 at bins 4 and 5. Intuitively, ha and hb are similar and

should have small distance value, while the distance between ha and hc should be large. However, the

L2 Euclidean distance L2(ha, hb) = π > L2(ha, hc) =
√
2π/2. In the proposed computational model, we

apply a generalized distance [53]:

D(h1, h2) = hT
1 Mnf×nf

h2 (1)

where Mnf×nf
is a SPD matrix whose elements are

mij =
1

2πσ2
e−(i−j)2/2σ2

, σ = 0.5

Using metric (1), D(ha, hb) = 0.4252 < D(ha, hc) = 1.7834, giving us desired results. For the three

histograms shown in Figure 5, with metric (1), the distance between two horse line drawings is 209.3710,

and the distances of vegetable to the two horses are 267.0254 and 297.2649, respectively.

Given a set M of 3D objects that a human has seen so far (or a database stored in a computer), let

F be all feature histograms of all line drawings projected by these 3D objects. We apply the affinity

propagation (AP) method [54] to classify F into m clusters, where the number m is automatically and

optimally determined by the AP method. For each cluster, its center is selected as a codeword ci and

m clusters constitute a codebook C = {c1, c2, · · · , cm}. What stores in the computer memory for object

recognition is the codebook. The codebook is not static but evolves in a learning process when the human

see more 3D objects. We discuss this in the following section.

3.3 Learning

By learning human beings convert some short-term memory into long-term memory. Accordingly, the

codebook C = {c1, c2, · · · , cm} is not static, but evolves during a continuous learning process. The

dynamically changes in the codebook C are subject to two factors:

• Human may see more 3D objects during a longer time. We thus model the number m of codes in

the codebook C by a Poisson process m(t).

• The codes in C are themselves not static and may convert into each other (some may be lost and

others may be enhanced by learning). We thus model the transience (short-term) and stationary

distribution (long-term) in the codes by a state space in a continuous-time Markov chain.

We explain these two factors in detail below. Poisson distribution is based on the assumption that for

small time interval, the probability of an arrival (a new code is generated in our case) is proportional to the

length of waiting time. The set of Poisson points on the time t-axis satisfies the following requirements.

• The number n(t1, t2) of the Poisson points in a time interval (t1, t2) of length t = t2− t1 is a Poisson

random variable with parameter λt;

• If the intervals (t1, t2) and (t3, t4) do not overlap, then n(t1, t2) and n(t3, t4) are independent.

By modeling the number m(t) of codes as increased by one at each location of Poisson points along the

time axis, m(t) = n(0, t) is a stochastic Poisson process, where the parameter λ gives a measure of the

learning speed.

As a special continuous-time Markov chain, the Poisson process ia a natural probability model for any

steam of independent discrete events in continuous time. For a fixed m, continuous-time Markov chain is

also used to model the codes’ transience and stationary distribution. The codebook C = {c1, c2, · · · , cm}
is treated as a state space and each code ci ∈ C is a state. Let λ = {λi : ci ∈ C} be a possibility measure

on C, where λi > 0 is the possibility of code ci being representative,
∑

ci∈C λi = 1 and thus λ defines a

distribution of a random state C.

To model the dynamically changed codebook, a continuous time t is added to the distribution (λt)t>0 =

(Xt : 0 6 t < ∞), which describes a continuous-time random process. To handle the discrete events
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occurring in continuous time, we restrict our attention to right-continuous process (xt)t>0, i.e., for all i

with which ci ∈ C and t > 0, ∃ε > 0 such that Cs(i) = Xt(i) for t 6 s 6 t+ ε.

Let H be all feature histograms in line drawings L =
∪

i L(mi), i = 1, 2, · · · , n. H is mapped to

the clusters each of which corresponds to a code, and gives rise to a coded representation C(H) =

{n1(H)c1, n2(H)c2, · · · , nm(H)cm}, where there are ni(H) feature histograms Hi = {hi
1, h

i
2, · · · , hi

ni(H)}
falling into the cluster corresponding to the code ci. The initial distribution of C0 is given by λ0 =

{n1(H)/n(H), n2(H)/n(H), · · · , nm(H)/n(H)}, n(H) = n1(H) + n2(H) + · · · + nm(H). With λ0, the

generator matrix Q determines how the continuous-time Markov chain (Xt)t>0 evolves from its initial

state. The Q-matrix {qij}16i,j6m is determined by its associated jump matrix Π = {πij}16i,j6m given

by

πii =

{
0 if qi ̸= 0

1 if qi = 0

πij =

{
qij/qi if j ̸= i and qi ̸= 0

0 if j ̸= i and qi = 0

Here, an important note is that the codes in C are not static and may have chance to convert into each

other. The transition probability πij between any two codes ci, cj ∈ C is defined by their normalized

similarity:

πij =
cij∑m
j=1 cij

where

cij = Mij − 1
ni(H)

1
nj(H)

∑
fu∈Fi

∑
fv∈Fj

D(fu, fv),

Mij = max{D(fu, fv), ∀fu ∈ Fi,∀fv ∈ Fj}

and D(, ) is defined in Eq. (1). The jump matrix Π is stochastic, with which after an exponential time of

parameter qi, the code ci jumps to a new state of code cj with probability πij . When the continuous-time

Markov chain converges to an equilibrium, the stationary distribution λ∞ offers a measure of importance

of codes in C.

Let J0, J1, · · · be the jump times of (Xt)t>0 and define the jump process of (Xt)t>0 by a discrete-time

process (Yn)n>0, where Yn = XJn . (Yn)n>0 is a discrete-time Markov chain (λ0,Π). Since each code is

obtained by clustering feature histograms, each code has at least one occurrence and all πij are strictly

positive. Accordingly, Π is irreducible. On the other hand, since πij > 0, all states in C are reachable

and there must exist some state that is positive recurrent. Given these two properties, (Yn)n>0 is ergodic

and the stationary distribution λ∞ can be directly computed by solving the left-eigenvector problem

λ∞Π = λ∞.

3.4 Judgment

Recall that for each line drawing projected by a 3D object, np sample points are sampled in a Halton’s

quasi-random sequence and a feature histogram is generated for each point. Given the codebook C =

{c1, c2, · · · , cm}, a line drawing l can be presented by l = (n1c1, n2c2, · · · , nmcm), n1+n2+ · · ·+nm = np,

by finding the clusters (corresponding to codes) in which the feature histograms of l fall; e.g., ni means

that there are ni feature histograms of l falling into the cluster represented by the code ci.

Let mj be a 3D model in the database M = {m1,m2, · · · ,mn} and L(mj) be all line drawings of mj .

The frequency of occurrence of the code ci in the model mj , denoted by fi,j , is the number of times that

ci appears in L(mj). Not all codes in C have equally usefulness for describing a 3D model. Obviously,

the larger fi,j is, the more important the code ci is to the model mj . On the other hand, if a code cj
appears in most or all models in M , then it is less discriminative than a code that just appears in a few

models in M . We thus use the TF-IDF weight [55]

wi,j =

{
(1 + log fi,j)× log n

ri
if fi,j > 0

0 otherwise
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where wi,j is the weight assigned to the pair (ci,mj), ri is the number of 3D models in M in which a

code ci occurs, and n is the total number of models in M .

Given the codebook C = {c1, c2, · · · , cm} and the TF-IDF weights, a 3D model mj in M is encoded

as an m-vector

C(L(mj)) = (w1,j , w2,j , · · · , wm,j)

Given a query model q, after the same encoding process

C(L(q)) = (w1,q, w2,q, · · · , wm,q),

the models in M are sorted by the similarity value

S(mj , q) =
C(L(mj)) · C(L(q))

∥C(L(mj))∥∥C(L(q))∥
(2)

and the semantic tags in the model that has the largest similarity value are used for recognizing the query

model. Note that in the similarity metric (2), the encoding vectors are normalized since different models

may have different complexity and thus have different vector magnitudes.

4 Experiment

One of the main goals of the proposed computational cognitive model is to explore the high-recognition-

performance mechanism of the human brain, and use the key components in this mechanism to develop

efficient computer programs that should have some advantages over the state-of-the-art recognition algo-

rithms in computer science area. In this experiment, we compare the computational cognitive model to

four classic methods (EGI, SPIN, D2 and G2) and one state-of-the-art method (VSKL):

• EGI [1]. The extended Gaussian image (EGI) maps each vertex’s normal of a surface patch to the

Gaussian sphere, weighted by the triangle area for each normal. This map has a clear relation to

the surface Gaussian curvature and can be used for object recognition. Especially, if the object is

convex, the EGI can uniquely determine the object shape.

• SPIN [2]. This method uses a dense collection of surface points and associated normals to represent

3D shape. For each point, a local orientation is established using the normal information and other

points that are visible to this point (the angle of two normals of two points is less than a threshold)

are projected into the tangent plane and form a spin image of that point. PCA method is applied

to compress all spin images of the 3D shape that are used for shape recognition.

• D2 [4]. By randomly sampling a set of points on the object surface, the pair-wise Euclidean

distances between each two in the sampling set are used in this method as a shape signature for

object recognition.

• G2 [3]. The Euclidean distance in D2 is affected by the object’s embedding space. Elbaz et al. [3]

proposed the use of the intrinsic geodesic distance between any two sample points as a signature

for object recognition.

• VSKL [5]. With the aid of the intrinsic geodesic distance field, this method samples a set of salient

points on the object surface and builds an intrinsic Voronoi diagram of these sample points. The

inherent geodesic Reeb graph is then extracted and forms a 1D tree-like skeleton. The 1D skeleton

has been shown [5] to be effective for object recognition.

We use McGill 3D Shape Benchmark [8] to test the above methods and our computational cognitive

model. The McGill Benchmark contains articulated and non-articulated objects. Ten classes are included

in articulated objects: they are ants (30), crabs (30), hands (20), humans (30), octopus (25), pliers (20),

snakes (25), spectacles (25), spiders (31), and teddy (20). The number in the bracket is the number of
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Figure 6: The PR curves of five methods (EGI, SPIN, D2, G2, VSKL) and the proposed computational

cognitive model. Left: tested on the McGill 3D Shape Benchmark. Right: tested on the noised McGill

3D Shape Benchmark.

models in that class. Nine classes are included in non-articulated objects: they are airplanes (26), birds

(21), chairs (23), cups (25), dinosaurs (19), dolphins (12), fishes (23), four-limbs (31), and tables (22).

To test the learning mechanism in the proposed computational cognitive model, we generate a codebook

C = {c1, c2, · · · , cm} using all 3D objects in the McGill Benchmark. Then we compute the associated

jump matrix Π = {πij}16i,j6m for the codes in C. The values in the stationary distribution λ∞ (i.e., the

left eigenvector of Π) is used as an index to rank the codes in C.

We use the precision and recall (PR) metric to compare the different recognition methods. Let I be a

3D object in a class Ci of the McGill Benchmark. We use I as input to get a set of recognized objects

R. Ideally, if R is much closer to Ci, we can obtain better recognition performance. The precision value

is defined as p = |R∩Ci|
|R| and the recall value is defined as r = |R∩Ci|

|Ci| , where |S| is the cardinality of set

S. We rank the recognized objects and define the set R to be top matched objects with increased set

cardinality. We use each of the 3D objects in the benchmark in turn as input and the final PR curve is the

average of all individual PR curves. The corresponding PR curves of different methods are summarized

in Figure 6 (left). The data presented in Figure 6 (left) clearly shows that the proposed computational

cognitive model has the best recognition performance.

A good object recognition method should also have a high robustness against noises. Accordingly,

we generate a noised version of the McGill Benchmark by adding a Gaussian noise (with the maximum

magnitude of 10% the diagonal length of the object’s bounding box) to each vertex in the 3D object’s

mesh. We then apply different recognition method on this noised Benchmark and the corresponding PR

curves are summarized in Figure 6 (right). The data presented in Figure 6 (right) demonstrates that the

added noise has little influence on our methods as well as D2 and VSKL. Meanwhile, G2, SPIN and EGI

still have a low accuracy when dealing with the noised database. This observation meets our expectation

since both the geodesic distances [56] along the object surface and the vertex normals [1] on the object

surface seriously suffer from noise.

5 Conclusions

In this paper, we present a computational cognitive model based on a comprehensive review on cognitive

functionalities in the human brain for 3D object recognition. Compared to previous object recognition

methods in computer science area, the proposed cognitive model has several distinct features: (1) A
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distributed pictorial representation in terms of line drawings is used to represent 3D objects; (2) the 3D

object information is locally encoded by a set of points randomly sampled from line drawings and each

sample point is associated with a circular histogram that is similarity-invariant; (3) from the large set of

feature histograms, a distributed abstract form called codebook is extracted by optimal feature clustering;

(4) for the codebook representation, learning mechanism is exploited by applying a Poisson process and

a Markov chain model. Object recognition performance is tested using the McGill 3D Shape Benchmark

and the comparison between our method and five representative methods in computer science area shows

that the proposed computational cognitive model has a better performance than these representative

recognition methods. Finally we remark that the line drawing representation proposed in this paper may

be intrinsic in the human brain for fast visual media understanding, and thus in addition to being useful

for a natural and efficient 2D/3D geometric modeling [57, 58], it also sheds some light on a promising

multimedia (including image and video) authoring and summarization scheme [59, 60].
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